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Abstract

We give the generating function of split (n + t)-colour partitions and obtain an analogue of Euler’s identity
for split n-colour partitions. We derive a combinatorial relation between the number of restricted split n-
colour partitions and the functionσk(µ) =

∑
d|µ dk. We introduce a new class of split perfect partitions with

d(a) copies of each part a and extend the work of Agarwal and Subbarao [‘Some properties of perfect
partitions’, Indian J. Pure Appl. Math 22(9) (1991), 737–743].

2010 Mathematics subject classification: primary 05A15; secondary 05A17, 11P81.

Keywords and phrases: q-series, split (n + t)-colour partitions, perfect partitions, generating functions.

1. Introduction and definitions

For a natural number λ, the rising q-factorial of a with base q is defined by (a; q)0 = 1
and (a; q)λ = (1 − a)(1 − aq) · · · (1 − aqλ−1), where |q| < 1. Any series involving this
rising q-factorial is called a q-series (or basic series or Eulerian series).

Definition 1.1. The partition function p(n) represents the number of distinct ways of
representing n as a sum of natural numbers (with order irrelevant). The generating
function of p(n) is given by

∞∑
n=0

p(n)qn =

∞∏
n=1

1
1 − qn .

The first result in the history of partitions is Euler’s famous discovery for ordinary
partitions.

Theorem 1.2 (Euler’s identity). The number of partitions of a positive integer n into
distinct parts equals the number of partitions of n into odd parts.
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Let us recall the celebrated Rogers–Ramanujan identities
∞∑
λ=0

qλ
2

(q; q)λ
=

∞∏
λ=1

1
(1 − q5λ−1)(1 − q5λ−4)

,

∞∑
λ=0

qλ
2+λ

(q; q)λ
=

∞∏
λ=1

1
(1 − q5λ−2)(1 − q5λ−3)

.

MacMahon [18] interpreted the Rogers–Ramanujan identities combinatorially by
using the ordinary partition function. Several identities of Rogers–Ramanujan type
have been interpreted combinatorially by means of ordinary partitions (see, for
example, [2, 9, 12, 13]). In 1987, Agarwal and Andrews [1] introduced and studied
the following generalised partition function Pn+t(µ).

Definition 1.3. For t ≥ 0, the partition function Pn+t(µ) represents the number of
distinct ways of representing µ as a sum of natural numbers (with order irrelevant)
using (n + t) copies of each part n. The partitions are called (n + t)-colour partitions.
The generating function for (n + t)-colour partitions is given by

∞∑
µ=0

Pn+t(µ)qµ =

∞∏
n=1

1
(1 − qn)n+t .

The (n + t)-colour partitions are used as a combinatorial tool to interpret many more
q-series identities combinatorially in [1, 16, 17]. An n-colour analogue of Euler’s
identity can be obtained by the use of generating functions [4].

Theorem 1.4. The number of n-colour partitions of µ into distinct parts equals the
number of n-colour partitions of µ such that the parts are either odd or even with even
subscripts only.

Recently, Agarwal and Sood [6] further generalised the (n + t)-colour partition
function Pn+t(µ) to the split (n + t)-colour partition function SPn+t(µ).

Definition 1.5. The partition function SPn+t(µ) represents the number of distinct ways
of representing µ as a sum of natural numbers (with order irrelevant) using (n + t)
copies of each part n such that the subscript p of each part ap is further split into two
parts (with order relevant): green colour (g) and red colour (r), such that 1 ≤ g ≤ p,
0 ≤ r ≤ p − 1 and p = g + r. These partitions are called split (n + t)-colour partitions.

As shown in [6], this new set of partitions is very helpful in interpreting q-series
identities combinatorially when they cannot be interpreted combinatorially using
ordinary partitions or (n + t)-colour partitions (see, for instance, [5, 15, 20]). Using
split (n + t)-colour partitions, Agarwal and Sood [6] interpreted two basic identities of
Gordon and MacIntosh [14] combinatorially.

