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Abstract

We show that, for any positive integer k, there are only finitely many finite groups, up to isomorphism,
with exactly k conjugacy classes of elements of prime power order. This generalizes a result of E. Landau
from 1903. The proof of our generalization makes use of the classification of finite simple groups.
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1. Introduction

Landau has proved that, for any positive integer k, there are only finitely many finite
groups, up to isomorphism, with exactly k conjugacy classes [3]. In this paper we
prove a variant of Landau's result in which we restrict our attention to conjugacy
classes of elements of prime power order only.

THEOREM 1.1. For any positive integer k, there are only finitely many finite groups,
up to isomorphism, with exactly k conjugacy classes of elements of prime power order.

Whereas the proof of Landau's original result is elementary, our proof of Theo-
rem 1.1 relies on the classification of finite simple groups. Theorem 1.1 is also related
to a conjecture of Praeger [4, page 30]. We are grateful to L. Pyber for pointing out
this reference.

In the following, we denote by kpp(G) the number of conjugacy classes of elements
of prime power order in a finite group G. (Throughout the conjugacy class of 1 is
counted as one of the conjugacy classes of elements of prime power order.)
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LEMMA 1.2. Let N be a normal subgroup of a finite group G. Then

(i) kpp(G)<kpp(G/AO-|JV|;
(ii) kpp(G/A0 < kpp(G) unless N = 1.

PROOF. Let N be arbitrary, and let C be a conjugacy class of elements of prime
power order in G. Then the image C of C in G = G/N is a conjugacy class of
elements of prime power order in G.

Conversely, let xN be an element in G/N whose order is a power p" of a prime
p. We write* =xpxP' =xp>xp wherex,, is a p -element and xp> is a p '-element in G.
Then xN — (xpN)(xP'N) = (xp>N)(xpN) where xpN is a p-element and xp-N is a
p'-element. Since xN has order p", we must have Xp<N = 1. Thus xN = xpN, and
we see that C H C is a map from the set of conjugacy classes of elements of prime
power order in G onto the set of conjugacy classes of elements of prime power order
in G = G/N.

Let N ^ 1. Then N contains an element x ^ 1 of prime order. Thus the conjugacy
classes of x and 1 have the same image in G/N. Hence kpp(G/N) < kpp(G).

Now let C be a conjugacy class of elements of prime power order in G. Then
the pre-image of C in G consists of \C\ • \N\ elements. These form a union of
conjugacy classes C\, ... , Cr of G. For / = 1, . . . , r, we have C, = C and hence
|C,| > \Q\ = \~C\. Hence r < \N\, and the result is proved. D

We are now going to prove Theorem 1.1 in a series of lemmas.

LEMMA 1.3. There exists a function a : N -> N with the following property:
Whenever k is a positive integer and G is a finite simple group with kpp(G) = k then
\G\<a{k).

PROOF. Let k e H, and let G be a finite simple group with kpp(G) = k. We wish to
show that | G\ is bounded in terms of k. (Our proof will make use of the classification
of finite simple groups.) Our claim is trivial if G has prime order, or if G is a sporadic
simple group. If G is an alternating group An then \G\ = n\/2 can have at most k
different prime divisors, so | G| is also bounded in this case.

Thus, in the remainder of the proof, we may assume that G is a finite simple group
of Lie type. There are 16 such families of groups (see [1, page 8]). It suffices to show
that there are only finitely many possibilities for G in each family.

Suppose first that G = PSL(«, q) for some n > 1 and some prime power q, so that

\G\ = {n,q- ly'q^iq" - 1) • • • (9 - 1).

The Zsigmondy prime number theorem (see [2, IX.8.3]) shows that every factor q' — 1
of \G\ with i > 6 contributes a new prime divisor of \G\ and thus a new conjugacy
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class of elements of prime (power) order. Hence k = kpp(G) > n — 6, and we have
shown that n is bounded in terms of k, in case of G = PSL(n, q).

We now keep n fixed and show that q is also bounded in terms of k. Let G :=
SL(ra, q) and Z := Z(G), so that \Z\ = (n,q - 1). We keep \Z\ fixed. Now G
contains a maximal torus T of order (q — I)""1. We write the prime factorization of
| T\ in the form 17| = p"' • • • p%. Then again m is bounded in terms of k. We regard
m as fixed. Then T contains p"' + • —V pa^ ~ m + \ elements of prime power order.

