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Avalanche forecasting—an expert system approach
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ABSTRACT. Avalanche forecasting for a given region is still a difficult task
involving great responsibility. Any tools assisting the expert in the decision-making
process are welcome. However, an efficient and successful tool should meet the needs of
the forecaster. With this in mind, two models_were developed using a commercially
available software: CYBER TEK-COGENSYS™, a judgment processor for inductive
decision-making —a principally data-based expert system. Using weather, snow and
snow-cover data as input parameters, the models evaluate for a region the degree of
avalanche hazard, the aspect and altitude of the most dangerous slopes. The output
result is based on the snow-cover stability. The new models were developed and have
been tested in the Davos region (Swiss Alps) for several years. To rate the models, their
output is compared to the a posteriori verified hazard. The first model is purely data-
based. Compared to other statistical models, the differences are: more input
information about the snow cover from snow profiles and Rutschblock tests, the
specific method to search for similar situations, the concise output result and the
knowledge base that includes the verified degree of avalanche hazard. The
performance is about 60%. The second, more-relined model, is both data- and rule-
bhased. It tries to model the decision-making process of a pragmatic expert and has a
performance of about 70%, which is comparable to the accuracy of the public
warning.

1. INTRODUCTION 0.5
- 0.411
Avalanche forecasting, in our context, means the daily 2 A
assessment of the avalanche hazard for a given region, i.e. %)_ 0.3
forecasting at the meso-scale (McClung and Schaerer, o -
1993). The resulting avalanche warnings and recommen- o 0.2
dations for the public should describe the avalanche ‘%
situation, i.e. give information about the place, the time © 0.1
and the probability of release for a specific type of
avalanche (slab or slull] large or small, wet or dry). The 0 t
most convenient way to handle this sort of information is 1 2 3 4 5 6 T

to summarize it as a degree of avalanche hazard. Since
1985, in Switzerland, the degree of hazard has been
defined in descending order by the release probability, the

degree of hazard
Fig. 1. Relative [requency of the verified degree of hazard
i the Davos region; len winter seasons ncluding 1512d
are considered. Light columns (left) for the old Swiss
seven-degree scale, dark columns (right) and values for the

areal extent of the instabilities and the size of the
avalanches (Fohn, 1985). The scale is generally based
on the snow-cover stability. Tt copies the development or
stepping of the most typical avalanche situations and new European _five-degree scale.
hence is not linear. The intensity of an avalanche
situation increases strongly from one degree to another, focused on the hazard of dry-slab avalanches. During

maybe even exponentially. Consequently, the frequency spring time, wet-snow avalanches are partly considered:

of the degrees of hazard decreases accordingly with
increasing degree of hazard (Fig. 1). Any expert system
should profit from this concept that was adopted in 1993
by the working group of the European avalanche-
warning services. In this study, seven degrees of
avalanche hazard are used according to the structure
defined in 1985; details of the Swiss hazard scale have also
been given by McClung and Schaerer (1993).

Since dry-slab avalanches represent the most impor-
tant threat for skiers and back-country travellers, we

https://doLorg/r%q.@ 89/50022143000004172 Published online by Cambridge University Press

the daily increase of the hazard due to warming during
the day is not taken into account.

LaChapelle (1980) described the technique for
assessing the avalanche hazard: weather, snow and
snow-cover data observed daily and measured at several
locations representative for a given area are evaluated by
human experts using their knowledge and long-term
experience combined with individual intuition. Since
then the procedure has not changed much. The core is
still formed by the classical process of synopsis supple-
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Fig. 2. The classical conventional method supplemented
with different supporting tools to forecast the avalanche
hazard on the regional seale.

mented nowadays by different sorts of supporting tools

However, the demands are steadily increasing: more
frequent and more detailed information is desired.
Tourism is stll developing and, as in many other
mountainous regions, the Alps have become one of the
favourite playgrounds in Europe. Ski touring is wider
ranging and more popular than it was previously.
Nevertheless, the number of avalanche victims has not
accordingly increased (Fig. 3). which may be due to the
better education and awareness of the skiers, presumably
also due to the stabilizing effect of more frequent skiing
after each snowfall period on popular slopes and hopefully
due to better warning.

In the forecast processes nowadays, a lot of electronic
tools are involved: acquisition, transfer and represent-
ation of the data, data base, snow-cover simulation,

B free terrain O buildings

20

avalanche fatalities
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Fig. 3. Avalanche fatalities in the Swiss Alps 196465 to
1994-95. The fatalities are appointed lo three categories
describing where the avalanche accidents happened: in
butldings, on communication lines {including controlled ski
runs ) and in the free terrain ( back country ). The 0 year
average is aboul 28 fatalities, indicated by the thin broken
line. The solid bold line shows a 5 year moving average.
Percentage numbers give the proportion of fatalities in the
Jree terrain (10 year average) showing clearly the
increasing number of fatalities in the free terrain, whereas
the total number trend is stationary.

https://doi.org/10.3189/50022143000004172 Published online by Cambridge University Press

numerical weather forecast, decision-making tools and
expert systems, and information distribution. Even so, the
data that are measured are not the most relevant ones.
What is really needed is the strength (compressive, tensile
and shear) ol individual snow layers. the so-called low-
entropy data (LaChapelle, 1980) or class 1 data
(McClung and Schaerer, 1993). The available data are
Just more or less appropriate to parameterize the relevant
processes. The interpretation of these data is the most
delicate task and hence many supporting tools have been
developed for human experts. Because the avalanche
hazard cannot (yet?) be calculated fully in a strict sense
(by algorithms), this is a field for human experts and
correspondingly for expert systems.

2. PRESENT APPROACHES
The approach described by LaChapelle (1980). the
classical method, still forms the basis of the decision-
making procedure of most avalanche-forecast services. Up
till now, none of the supporting tools have been reliahle
enough to substitute for the human expert and will
probably never be. But may they become an objective
partner for “discussion”? A general overview of different
methods has been given by Fohn and others (1977), Buser
and others (1985) and more recently by McClung and
Schaerer (1993). In the following we focus on forecasting
models and tools.

Statistical approaches

The most popular statistical methods are the discriminant
analysis and the nearest neighbours (McClung and
Schaerer, 1993),

Already, in the 1970s the first studies using discriminant
analysis had been performed to find the relevant
parameters for avalanche forccasting (e.g. Perla, 1970;
Judson and Erickson, 1973; Armstrong and others, 1974:
Bois and others, 19

5; Salway, 1976). Snow and weather
data are usually used together with observations of
avalanche activity. New snow depth, temperature and
wind speed, to mention some, have proved to be
important. The results have confirmed the experience of
the avalanche experts. But. as none of the parameters used
is directly related to the process of avalanche formation, it
has not been possible to evaluate the avalanche hazard.

The data used, the usual observed and measured
parameters, are all index values. (The data used are those
that are available and not those that are most relevant to
the process of avalanche formation.) They are instructive
to an expert and may give the correct hints to the key
processes, such as settlement. However. the results of these
statistical studies have improved the understanding and
have helped to structure knowledge and finally to develop
rule-based systems. Additionally, as the statistical models
need long-term data, many valuable observations have
been initiated. The accumulated data base may now be
used to improve the memory of the expert.