The purpose of this paper is to study analytical aspects of split (n + t)-colour
partitions. In Section 2, we obtain the generating functions of split (n + t)-colour
partitions and several restricted split n-colour partition functions. Then we give an
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analytic proof of an analogue of Euler’s identity for split n-colour partitions. Further,
we establish a combinatorial connection between a certain class of restricted split n-
colour partitions and the number theoretic function σk(µ) =

∑
d|µ dk. In Section 3, we

define new sets of partitions, split partitions and split perfect partitions with d(a) copies
of a and we extend the work of Agarwal and Subbarao [7]. Before we state our main
results, we first recall some definitions.

Definition 1.6 [19]. A perfect partition of a nonnegative integer n is a partition that
contains exactly one partition of every m < n when repeated parts are regarded as
indistinguishable.

Example 1.7. There are four perfect partitions of 7:

4 + 1 + 1 + 1, 4 + 2 + 1, 2 + 2 + 2 + 1 and 1 + 1 + 1 + 1 + 1 + 1 + 1.

Definition 1.8 [1]. A partition with (n + t) copies of n, t ≥ 0, is a partition in which a
part of size n, n ≥ 0, can come in (n + t) different colours that are denoted by subscripts:
n1, n2, . . . , nn+t. Note that zeros are permitted if and only if t is greater than or equal to
one. Also, zeros are not permitted to repeat in any partition.

Remark 1.9. If we take t = 0, then these partitions are just the n-colour partitions.

Definition 1.10. The weighted difference of two parts ap, bq (a ≥ b) is defined by
a − b − p − q and is denoted by ((ap − bq)).

Definition 1.11 [6]. Let ap be a part in an (n + t)-colour partition of a nonnegative
integer µ. We split the colour ‘p’ into two parts, ‘the green part’ and ‘the red part’,
and denote them by ‘g’ and ‘r’, respectively, such that 1 ≤ g ≤ p, 0 ≤ r ≤ p − 1 and
p = g + r. An (n + t)-colour partition in which each part is split in this manner is called
a split (n + t)-colour partition.

Example 1.12. In 52+1, the green part is 2 and the red part is 1.

Remark 1.13. If r = 0, then we will not write it. Thus, we will write 53 for 53+0.

Definition 1.14 [3]. A partition with d(a) copies of a, where d(a) is the number of
positive divisors of a, is a partition of µ in which a part of size a can come in d(a)
different colours that are denoted by subscripts a1, a2, . . . , ad(a).

Example 1.15. There are five partitions of 3 with d(a) copies of a:

31, 32, 21 + 11, 22 + 11 and 11 + 11 + 11.

Definition 1.16 [7]. A partition of µ with d(a) copies of a is perfect if it contains
exactly one partition with d(a) copies of a of each ν < µ when repeated parts are
regarded as indistinguishable.

Example 1.17. There are only three perfect partitions of 3 with d(a) copies of a:

21 + 11, 22 + 11, and 11 + 11 + 11.
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2. Generating function and split n-colour analogue of Euler’s identity

In this section, we derive the generating function of split (n + t)-colour partitions.
Using this generating function and some straightforward partition techniques, we give
generating functions for several restricted split n-colour partition functions and we
deduce a split n-colour analogue of Euler’s identity using generating functions.

2.1. Generating function of split n-colour partitions. Let SPn+t(µ) denote the
partition function for split (n + t)-colour partitions. From Definition 1.11, it is clear
that in a split (n + t)-colour partition of µ, the subscript p of each part ap of an
(n + t)-colour partition of µ is further partitioned into at most two parts (with order
relevant). Thus in a split (n + t)-colour partition of µ, we use

(
p−1

0

)
+

(
p−1

1

)
= p copies

of each part ap of an (n + t)-colour partition of µ. Thus a part of size ‘a’ can come in
1 + 2 + · · · + a + t = 1

2 (a + t)(a + t + 1) different colours. Hence we have the generating
function

∞∑
µ=0

SPn+t(µ)qµ =

∞∏
n=1

1
(1 − qn)(n+t)(n+t+1)/2 for all t ≥ 0.