Let F denote the algebraic closure of the finite field F , with q elements. The
elements of T can be diagonalized simultaneously in GL(n, F). Two diagonal matrices
in GL(n, F) are conjugate if and only if one can be obtained from the other by
permuting the diagonal entries. Hence our p"1 + h p ° " - m + 1 elements fall into
at least (n!)""1^"' + • • • + pa^ — m + 1) different conjugacy classes under GL(n, F).
Thus

kpp(G) > («!)"'{pT +---+Pa
m"-m + l),

and Lemma 1.2 implies that

k = kpp(G) > kpp(G)/ |Z| >(n,q- 1 ) ~ V r V +-•• + P%-m + l).

Hence p"1,... , p°" are bounded in terms of k; in particular, (q — I)""1 = p°' • • • pa£
is bounded in terms of k. Thus certainly q is bounded in terms of k. This finishes the
proof in case G = PSL(n, q).

The argument is similar for the other families of finite simple groups of Lie type,
and will therefore be omitted. This finishes the proof of Lemma 1.3. •

LEMMA 1.4. There exists a function (5 : N —> N with the following property:
Whenever k is a positive integer and G is a characteristically simple finite group with
kpp(G) = kthen\G\ <

PROOF. Let k be a positive integer, and let G be a characteristically simple finite
group with kpp(G) = it. We know that G = Sr — Sx-xS(r factors) for a finite
simple group 5 and a positive integer r. Now certainly kpp(G) > r(kpp(S) — 1).
Thus r < k and kpp(S) < k. By Lemma 1.3, we have

\S\ < max{a(l), . . . . a(jfc)} = : A(k).

Hence \G\ < A(k)k = : fi(k), and the Lemma is proved. •

The following Lemma implies Theorem 1.1.

LEMMA 1.5. There exists a function y : N —> N with the following property:
Whenever k is a positive integer and G is a finite group with kpp(G) = k then
\G\ < y(k).
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PROOF. We define y(k) inductively, starting with y ( l ) := 1. Then the result is
certainly true for k = 1. So let us assume that k > 1, and that y ( l ) , . . . , y(k — 1)
have been defined already. Moreover, let G be a finite group with kpp(G) = k, and
let N be a minimal normal subgroup of G. Then kpp(G/A0 < k by Lemma 1.2 (ii)
since N ^ l,so that

IG/A'I < max{y(l), . . . , } / ( * - 1)} =: r ( * - 1),

by induction. Also, N contains at most k G-conjugacy classes of elements of prime
power order. Each of these splits into at most \G : N\ N-conjugacy classes of
elements of prime power order. Thus N contains at most kT(k — 1) conjugacy classes
of elements of prime power order. Since N is characteristically simple we conclude
that

\N\ < max{0(i) : i = 1 , . . . , kV(k - 1)} =: B(k).

Thus \G\ < B(k)F(k - 1) = : y(k), and our result is proved. •

Our proof of Theorem 1.1 is now complete. At the end of this paper, we will discuss
some related questions. Let n be a set of primes, and let n' denote the set of primes
not contained in n. In the following, kn(G) is defined as the number of conjugacy
classes of it -elements in a finite group G, and k^-(G) is defined in a similar way.

(1) Suppose that A is a n-group, that B is a 7r'-group, and that G = A x B is their
direct product. Then k(G), the number of conjugacy classes of G, satisfies

k(G) = k(A)k(B) =

One may ask whether the inequality

k(G)<k;r(G)kjr-(G)

holds for an arbitrary finite group G. This, however, is not the case: Let n = {3}, and
let G be a dihedral group of order 6q where q is a prime different from 2 and 3. Then
we have

k(G) = Oq + 3)/2, M G ) = 2 , K,(G) = k(G/P) = (q + 3)/2,

with P := Os(G). Thus

k , ( G ) M G ) = q + 3 < Qq + 3)/2 = k(G).

(2) Now let A be a finite n '-group acting faithfully on a finite n -group B, and let
G be the corresponding semidirect product. One may ask whether
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However, this is not true, in general. For example, let n = {/?} for an odd prime
number p, and let G = AGL(1, p) be the affine general linear group of degree 1 over
the field with p elements. Then G is the semidirect product of a cyclic group A of
order p — 1 and a cyclic group B of order p. Moreover, we have k^(G) = 2 and

\B\=p
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