Operational systems based on the statistical approach,
and using a long-term data base, have been developed in
several countries and are now widely used (Buser and
others, 1987; Navarre and others, 1987; McClung, 1994;
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McClung and Tweedy, 1994; Mérindol, 1995) both for
local and for regional avalanche forecasting. Except [or the
system developed by McClung and Tweedy (1994), which
is a combination of the two statistical merthods, all of them
use the nearest-neighbour method. It is generally assumed
that similar snow and weather conditions should lead to
similar avalanche situations, i.e. that observed avalanches
of similar past days should be representative of the present-
day situation. A geometrical distance in the input
parameter space is used in searching for similar situa-
tions. The Euclidian distance between the actual-day data
and the surrounding past-day data is in some models
calculated directly in the input parameter space (Buser and
others, 1987); in other models, the input data are first
transformed in the space of the principal components that
was determined by the statistical analysis of the data base
(Mérindol, 1995) and then the Mahalanobis distance is
used (McClung and Tweedy, 1994). In some models, the
input parameters are weighted according to the general
experience of the expert [orecaster (Buser and others, 1987)
and the weights may even vary according to the general
weather type (Bolognesi, 1993b). The output is generally
hased on the observed avalanches of the ten or 30 nearest
neighbouring days. This information has to be evaluated
by the forecaster. The simplest way to summarize this sort
of information is to just separate between avalanche days and
non-avalanche days (Obled and Good, 1980). In addition to
the list of the 30 nearest neighbours, McClung and Tweedy
(1994) predicted the probability of avalanching by using
discriminant analysis. For the forecasting of avalanches at
Kootenay Pass (B.C., Canada) this probability is com-
bined, using Baysian statistics, with the expert’s opinion,
made a priori, to take into account additional low-entropy
data (e.g. the snow-cover situation) (Weir and McClung,
1994). In other models, a number is given as output
according to the classification of observed avalanches used
in the country (Guyomarc’h and Mérindol, 1994) or an
avalanche index is calculated (Navarre and others, 1987).
These types of output are difficult to relate to the actual
hazard in a given region. Hence, it is difficult to assess the
real quality of these forecast models. They certainly
improve the reflections of unexperienced forecasters and
may influence experienced forecasters but rarely may they

be called a decisive help in determining the degree of

hazard in a given region.
Deterministic approaches

The aim of the deterministic approach is to simulate the
avalanche release. Whereas the most relevant snow-cover
processes may be modelled (Brun and others, 1989, 1992)
and some attempts have also been made to model the
avalanche formation (Gubler and Bader, 1989), it is still
almost impossible to simulate the range of the numerous
avalanche-formation processes on a mountain slope — not
to speak of a whole area. A possible way out is to use
different methods, for example, to develop an expert
system which analyzes the simulated snow-cover strat-
igraphy (Giraud, 1991). I'shn and Haechler (1978)
developed a deterministic statistical model which relates
the snow accumulation by snowfall, wind and settlement
to the avalanche activity. The model is appropriate to
describe avalanche situations in periods of heavy snowfall.
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Expert systems

Expert systems represent the idea of simulating the
decision-making process of an expert. Most of them are
symbolic computing systems. i.e. using rules which were
formulated explicitly by human experts, e.g. MEPRA
(Giraud, 1991) and AVALOG (Bolognesi, 1993a). The
French system MEPRA analyzes the snow-cover
stratigraphy; the snow profiles are simulated by the
snow-cover model CROCUS (Brun and others, 1989)
in parallel with meteorological data provided by
SAFRAN (Durand and others, 1993), a model for
optimal interpolation of meteorological data. AVA-
LOG, assessing the avalanche hazard slope-by-slope, is
an assisting tool for the efficient artificial release by
explosives in the restricted area of a ski resort. Recently,
a hybrid expert system has been developed using a
neural network and rules extracted from the data base
with neural network techniques (Schweizer and others,
1994a,b). Bolognesi (1993h) has developed another
hybrid system called NX-LOG by combining the
statistical model NXD (Buser and others, 1987) and
the rule-based system AVALOG. A further recent
development is a rule-based expert system to interpret
data from snow profiles with respect to snow stability
(McClung, 1995).

3. A NEW APPROACH WITH THE CYBERTEK-
COGENSYS™ JUDGMENT PROCESSOR

In 1989, we began a new approach with the idea of
huilding a system [or regional avalanche forecasting similar
to the statistical ones but with a different method of
searching for similar situations and with optimized input
and output parameters, called DAVOS. We tried to
include some of the relevant physical processes, i.e.
elaborated input parameters and to give as a result
directly what the avalanche forecaster would like to have:
the degree of hazard (Schweizer and others, unpublished).

In 1991, we worked out a completely new approach,
more process-oriented and partly rule-based, which tried
to model the reasoning of the avalanche forecaster, called
MODUL.

Both models are based on software for inductive
decision-making: CYBERTEK-COGENSYS'™ judg-
ment processor (version 19), which is primarily used in
the finance and insurance world.

The method: the judgment processor

The CYBERTEK-COGENSYS'™ judgment processor is
a commercially available software for inductive auto-
matic decision-making. Since we had no access to the
source code, we did not exactly know what the system does

A traditional expert system consists of five elements: the
dialogue component, the problem-solving component,
the knowledge base, the explanatory component and
the component for incremental learning (DUDEN
Informatik, 1988).


https://doi.org/10.3189/S0022143000004172

Schweizer and Fohn: Avalanche forecasting— an expert syslem approach

(however, it works). So, the algorithm cannot be given in
all detail, but we shall try to outline the general idea
below. So far, the core of the system may be considered a
“black box™. The judgment processor is based on the fact
that pragmatic experts decide, using their experience and
intuition rather than explicit rules. The more complex a
problem, the less structured is the knowledge. Experts are
usually able to decide correctly and fast in a real situation,
However, they are usually hardly able to explain their
decisions completely following exact rules. The expert’s
approach is to choose the relevant data (which may differ
substantially from one situation to another), to classify
and to analyze the data and finally to reach a conclusion.
Building up a model involves the following steps:

I A so-called judgment problem consists of a list of questions
and the logic required to arrive at a judgment — that is,
to reach a conclusion or make a decision — based on
the answers to those questions. By specifying the
questions — to be answered by yes/no, multiple choice

the mentor, the expert

or numerical responses
building up the system, defines the data needed to
reach a specific decision and the criteria that are used to
categorize or evaluate the data. That means for
numerical questions that the possible answers must be
grouped into so-called logical ranges (up to five ranges),
so that the system can learn how the response is
normally categorized. Numerical questions can take the
form of calculations including conditions.