When t = 0, we get the generating function for split n-colour partitions given by

∞∑
µ=0

SPn(µ)qµ =

∞∏
n=1

1
(1 − qn)n(n+1)/2 = 1 + q + 4q2 + 10q3 + 26q4 + · · · .

Example 2.1. The ten split n-colour partitions of 3 are

31, 32, 33, 31+1, 32+1, 31+2, 22 + 11, 21 + 11, 21+1 + 11, 11 + 11 + 11.

2.2. Generating functions for several restricted split n-colour partitions. Let
SPn(T,U,V,W, µ) be a restricted split n-colour partition function that counts the split
n-colour partitions of µ of the form ap=g+r such that a ∈ T , p ∈ U, g ∈ V and r ∈ W.
We denote the set of all positive integers, the set of all odd positive integers, the set of
all even positive integers, the set of whole numbers and the set of all distinct positive
integers by N, O, E, W and D, respectively. Now using the standard techniques of
partition theory [8], we obtain the generating functions shown in Table 1.

2.3. A split n-colour analogue of Euler’s identity.

Theorem 2.2. Let A(µ) denote the number of split n-colour partitions of µ with distinct
parts and let B(µ) denote the number of split n-colour partitions of µ in which the
even parts that have both green and red colours odd together are not allowed. Then
A(µ) = B(µ).
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Table 1. Generating functions of restricted split n-colour partitions.

Partition function Generating function Partition function Generating function

1 +
∞∑
µ=1

SPn(E,N,N,W, µ)qµ
∞∏

n=1
1/(1 − q2n)n(2n+1) 1 +

∞∑
µ=1

SPn(O, E, E, E ∪ {0}, µ)qµ
∞∏

n=1
1/(1 − q2n−1)n(n−1)/2

1 +
∞∑
µ=1

SPn(O,N,N,W, µ)qµ
∞∏

n=1
1/(1 − q2n−1)n(2n−1) 1 +

∞∑
µ=1

SPn(E, E,O,O, µ)qµ
∞∏

n=1
1/(1 − q2n)n(n+1)/2

1 +
∞∑
µ=1

SPn(E, E,N,W, µ)qµ
∞∏

n=1
1/(1 − q2n)n(n+1) 1 +

∞∑
µ=1

SPn(O, E,O,O, µ)qµ
∞∏

n=1
1/(1 − q2n−1)n(n+1)/2

1 +
∞∑
µ=1

SPn(O,O,N,W, µ)qµ
∞∏

n=1
1/(1 − q2n−1)n2

1 +
∞∑
µ=1

SPn(D,N,N,W, µ)qµ
∞∏

n=1
(1 + qn)n(n+1)/2

1 +
∞∑
µ=1

SPn(E,O,N,W, µ)qµ
∞∏

n=1
1/(1 − q2n)n2

1 +
∞∑
µ=1

SPn(D ∩ E,N,N,W, µ)qµ
∞∏

n=1
(1 + q2n)n(2n+1)

1 +
∞∑
µ=1

SPn(O, E,N,W, µ)qµ
∞∏

n=1
1/(1 − q2n−1)n(n−1) 1 +

∞∑
µ=1

SPn(D ∩ O,N,N,W, µ)qµ
∞∏

n=1
(1 + q2n−1)n(2n−1)

1 +
∞∑
µ=1

SPn(E, E, E, E ∪ {0}, µ)qµ
∞∏

n=1
1/(1 − q2n)n(n+1)/2 1 +

∞∑
µ=1

SPn(D ∩ E, E, E, E ∪ {0}, µ)qµ
∞∏

n=1
(1 + q2n)n(n+1)/2

Proof. We use the generating functions for SPn(E,E,E,E ∪ {0}, µ), SPn(E,O,N,W, µ)
and SPn(O,N,N,W, µ) from Table 1.