2. Once a problem has been defined, the mentor
“teaches” the judgment processor by entering exam-
ples (real or realistic data) and interpreting the
situations represented by those examples. By observing
the relationship between the data and the mentor’s
decisions, the judgment processor builds a logical model
that allows it to emulate the mentor’s decisions. The
more complex the problem the more situations are
needed. However, as usual in case-based reasoning
systems, the performance of the system increases fast at
the beginning with increasing number of situations,
reaches a plateau and finally may even decrease (Fig. 4).

3. The judgment processor calculates the so-called logical
importance of each question based on the observation of
the mentor’s decision. The logical importance is a
measure of how a particular question contributes to the
logical model as a whole, based on how many situations
within the knowledge base would become indistinguish-
able if that question were to be removed. Based on the
logical importance, given as a number from 1 ... 100,
the questions are classified as so-called major or minor
questions. The logical importance is continuously
updated, so the system can learn incrementally.

After sufficient training of the model by the mentor,
the model performs the following steps to reach a
conclusion for a new situation entered:

[ If a new situation is encountered, the system tries to
give a proposition for the possible decision on the
basis of the past known situations and on what is
learned about the decision logic; particularly, the
classification into major and minor questions based
on the previously calculated logical importance is
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Fig. 4. A typical example of the performance of a case-
based reasoning system with increasing knowledge base over
lime: the DAVOSE model.

used. A new situation is similar to a known past
situation from the knowledge base, il a certain
number of the answers (usually 80%) to the major
questions are within the same logical range. That
means that primarily only the major questions are
considered for searching for similar situations, Two
past situations that are both similar to a new
situation may hence coincide in different questions.
e.g. if a problem consists of five major questions, four
answers have to be in the same range, and hence five
different possibilities exist for a similar situation, in
addition to the case when a previous situation is
found that coincides in all answers to the major
questions. So similar situations need not conseq-
uently be near, in a geometrical sense in the
parameters space, to the new situation.

The proposed decision is derived from the similar
situations found using the so-called assertion level of
the different similar situations. All questions and
their logical importance are considered to determine
the assertion level, It is a number (on a scale of 1-
100} that reflects how closely the current situation
compares to existing situations in the knowledge
base. The closer the assertion level is to 100, the more
similar this example is to previously encountered
situations. The less the answers agree, the smaller is
the assertion level, i.e. for each answer that does not
agree, a certain amount is subtracted from 100,
depending on the number of questions and the
logical importance of the question; in the case of
perfect agreement, a so-called [full match. the
assertion level is hence equal to 100.

The quality of the proposed decision, based on the
similar situations found, is described by the so-called
confidence level, an indicator of how certain the system
is that its interpretation is appropriate to the current
situation: an exclamation mark (!) for very confident,
a period () for reasonably confident or a question
mark (?) for not confident. A low level of confidence
suggests that there are few situations that the system
considers to be logically similar, or that those
situations that are similar have conflicting inter-
pretations. Additionally, the similar situations that
are used to derive the decision with the according
assertion level are also given as an explanation. If the
system is not able to find a decision on the basis of the
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present knowledge base it gives the result “not
possible to make an interpretation”, in the following
simply called “no interpretation™.

In Figure 5 the different steps to reach a conclusion
(described above) are summarized in strongly simplified
graphical form. In Table 1 an example of the system
output is given.

Since the search for similar situations forms the core of

the method, it may be called, in the broadest sense, a
nearest-neighbour method. However, the metric for
searching for similar situations differs substantially from
the commonly used distance measure, e.g. the Euclidian
distance. The categorization of the input data, the
classification into major and minor questions and the
metric to search similar situations are all non-linear. Briefly
summarized. the system weighs and classifies the categor-
ized data. searches for similar situations strongly using the
classification and categorization, derives a result from the
similar situations, describes the quality of the result and
finally lists the similar situations used for deriving the result

+ and x : past situations with
according output (+ or x)
O : new situation, output unknown

Xs A

similar situations

x w3
xxx | XXX +
X ++
xXxx | % Taa
xxx | o0n |
S 4
X * ++ e 7 [l
| S [ (AT
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together with the pertinent similarity measure. The
advantage of the method is the strong concentration on
the questions that are considered important. The fact that
the majority of the answers to the major questions have to
be in the same logical range makes the logical importance
of a question, comparable to the weight used in a different
system, (o a decisive factor, in contrast to similar systems.
So different versions of a model, as we will use, with the
same questions but with different logical importance
(calculated by the system, not given arbitrarily), leading
to a different partition of major and minor questions, will

find very different similar situations.
The application: the avalanche hazard

In our case the judgment problem is the avalanche
hazard and the questions will be called input parameters
and are, for example, the 3d sum of new snow depth or
the air temperature. The answers are the values of the
input parameters in a real situation, e.g. 15cm or =5°C.
A real situation is hence described by the set of input

Fig. 5. CYBERTEK-COGENSYS™ Judgment Pro-
cessor: the different steps to reach a conclusion are given
(strangly simplified) for a problem with only three input
parameters (X;, Xo, Xg) and one oulpul parameler
(% or “47). (a) Input parameter space. (b)
Calegorization, leading lo a cube (x; , X3, x3) of 125
identical boxes. (¢) Reduction to the major parameters (Xj,
v3), ie. projection lo this plane. Selecling similar
sttuations (all situations in the shaded squares) based on
the following similarity condition: similar siuations are
all past situations with either x; or xyin the same category
as the new situation. In the shaded squares are often several
similar past situations; these situations that may have
different oulput differ n the third (minor) parameler
(xs). Based on the similar situations, referring to the
logical importance and the minor parameter, the system
proposes the result: in the above case, the proposed outpul
would be <+, with a confidence level of *2”, i.e. not
confident, since there are too many similar situations with

different output.
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Table 1. Example of screen output: MODUL model, sub-problem Release probability new snow, 77 SJanuary, 1995
(see text for explanation of terms and Figure 8). The sub-problem has six input paramelers: the system proposed the oulput
large for the release probabilily, but it is not sure at all, so it puts a question mark. As explanation, Jour similar situations

are given

User 1ID; SLF Date: 11 January 1995 09:14
Problem code: RPROB_NS Problem name: Release probability new snow
Situation No: 316 Applicant code: 110195 ( suspended )

DATA
No. Question Answer Category
1 New snow depth (5, 15, 30, 50 cm) &1 cm #5: >50cm
2 3d sum of new snow depth (10, 30, 60, 100 em) 93 #4: > 60 <100cm
3 Quality of new snow (very loose, loose, slightly consolidated, slightly consolidated ~— #3

quite consolidated, consolidated)
4 Snow temperature (3d) (cold, cold — warm, warm — cold,
warm, wet)

) Prospective changes (strongly weakening, slightly weakening,
without any influence, slightly consolidating, strongly consoli-
dating)

6 Increase of snow depth (3d) (10, 30, 50, 80 cm)

INTERPRETATION
Release probability new snow:
(very low, low, moderate, large, very large)

EXPLANATION
A tentative conclusion for this example is situation No: 170
Release probability new snow:
[tis important to note, however, that in the above case new snow depth is:
instead of:
Less important differences are that in this case:
The ASSERTION LEVEL for this tentative conclusion is: 85

A tentative conclusion for this example is situation No: 41
Release probability new snow:

cold

slightly weakening

77cm

large?

large

NONE

very large

It is important to note, however, that in the above case quality of new snow is:

instead of:
Less important differences are that in this case:
The ASSERTION LEVEL for this tentative conclusion is: 81

A tentative conclusion for this example is situation No: 86
Release probability new snow:

NONE

large

It is important to note, however, that in the above case quality of new snow is;

mstead of:

#1

#2

#4: =50 <80cm

> 50 ¢m
=15 <30em

slightly consolidated

loose

slightly consolidated
quite consolidated

Less important differences are that in this case: NONE
The ASSERTION LEVEL for this tentative conclusion is: 81
A tentative conclusion for this example is situation No: 291
Release probability new snow: moderate
It is important to note, however, that in the above case new snow depth is: > 50 cm
nstead ol 2 5= 1 5em
Less important diflerences are that in this case:
increase of snow depth (3 days) is: > 50 < 80cm
instead of > 30 < 50 cm
The ASSERTTION LEVEL for this tentative conclusion is: 81
parameter values (weather, snow and snow-cover data) Finally, the decision or interpretation is the degree of
for the given day. The logical ranges are, for example, in hazard and in most versions of the model DAVOS (see
the case of the 3d sum of new snow depth 0... 10, below) the altitude and the aspect of the most dangerous

10...30, 30...60, 60...120 and more than 120 cm. slopes.
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4, INPUT, OUTPUT AND VERIFICATION

We have chosen our input parameters (called questions in
the judgment processor) from a data set which is believed
to be representative of the region considered (Davos:
about 50km”): seven quantities are measured in the
morning (at the experimental plot of SFISAR below
Weissfluhjoch, 2540 m a.s.1., or at the little peak above the
institute, the so-called Institutsgipfel, 2693 m a.s.l., by the

automatic weather station of the Swiss Meteorological
Institute), four quantities are prospective values for the
day considered and ten quantities describe the actual
state of the snow cover based on slope measurements
performed about every 10d. These principal data are
given in Table 2.

A description of the avalanche hazard is associated with
cach data set consisting of the above weather, snow and
snow-cover data. It seems most appropriate to choose as
output of an expert system exactly the structure that is
usually used by forecasters. So the assisting tool “speaks™
the same language as the forecaster. The question thus is:
which degree of hazard describes the present avalanche
situation and where is it located? Only the highest existing
degree of hazard is given; the location is given by the slopes,
described in terms of altitude and aspects, that are supposed
to be the most dangerous in the region, So the given degree
of hazard is not at all averaged over all aspects; it is
definitely wrong to deal with averages in this context.

Therefore, the avalanche hazard is formulated first of

all as degree of hazard (/... 7). Secondly, the lower limit

Table 2. Principal data used in the two different DAVOS
and MODUL models. D, Data used in the DAVOS
moadel; M, Data used in the MODUL model

1. Measuremenls

D, M new snow depth

D, M total snow depth

D, M penetration depth

D, M wind speed and wind direction
D, M air temperature

M snow temperature

M new snow density

I1. Prognostic data

D, M prognostic air temperature at noon
D, M prognostic index of daily radiation
M prognostic mean wind speed
M prognostic new snow depth

[11. Snow-cover dala

D index of snow-cover stability

D depth of critical layer

M result of Rutschblock test

M type of relecase (RB test)

M type of critical layer (RB test)

M total slab thickness (RB test)

M new snow slab thickness (RB test)
M type of profile (RB test)

M snow depth at the test site

M date of Rutschblock test
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of the primarily endangered altitudes is given in steps of
usually 200 m (> 1200. > 1600, > 1800, >2000, > 2200,
> 2400, > 2500, > 2600, > 2800 ma.s.l.). Thirdly, the main
aspect is described as either one of the mean directions
(N, NE, E. SE, §, NW) and an according sector
(+45, +67°, £90°) or as extreme slopes or all slopes.
The westerly sector is not so frequently endangered and il
s0, other aspects are also endangered, so it may be
described by the other ones. I the hazard is given, lor
example, as 4, >2400ma.s.l., NE x 90°, this means high
hazard on slopes with aspect from northwest to southeast
above 2400 m a.s.l. Three examples are given in Figure 6.

3, >2000 m, NE + 90°

N

s
5, > 1500 m, all

Fig. 6. Three examples of how the regional avalanche
hazard is described.
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Verification

The “real™ avalanche hazard that we use in the data base
of the DAVOS model to teach the system is the result of
an “a posteriori” critical assessment of the hazard, the so-
1995). The
verification has again the same structure as the model

called wverification (Féhn and Schweizer,

output. Otherwise, it is hardly possible to verify the
avalanche hazard. Several studies on the verification of
the avalanche hazard with the help of the so-called
avalanche-activity index were not sufficiently successful
(Judson and King, 1985; Giraud and others, 1987:
Remund, 1993). One reason is that in the case when no
avalanches are present or observed, the avalanche hazard
is not necessarily very low or even non-existent, Henee, it
is obviously wrong to use the observed avalanche activity
as the sole output parameter of an assisting tool for
regional avalanche forecasting.

The avalanche verification is not identical to the
avalanche hazard described in the public avalanche
warning. As the warning is prospective and the data base
may be incomplete at the time of forecasting, the
avalanche hazard might have been in fact larger or
smaller. It is always casier to assess the avalanche hazard
in hindsight! Operationally, the verification has been
done some days later considering the observed avalanche
activity (naturally and artificially released), the past
weather conditions. the additional snow-cover tests, the
back-country skiing activity and several other, partly
personal observations. Snow-cover tests form an impor-
tant part of the verification work. Like the real-time
assessment itself, it is an expert task. We estimate that the
verification describes the avalanche situation correctly in
about 90% of the days and thus is much more accurate
than the forecast. Using the degree of hazard from the
avalanche forecast as output parameter would only be
reasonable il the warning were always correct. An
erroneous interpretation should not be enclosed in the
data base. Comparing the forecasted degree of hazard to
the verification, the forecast seems to be correct in about
70% of the days. So it seems obvious that the use of this
type of verification represents a substantial improvement
for the development of expert systems in the field of
regional avalanche forecasting. Furthermore, verification
is a prerequisite for evaluating the quality of any assisting
tool for regional avalanche forecasting and, of course, also
for improving the warning itself,

5. MODELS

Using the CYBERTEK-COGENSYS™ judgment pro-
cessing system, we developed two different types of model:
DAVOS and MODUL. The DAVOS model uses 13
weather, snow and snow-cover parameters and evaluates
the degree of hazard. the altitude and the aspect. The
model is exclusively data-based, whereas the MODUTL
model is both data- and rule-based. It uses 30 input
parameters stepwise and the evaluation of the degree of
hazard is the result of 11 interconnected judgment
problems that are formulated according to the relevant
processes. “The system tries to model the decision-making
process of an expert avalanche forecaster.
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DAVOS model