1 +

∞∑
µ=1

A(µ)qµ =

∞∏
n=1

(1 + qn)n(n+1)/2

=

∞∏
n=1

(1 − q2n

1 − qn

)n(n+1)/2

=

∞∏
n=1

(1 − q2n)n(n+1)/2

(1 − q2n)n(2n+1)(1 − q2n−1)n(2n−1)

=

∞∏
n=1

1
(1 − q2n)n(n+1)/2(1 − q2n)n2 (1 − q2n−1)n(2n−1)

= 1 +

∞∑
µ=1

B(µ)qµ.
�

Example 2.3. For example, A(3) = B(3) = 9 and the corresponding partitions are

A(3): 31, 32, 33, 31+1, 31+2, 32+1, 21 + 11, 22 + 11, 21+1 + 11,

B(3): 31, 32, 33, 31+1, 31+2, 32+1, 21 + 11, 22 + 11, 11 + 11 + 11.

Remark 2.4. From Table 1, the generating function of SPn(E, E, E, E ∪ {0}, µ) is the
same as the generating function of SP(E, E,O,O, µ). So we can restate Theorem 2.2
in the following way.

Theorem 2.5. Let A(µ) denote the number of split n-colour partitions of µ with distinct
parts and let C(µ) denote the number of split n-colour partitions of µ in which the
even parts that have both green and red colours even together are not allowed. Then
A(µ) = C(µ).
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Example 2.6. Here C(3) = 9 and the corresponding partitions are

31, 32, 33, 31+1, 31+2, 32+1, 21 + 11, 21+1 + 11, 11 + 11 + 11.

2.4. Combinatorial relation between restricted split n-colour partitions and
σk(µ).

Definition 2.7. The number theoretic function σk(µ) is defined by

σk(µ) =
∑
d|µ

dk for all µ ≥ 1.

Theorem 2.8. Let E(µ) denote the number of split n-colour partitions of µ into equal
parts. Then

E(µ) = 1
2 (σ(µ) + σ2(µ)).

Proof. For any positive integer µ, let Π = λν + λν + · · · + λν︸                ︷︷                ︸
k

be the split n-colour

partition of µ into equal parts, each of size λν. Then, obviously, we must have
k × λν = µ or λν | µ. Thus, for each divisor d of µ, we have 1

2 d(d + 1) split n-colour
partitions of µ with equal parts of size d. Hence the total number of split n-colour
partitions of µ into equal parts is

E(µ) =
∑
d|µ

d(d + 1)
2

=
∑
d|µ

1
2

(d + d2) =
1
2

(σ(µ) + σ2(µ)).
�

3. Split perfect partitions with d(a) copies of a

Analogous to the definitions of partitions with d(a) copies of a and perfect partitions
with d(a) copies of a, we define split partitions with d(a) copies of a and split perfect
partitions with d(a) copies of a.

Definition 3.1. Let aq be a part in a partition with d(a) copies of a of an integer µ. We
split the colour ‘q’ into two parts, ‘the green part’ and ‘the red part’, and we denote
them by ‘g’ and ‘r’, respectively, such that 1 ≤ g ≤ d(a), 0 ≤ r ≤ d(a) − 1 and q = g + r.
A partition with d(a) copies of a in which each part is split in this manner is called a
split partition with d(a) copies of a.

Example 3.2. There are seven split partitions of 3 with d(a) copies of a:

31, 32, 31+1, 21 + 11, 22 + 11, 21+1 + 11, 11 + 11 + 11.

Let SPd(a)(µ) denote the partition function of split partitions with d(a) copies of a.
Then the generating function of SPd(a)(µ) is given by

1 +

∞∑
µ=1

SPd(a)(µ)qµ =

∞∏
n=1

1
(1 − qn)d(n)(d(n)+1)/2 .
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Definition 3.3. A split partition of µ with d(a) copies of a is perfect if it contains
exactly one split partition with d(a) copies of a of each ν < µ when repeated parts are
regarded as indistinguishable.

Example 3.4. There are only four split perfect partitions of 3 with d(a) copies of a:

21 + 11, 22 + 11, 21+1 + 11, 11 + 11 + 11.

The following theorem is a direct consequence of Definition 3.3.