General features: input, output and knowledge base
The DAVOS model uses the input parameters given in
Table 3. Most of the values are calculated from nine
principal values (Table 2) according to our experience,
The idea was to take into account certain relevant
processes, e.g. new snow settlement., Details have been
given in Schweizer and others (unpublished). In the
following some of the elaborated parameters are briefly
described. The settlement-quotient parameter compares the
increase in snow depth during the last 3d with the sum of
the new snow depth of the last 3 d. The smaller the value
the better the settlement. However, the settlement
includes not only the new snow but also the old-snow
settlement. The consolidation of the surface layer is
described by the penetration-quotient parameter: the penet-
ration depth today divided by the penetration depth
yesterday. The heat transport into the snow cover is taken
into account by a degree-day parameter: the sum of the
positive air temperatures al noon of the last 2d and the present day
(prospectively) at 2000 ma.s.l. (the average altitude of the
region considered). The snow transport is included by the
blowing-snow  parameter: the sum of additional wind-
transported snow in leeward slopes over the last 3d
(Fshn and Haechler, 1978). The radiation index is an
estimation (1, 2 or 3) of the daily total global solar
radiation for the present day. 1 means below the long-
term mean value for the given day, 2 about and 3 above,
respectively. The snow-cover stabilily index (1 to 5) is an
estimate of the state of the snow cover considering the
snow profiles and Rutschblock tests that are available for
the region. The depth of the eritical layer is an estimation
from the snow profiles and the Rutschblock tests, We
usually dispose of the snow profile from the study plot and
at least of one typical snow profile with a Rutschblock test
from a slope in the Davos area. the latter often performed
by ourselves,

Besides the input parameters, we have also chosen the
ranges [or each of the input parameters according to our

Table 3. Input parameters and logical ranges for the
DAVOS model

Input parameters Boundaries|choices

Sum of new snow depth (3d) 10/30/60/120 ¢cm
5/15/30/50 em
70/100/150/200 ¢cm
0.01/0.36/0.7/1.0
0.4/0.8/1.2/3.0
2/5/10/15 em
15/-8{-3/0°C
5/0/5/10°C

Penetration depth

Total snow depth (3d before)

Settlement quotient

Penetration quotient

Sum of blowing snow (3d)

Air temperature

Temperature difference

Sum of the positive temperatures
at noon at 2000ma.s.l. (3d)

Index of radiation

0.01/3/6/10°C:
| S

1.2.%. 45

NW, NE, SE, SW, 00
20/40/60/90 em

Index of snow-cover stability
Wind direction
Depth of critical layer
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experience. As mentioned above, each of the input data is
associated with one of up to five logical ranges. After
several vears of data accumulation, we are finally able to

L L R

check whether the chosen ranges were reasonable or not. ‘ - :
e - " 2 a0 el ®d BT - - - R
I'wo examples based on the 9 year data base are given in ‘ :

Figure 7. Whereas the 3d sum of the new snow depth

degree of hazard
n W &~ O o ~

seems to categorize quite well, compared to the verified

degree of hazard, the settlement quotient shows no

specific trend. This is in accord with the study of Perla

0 50 100 150 200 250
3 d sum of new snow depth [cm]

(1970) but it is in contrast to the opinion of experienced
forecasters. That probably does not mean that the

settlement quotient is not important at all; it might be
relevant but only in certain situations, i.e. combinations
of input data. Statistical methods, in particular univar-
jate, do not tell the whole truth. The DAVOS model also
does not consider the settlement quotient as important
(Table 4).

The output result is the avalanche hazard described as

degree of hazard

degree of hazard, altitude and aspect of the most

dangerous slopes (see ahove).
The knowledge base of the DAVOS model consists of

the daily data from nine winters (1 December-30 April), settlement coefficient

i.c. 1361 situations. During this time period, 22 situations

were pairwise identical, i.e. each of the input parameters Fig. 7. Comparison of the 3d sum of the new snow depth

of the 2d considered belong to the same logical range. (above) and the settlement quotient (below) with the

About 700000000 situations are theoretically but, of degree of hazard to check whether the logical ranges chosen

course, not physically possible. categorize the data appropriately. Average degree of hazard
for each category is also shown. The data base consists of

Different versions: DAVOSI, DAVOS2, 1361 situations from nine winlers.

DAVOS31|DAVOS32 and DAVOSY

The original version of the DAVOS model was called large number of uninterpretable situations. This fact

DAVOSI. The experience with this version has given rise seems definitely to be due to the desired output result that

to further versions. The values of the logical importance of  consists of three independent and equivalent components

the original DAVOSI version (Table 4) show clearly that (degree of hazard, altitude and aspect).

this version is hardly able to discriminate well. Twelve of In the case of different independent output results, the

the 13 input parameters are considered as major ones. As CYBERTEK-COGENSYS™ judgment processor offers the

a consequence, looking for similar situations means that possibility of choosing one of them as the dominant output

ten of the present-day input parameter values have to be result. Hence, we used a second version of the model

in the same range as the past-day values. This represents a DAVOS: DAVOS2. Whereas in the DAVOSI version all

very strict condition for the similarity and results in a three results are equally important, in the DAVOS2 version

Table 4. Values of the logical importance of the different versions of the DA VOS model. Bold
Jigures indicate so-called major paramelers

Input paramelers DAVOSI  DAVOS2  DAVOS3!] DAV0S32 DAVOSY
YHN <10cm) (EHN >10cm)

Sum of new snow depth (3d) 0 100 0 100 100
Penetration depth 83 28 14 47 29
Total snow depth (3 d before) 83 65 79 60 65
Settlement quotient 50 21 15 18 19
Penetration quotient 41 24 18 36 27
Sum of blowing snow (3d) 66 33 35 41 32
Air temperature 66 23 pp 18 15
Temperature difference 24 15 7 17 13
Sum of the positive temperatures

at noon at 2000m a.s.l. (3d) 41 29 30 4 29
Index of radiation 44 11 17 11 16
Index of snow-cover stability 100 86 81 70 77
Wind direction 33 26 26 18 21
Depth of critical layer 79 51 100 47 83
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the first output result, the degree of hazard, is the dominant
one. This leads to different values of the logical importance
and accordingly to different interpretations. Most relevant is
the small number (four) of major parameters and hence the
better selection performance: hardly any uninterpretahle
situations. In the DAVOS2 version, the values of the logical
importance seem to be closer to general experience than to the
DAVOSI version where, for example, the new snow depth has
no importance at all. The reason is the sort of output result
and the predominance of situations with no new snow.

I'rom experience, it is obvious that it is quite important
whether for a given day there is new snow or not. Hence,
we tried to take into account this fact by developing two
new versions: one for the more frequent situations without
snowfall and the other for the situations with snowfall —
the DAVOS31 and DAVOS32 versions, respectively.
These two versions concentrate on the degree of hazard
like the DAVOS2 version. The knowledge base of the
DAVOS31 version consists of all days from the last nine
winters, when the 3 d sum of new snow depth was less than

10 em; the complementary set of days with the 3d sum of

new snow depth equal to or larger than 10cm forms the
knowledge base of the DAVOS32 version. The differences
in the logical importance in the two versions are quite

typical (Table 4). The values of the logical importance of

the DAVOS3! (no new snow) version are similar to the
logical importance of the original DAVOSI version,
whereas the logical importance of the DAVOS32 version
(new snow ) are similar to the ones of the DAVOS2 version.
The numbers of major parameters are four and seven,
respectively, for the DAVOS31 and DAVOS32 versions; so
they should discriminate quite well.

Finally. the output result was reduced to the degree of

hazard: DAVOS4. The DAVOS4 version is most
appropriate for comparison with similar forecasting

models and we hoped that due to the single type of

output the DAVOS4 version should discriminate better
than the other versions.

In all the different versions the input parameters
describing the state of the snow cover proved to be
important (Table 4).

MODUL model

Geeneral features and structure

The experiences with the diflerent versions of the DAVOS
model, described above, directed us to try a different,
more deterministic approach. Originally, we hoped that
the DAVOS model, based on the judgment processor,
would be able to choose the relevant parameters from the
I3 input parameters according to the situation and

generally somehow to recognize the hidden structure of
reasoning behind it. Despite the satisfactory results of

some ol the versions of the DAVOS model (see section
below), it seems that this aim was too ambitious; the
problem seems to be too complex or the method not goad
enough. So we decided to “help™ the system by
structuring the input data. The design of the MODUL
maodel is therefore quite similar to the way a pragmatic
expert forecaster decides (Fig. 8).

First of all, it is decisive whether there is new snow or
not. Either the expert has to assess the new-snow stability
or he/she directly assesses, without new snow, the old-
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weather, snow and
snow cover data

new snow

e

sSnow
temperature

stability prospective changes
old snow old snow

release probability
ol snow

SNOW ;:rofie
analysis

caombined release
probability (natural)
- — - | terrain

L

skier

influence |

final merging

degree of hazard

Lig. 8. Structure of the MODUL model: 11 sub-problems
and their relation. Shaded boxes are only considered in the
case of new snow.

snow stability which is often similar to the stability 1d
before, except if there is, for example, a large increase of
heat transport and/or radiation. So he/she structures the
input data according to the different steps in the decision
process. If both the new-snow stability and the old-snow
stability, including both the effect of the weather as
forecast for today, have bheen assessed, the two release
probabilities are combined. Taking into account the effect
of the terrain and of the skier as a trigger, the degree of
hazard is finally determined. At the moment, only the
degree of hazard is given: the altitude and the aspect of
the most dangerous slopes, as given in most of the versions
of the DAVOS madel, have not yet been implemented.

Sub-problems

Each of the sub-problems as, for example. quality of new
snow or stabilily of old snow represents a judgment problem,
as described above, and is hence principally structured
like the DAVOS model. The diflerent sub-problems are

just smaller than the DAVOS model, i.e. consist of only

three to eight input parameters. Often, only three of the
input parameters are considered as major parameters.
This is a great advantage, since a much smaller
knowledge base is sufficient 1o obtain good interpreta-
tions and the system usually learns faster and better from
the logic behind the decision process, Sub-problems with
only about five input parameters most of the time may
find a similar past situation that is identical to the new
situation, based on a knowledge base of only about 100
situations.

Implicit rules

Itis even possible not only to build up the knowledge base
with real situations but also to construct realistic
situations by varying the major input parameters in a
reasonable sense. This is impossible in the DAVOS
model. So, if the expert feels sure about one of the sub-
problems on the influence of one of the input parameters,
maybe in combination with another one, he/she may
systematically construct realistic situations and decide
systematically. But this means nothing other than
including a rule, not explicitly but implicitly. An
example of such an implicit decision rule used in the
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Table 5. General rule to decide on the degree of hazard in
the sub-problem final merging; principally dependent on
the combined (natural) release probability and the
influence of the skier, but also dependent on the overall
critical depth by the potential avalanche size and volume
and on the depth of stable old snow by the terrain
?'()Hglf ness

Combined release probabilily

Influence of skier Very  Low  Moderate  High
low

Low 1 1 2 4

Moderate 1 2 3 4

High 2 3 -+ 4

Valid if overall critical depth H; = 15... 50 cm, else, if
H. ;. < 15cm, | degree of hazard less or il H ;> 50 cm
and combined release probability high, then degree of
hazard = 6 or 7

and if depth of stable old snow Hygua > 60 cm, else, if
Hiouna = 30...60cm, then 1 degree of hazard less or if
Hiouna < 30cm, then 2 degrees of hazard less except if
combined release probability = moderate, no reduction
of hazard, or il combined release probability =
considerable, only 1degree of hazard less.

sub-problem final merging is given in Table 5. This is, of
course, rather exhausting work but the advantage is that
one is more {lexible in one’s decision than in the case
where one uses a strict explicit rule. It is easy for example
to include non-linear relations. Furthermore, it is possible
to construct extreme but still realistic situations that are
usually rare but of course very important. So one of the
disadvantages of principally statistic (or data)-based
models using real data may be overcome. Finally, one
arrives at a knowledge base that is a mixture of real,
historic situations decided according to the verified
hazard at those times and realistic situations directly
decided according to general knowledge and experience.
The problem is to have the appropriate mixture,

Inpul parameters

Thirty input parameters (Table 6) are used in 11 sub-
problems interconnected partly by rules. Already, to
obtain some of the data, a user with certain skills and
experience is required. The output result of a sub-problem
is usually used as an input parameter to another sub-
problem that appears later on in the decision-making
process. Many of the input-parameter values are calculated
using rules that depend themselves on the input values.
The overall critical depth for example depends, among other
things, on the 3d sum of blowing-snow depth that is only
considered in certain situations when snowdrift is likely.

Modifications

Due to the modular structure, it is easily possible to
modify any of the sub-problems. Additionally, the
relatively small number of input parameters in each
sub-problem enables the knowledge base to adapt quickly
to any modification, as for example adding a new input
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Table 6. Input parameters used in the MODUL maodel.
The data are grouped according lo the availability. i.e. how
easy il is lo gel the data

A. Conventional data
New snow depth
Sum of new snow depth (3d)
Density of new snow
Snow depth
Change of snow depth (3d)
Coeflicient of settlement (3d)
Penetration depth
Coeflicient of penetration depth
Snow temperature
Mean wind speed (3d)
Sum of blowing snow (3d)
Ailr temperature
Temperature difference

B. Prognostic dala
New snow depth in the evening
Temperature development until noon
Mean wind speed until tomorrow
Prognostic index of radiation for today

€. Special snoww-cover data

Result of Rutschblock test

Type of release (Rutschblock test)

Type of critical layer (Rutschblock test)

Total slab thickness (Rutschblock test)

New snow slab thickness (Rutschblock test)

Type of ram profile (Rutschblock test)

Age of Rutschblock test

Change of snow depth since Rutschblock test

Critical depth of new snow slab

Critical depth of old snow slab

Overall critical depth

Effective critical depth for skier triggering
Depth of stable old snow

parameter. So the important sub-problem influence of the
skier is steadily improved according to the results of
specific study on slab-avalanche release triggered by a
skier (Schweizer, 1993). In the sub-problem snow-profile
analysis, the snow profile with Rutschblock test is roughly
interpreted, an aim that would actually need an expert
system itself. Eight principal values (Table 2) are used
exclusively for solving this sub-problem. Together with
the sub-problem stability of old snow, it should substitute
the most important input parameter index of snow-cover
stability in the DAVOS models. So this sub-problem is also
under permanent improvement. Recently, iype of release
and the guality of the critical layer of the Rutschblock test
were introduced.