Theorem 3.5. Let SPPd(a)(µ) denote the number of split perfect partitions of µ with
d(a) copies of a. Let Π = p1

q1 p2
q2 · · · pl

ql be an ordinary perfect partition of µ in
which the part pi repeats qi times. Then

SPPd(a)(µ) =
∑

Π

(d(p1)(d(p1) + 1)
2

)(d(p2)(d(p2) + 1)
2

)
· · ·

(d(pl)(d(pl) + 1)
2

)
.

Example 3.6. For µ = 5, there are three perfect ordinary partitions: 3 + 12, 22 + 1 and
15. This implies that

SPPd(a)(5) =

(d(3)(d(3) + 1)
2

)(d(1)(d(1) + 1)
2

)
+

(d(2)(d(2) + 1)
2

)(d(1)(d(1) + 1)
2

)
+

(d(1)(d(1) + 1)
2

)
=

(2.3
2

)(1.2
2

)
+

(2.3
2

)(1.2
2

)(1.2
2

)
= 3 + 3 + 1 = 7.

The seven split perfect partitions of 5 with d(a) copies of a are: 31 + 11 + 11, 32 + 11 +

11, 31+1 + 11 + 11, 21 + 21 + 11, 22 + 22 + 11, 21+1 + 21+1 + 11, 11 + 11 + 11 + 11 + 11.

Remark 3.7. It can be easily seen that the split partition 11 + 11 + · · · 11︸             ︷︷             ︸
µ

of any

positive integer µ and the split partitions 21 + 21 + · · · 21︸             ︷︷             ︸
λ

+11, 22 + 22 + · · · 22︸             ︷︷             ︸
λ

+11 and

21+1 + 21+1 + · · · 21+1︸                     ︷︷                     ︸
λ

+11 of any odd positive integer µ = 2λ + 1 are always perfect.

These four partitions are called trivial split perfect partitions of µ with d(a) copies
of a.

From a result of Efang [11, Corollary 2, page 268], one can easily get the following
theorem.

Theorem 3.8. A positive integer µ has a nontrivial split perfect partition with d(a)
copies of a into distinct parts if and only if

µ = 2λ+1 − 1 where λ = 2, 3, 4, . . . .

Finally, we establish a combinatorial connection between split perfect partitions
with d(a) copies of a and the factorial function by giving an explicit formula for the
number of nontrivial split perfect partitions of µ with d(a) copies of a into distinct
parts.

https://doi.org/10.1017/S0004972718001211 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001211


360 M. Goyal [8]

Theorem 3.9. Let D(µ), for µ = 2λ+1 − 1 and λ = 2,3,4, . . . , be the number of nontrivial
split perfect partitions of µ with d(a) copies of a into distinct parts. Then

D(µ) =
(λ + 1)! (λ + 2)!

2λ+1 .

Proof. For any integer µ = 2λ+1 − 1, λ = 2,3,4, . . . , the only nontrivial perfect partition
into distinct parts is 1 + 2 + 22 + 23 + · · · + 2λ. Thus the number of corresponding
nontrivial split perfect partitions of µ with d(a) copies of a into distinct parts is

d(1)(d(1) + 1)
2

×
d(2)(d(2) + 1)

2
×

d(22)(d(22) + 1)
2

× · · · ×
d(2λ)(d(2λ) + 1)

2

=
1.2
2
×

2.3
2
×

3.4
2
× · · · ×

(λ + 1)(λ + 2)
2

=
(λ + 1)! (λ + 2)!

2λ+1 . �

4. Conclusion

Agarwal and Mullen [3] proved that the number of partitions of n with d(a) copies of
a is the same as the number of factorisation patterns of n and they studied the graphical
representation of these partitions. It will be interesting to explore the existence of
similar results for split partitions of µ with d(a) copies of a and to study the graphical
aspects of split perfect partitions. Dai et al. [10], gave bounds on the number of odd k-
perfect numbers using the multiplicative partition function f (m), that is, the number of
ways of factorising m into a product of integers greater than one. It will be interesting
to see whether such bounds can be established for split perfect partitions.
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