Operational use

The model has to be run interactively by an experienced
user. The model stops if the proposed decision in one of
the sub-problems does not have a high level of confidence,
and the user has to confirm the decision before the model
continues to run. In the example given in Table 1, the
interpretation of the release probability of new snow by the
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Table 7. Qualily requirements for delermining the performance of the
DAVOS model

Qualily Deviation: degiee Deviation: allitude Deviation: aspect
of hazard
Good 0 +400m About right
Fair 0 +400m Not completely wrong
0 Wrong (any result)  Wrong (any result)
+1 +400m About right
Poor =i > 4+ 400 m Not completely wrong
=+ 1 > +400m Wrong (any result)
Wrong - (any result) (any result)

system is large?, which means that the system is not
confident and the interactive run would stop. As an
explanation, four similar situations are given with the
interpretations large, wvery large, large and moderate.
Comparing the present case with the first similar
situation indicates rather very large than large as output
for the present situation; the second and third similar
situations indicate the output is between large and wvery
large; the fourth situation is too far from the present case
to be considered. So, based on similar situations, the user
would presumably change the interpretation to very large.
However, the interpretation proposed by the system,
large, would not be wrong but very large seems to be more
consistent with the present knowledge base,

The final output result, the degree of hazard, is well
explained by the output results of the different sub-
problems. If the model proposes a different degree of
hazard than the user has independently estimated. the
difference usually becomes obvious by inspecting the
output results of the sub-problems. Due to this feature,
the user experiences the model not as a black-box system
(despite the principally unknown algorithm) but as a real
supporting tool to the forecaster. The interactive use of
the model proved to be very instructive,

6. RESULTS

Thanks to verification data, it is possible to rate our
models quite objectively, comparing the model output
day-by-day to the verification. During the last 5 years of
operational use, the knowledge base has continuously
increased. Since the performance of the models depends
strongly on the state of the knowledge base, the results are
not homogencous. This 1s especially true for the first
versions of the DAVOS model. For

consistency between the different models and versions,

winters with

we will only present in the following the performance
results of three winters (1991-92. 1992-93 and 1993-94).

DAVOS model
To compare the interpretations provided by the system

with the verification, the requirements of quality (four
classes: good, fair, poor, wrong) (Table 7) were defined. If
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the verified aspect is e.g. NE + 45°, the rating in the
following cases N+ 67°, NI £ 90° and & + 90° would be
about right, not completely wrong and wrong, respectively.

Considering the degree of hazard, the altitude and the
aspect the DAVOS] and DAVOS2 versions have on
average a performance ol about 65 and 70% good or fair
{sce Table 7 for definitions) interpretations, respectively
(Table 8). To be able to compare the results of the
DAVOSI and DAVOS2 versions to the results of different
systems, it is more convenient to consider only the degree
of hazard. In that case, in 52 and 54% of all situations,
respectively, for DAVOS] and DAVOS2, the degree of
hazard was correct compared to the verification. 86 and
89% of all situations, respectively, are correct or deviate
+ 1 degree of hazard from the verification.

Table & Performance of the DAVOSI and DAVOS2
versions considering all three output results: the degree of
hazard, the altitude and the aspect. Mean values
( proportions) of the last three winlers (1991-92 to 1993

94) for the different qualities defined in Table 5 are given

Qualily of resull DAVOS1  DAVOS2

Good 0.35 0.37
Fair 032 0.33
Poor 0.19 0.19
Wrong 0.07 0.04
No interpretation (n.i.) 0.07 0.07

As the output result no inferpretation is considered as
neither right nor wrong, the performance may be given
considering only the interpreted situations. In that case,
the proportion of correctly interpreted situations (degree
of hazard) is 55 and 58%, respectively, for DAVOSI and
DAVOS2. The quality of these versions may differ from
one winter to another by about 5%. An example of the
performance during a whole winter is given in Figure 9.
The average percentage of correct interpretations
(considering only the degree of danger) during the
winter of 1993-94 for the DAVOS2 version was 56%.
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Fig. 9. The degree of hazard proposed by the DAVOS?2
model compared to the verified degree of hazard for the
winter 1993-94 in the Davos area.

However, as can be seen in Figure 9, besides the average
performance, it is the performance in critical situations of,
for example, increasing or decreasing hazard at the
beginning or end of a snowfall period that is decisive.
Unfortunately, it must be admitted that the performance
in these situations is fair to poor.

The performance of the other versions of the DAVOS
model is slightly better than that of the DAVOSI and
DAVOS2 versions. This follows from the concept: split of
the knowledge base (DAVOS31/32) and only one output
result (DAVOS4). The performance of the DAVOS3]
version is even very good, about 75%. However, the
performance of the DAVOS32 version is rather bad at
about 42%,. probably due to the smaller and more
complex knowledge base. The combined performance is
about 61%. The DAVOS4 version that only predicts the
degree of hazard is on average correct in 63% of all
situations. This result represents the best performance of
all the different versions of the DAVOS model. However,
considering the performance degree-hy-degree, the result
is somewhat disillusioning (Table 9). The average of 63%
of correct interpretations is the result of 76, 55, 47 and
39% of correct interpretations for the degrees of hazard /,
2, 3 and the degrees 4 to 7 combined, respectively. It is
clear that the intermediate degrees of hazard are the most
difficult to forecast. In the case of low or very high
hazard, the data are more often unambiguous. The
extremes are easier to decide. However, since the extreme

Table 9. Detailed performance of the DAVOSYE version:
prognostic degree of hazard compared to verified degree of
hazard. Degrees 4-7 (7 never occurred ) are condensed. All
nine winters (1361 situations) are considered

Degree of Verified Correctness
hazard %
Prognostic 1 2 3 4 7

1 464 122 29 2 76

2 81 280 187 15 55

3 3 80 102 26 47

4... 7 0 2 B 13 59
Total 63
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events at the upper margin of the scale are rare, the
correctness is not all that good for either of these degrees
of hazard. The example shows quite clearly that probably
all generally statistics-based models using a data base
with real situations, are not able to predict rare situations
correctly, since these sorts ol situation are too rare. The
systems always tend to follow the types of situation that
form the majority of the data base.

MODUL model

Generally, the results of the MODUL model are better
than those of the DAVOS model. This follows from the
deterministic concept. more input parameters, especially
on the snow cover, and much more knowledge in the form
of the structure (sub-problems) and of the implicit rules.
Now, we also have three winters of experience. During this
time, the model has been continuously improved, e.g. the
calculation of certain input parameters has been changed.
So the performance has become better. As the model runs
interactively, the expert may slightly influence the result
during its operational use. Thus, the performance given
below may not be quite comparable to the more rigorously
determined performance of the DAVOS model and might
he slightly too optimistic. The average performance during
the last three winters was 73% correct interpretations, i.e.
the proposed degree of hazard did not deviate from the
verification. All days were interpreted, i.e. the result no
interpretation did not occur. Deviations of more than one
degree of hazard are rare, in less than 2% of all situations.
An example of the performance during a whole winter
season is given in Figure 10. The model follows quite
exactly the verified degree of hazard and also in times of
increasing or decreasing hazard.

verification

degree of hazard
o = M W s OO N

1.12.63 31.12.03 30.01.94 1.03.94

winter 1993-94

31.03.94 30.04.94

Fig. 10. The degree of hazard proposed by the MODUL
model compared lo the verified degree of hazard for the
winter 1993-94 in the Davos area.

Experience shows that the MODUL model is more
sensitive to single input parameters. A wrong input
parameter or a wrong decision in one of the sub-problems
may have substantial consequences in the end, ie.
sometimes even a change in the degree of hazard of one
or two steps. This is especially due to the smaller number
of input parameters treated at once in a sub-problem, due
also to the fact that the output result of a sub-problem is
often used again as input in another sub-problem, and
partly due to the fact that the input data are strictly
categorized. The latter problem might be removed by
introducing fuzzy logic, i.e. defining blurred categories.
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Comparison of different models

Because in the last winters a nearest-neighbours avalanche-
forecasting model was used by the avalanche-warning
section at SFISAR. it is possible to compare our models to
this type of model, called NEX_MOD (Meister, 1991) that
was developed from the NXID model (Buser and others,
1987). The output result of this model is, besides the
observed avalanches of the ten nearest days looking back
10 years, the average of the torecasted degree of hazard of
these ten nearest neighbouring days, in contrast to our
models that use the verified degree of hazard. Nevertheless,
this type of output is the only one available for comparison
with our verified degree of hazard. The percentage of
correct interpretations of the NEX_MOD model during
the last three winters (1991-92 to 1993-94) was 38-47%,
depending on how the average degree of hazard is
rounded. However, since this operational nearest-neigh-
bours system needs slightly different input parameters, this
result does not mean that the nearest-neighbours method is
not as good as our method. It represents just a comparison
between systems that gives the same output result: the
degree of hazard.

Figure 11 is a comparison of different forecasting
models and the effective forecasting with the verified
degree of hazard for the Davos area during the last three
winters (1991-92 to 1993-94). The increasing performance
of the DAVOSI], DAVOS2, DAVOS4 and MODUL

models follows from the concept: the more numerous and

more structured the input parameters or the less numerous
the output parameters, the better the performance.
The transition to the five-degree hazard scale would
increase the performance of any of the models by
0/

probably less than 1%, since situations with a high
degree of hazard are rare,
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Fig. 11. Comparison of the performance of the statistical
Sorecast model NEX_MOD, of our four different forecast
models DAVOSI, DAVOS2, DAVOSY and MODUL,
and of the public warning BULLETIN during the three
winters 1991-92 to 1993-94. The relative frequency of the
devialion from the verified degree of hazard in the Davos
area is given.

7. CONCLUSIONS

The CYBERTEK-COGENSYS™ judgment processor,
following the idea of inductive decision-making, proved to
he useful software for developing specific applications in the
lield of avalanche-hazard assessment. Using weather, snow
and snow-cover data as input parameters, the developed
models evaluate the avalanche hazard for a given region.
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The new features are the choice of elaborate input
parameters, especially more snow-cover data, the non-
linear categorization of the input data, the specific
algorithm for the search for similar situations and finally
the concise output result. The avalanche hazard is described
as degree of hazard, altitude and aspect of the most
endangered slopes, for the first time according to the scale
used in the forecasts, This sort of output result is most
cfficient for the purpose of avalanche forecasting: it is much
more appropriate to the problem than, for example, the
output “avalanche/non-avalanche day”. The use of ob-
servational avalanche data alone is insuflicient for both
forecasting and verification, The given output result is
possible due to the effort of permanenty verifying the
avalanche hazard. Verification is the most striking feature
and completes the data set—at the present time nine
winters of weather, snow and snow-cover data with a
corresponding verified degree of hazard — probably a
unigue series.

The snow-cover data proved to be very important.
Actually. it is well known that avalanche forecasting
depends strongly on the state of the snow cover. However,
apart from the French MEPRA model, until now hardly
any of the present models have taken into account this
obvious fact. McClung and Tweedy (1994) introduced
the snow cover somchow implicitly in their model by
combining the estimates of the model and of the expert.
Of course, this sort of data is not easily available but it is
an illusion to expect that a supporting tool without any
snow-cover data is as powerful as the expert forecaster.
The present-day meteorology plays an important role but
most of the time it is not the decisive one,

The interactive use of the models proved to be a
substantial advantage and especially the MODUL model
is very instructive. It is very appropriate for the training
of junior forecasters with a certain basic knowledge. The
model run by a junior forecaster may achieve about the
same performance (about 70%) on average as a senior
expert forecaster using the conventional methods.

The DAVOS model, a data-based model, and the
MODUL model, a combined data- and rule-based model,
have achieved a performance of about 60% and 70-75%.
respectively. There exist no comparable or similar results,
based on a long-term operational test, of any different
system for the forecasting of the regional avalanche hazard.

However, the performance of a system cannot be fully
described by an average percentage of correct interpret-
ations compared to verification; the performance in critical
situations is decisive. In such situations, all present models
are still not good enough. In evaluating the performance ol
our systems, we have been quite rigorous. Of course, a
deviation of one degree of hazard does not mean the same
in all situations; it depends on the degree of hazard and on
the direction of the deviation. However, in contrast to the
preference of some avalanche-forecasting services, we think
that avalanche warning is only efficient and fair in the long
term if no margin of security is included in the forecast. We
admit that, in a specific critical situation, a warning that is,
for example, one degree above the latter on verified hazard
may help prevent accidents. But, if the forecasted degree is
usually too high, the warnings become ineflicient and the
warning service will soon lose its credibility. So. in
conclusion, we consider a deviation of one degree either
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up or down as a wrong decision, independently of the
degree of hazard.

The next step in the development will be to apply the
models in different regions to assess their performance.
Additionally, several of the sub-problems will be further
improved and it is also planned to determine the altitude
and the aspect of the most dangerous slopes in the
MODUL model. The corresponding sub-problems still
have to be developed. Finally, the hazard of wet-snow
avalanches in spring time will be taken into account more
specifically. The MODUL model contains great potential
for future developments.
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