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A finite sequence (pk) = (p3, Py .) of non-negative integers

shall be called realizable provided there exists a 3-valent 3-polytope
P which has P, i-gonal faces for every i. P is called a realization

of (p, ).

For realizability of a sequence (pk), from Euler's formula follows

= (6—k)pk = 12 (*)
k>3

as a necessary condition. However, there are no general sufficient
conditions. Furthermore (*) places no restriction on the number p6.

Considering only sequences (pk) with Py = 0 for all k:>__ 7, there are

19 triads (p3, Py ps) satisfying (*) and we have a natural problem:

For what values of Py is in case of a fixed triad (p3, p4,p5) the sequence
(p3, Py Pg p6) realizable ? In Gr\'?'.nbaurn- Motzkin [2], the problem is
solved for the sequences (4, 0, 0, pé), (0, 6, 0, p6). (o0, 0, 12, pé), in

Grunbaum [3] also for the sequence (3, 1, 1, pé).

The aim of this little note is to show how it is possible by slight
modifications of the graphs used by Grinbaum-Motzkin [2], to answer
the question of realizability of some other sequences (p3,p4, Pg p6).

THEOREM. The sequences (0, 2, 8, p/), (0, 3, 6, p),
(0, 4, 4, pb), (2, 2, 2, pe), (1, 3, 3, p6) are realizable for all values

of Pg- The sequence (1, 2, 5, p6) is realizable if and only if P # 0.

The sequences (2, 0, 6, p6), (0, 5, 2, p6) are realizable if and only

if P # 1. The sequence (1, 1, 7, p6) is realizable if and only if
> 1.
P> 1
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The realizability of the sequences will be demonstrated by
construction. We shall use also the catalogue of trivalent polytopes
in Brickner [1]. The non-realizability of certain sequences follows
from the non-existence of these in Briickner [1], whose catalogue of
trivalent polytopes is supposed to be complete.

For briefness' sake we denote the (graph of the ) realization of
the sequences (4, 1, 7, n), (0, 2, 8, n), (0, 3, 6, n), (2, 0, 6, n)
(0, 4, 4, n), (4, 2, 5, n), (0, 5, 2, n), (2, 2, 2, n), (4, 3, 3, n) by
A,B,C,D,E,F,G, H, K respectively (n is the value of p,).
n n n n n n n n n 6

1. (4, 41, 7, n).

Let us draw each of the graphs a and b in Fig. 1 on a hemisphere
with the heavy line as equator. Connect them in such a way as to make the
2-valent vertices on the heavy line of one identical with the 3-valent
vertices of the other. We get AS. Analogously, combining a and c,

6; a and 4, A7; g and c, A8; g and d, A9' For
remaining n=j+5i, 5<j<9, i=1, 2, ..., weproceed similarly

we obtain A

as described above, only the relevant two graphs should be separated by

i 'belts!" p (Fig. 3) each consisting of five hexagons. AZ is on Fig. 4;

A3, A4 arise from AZ by successive splitting of the indicated faces by

edges.

The procedure being similar in other cases, we shall briefly
introduce only the corresponding graphs represented in the figures.

2. (0, 2, 8 n)

b and b yields B4 ¢ and d yields B

7
b d
and ¢ 55 d and d BS.
d B
¢ and ¢ 6
For n > 9 we use '"belts" p . BO is no. X 85 in [1]. B1 is Fig. 5;
BZ, B3 arise from B1 by successive splitting of faces as indicated.

3. (0, 3, 6, n)

b and { yields C3 b and e yields Cé
d f C .
c an 4 ¢ and e C7
d d f
an C5

For n > 7 we use "belts" p. C C1 are nos. IX 33, X 84 in[1].

0’

C2 is on Fig. 6.
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4. (2, 0, 6, n)

h and 1 yields D k and k yields D

3 12
m and m D10 k and n D13
k and m D“ n and n D14 .

For n=9 and all n> 14 we use "belts" Y. Do and D2 are nos. VIII9
and X 63 in[1]. D4, D5 arise from D3 by successive splitting of h
as indicated. D, results from a and a. D7 is on Fig. 7; D_ results

6 8

from D7 by splitting of a face.

5. (0, 4, 4, n)

o and r yields EZ o and o yields E4

p and r E3 o and p E5

r and r vyields EO; E1 is no. IX 32 in[1]; for n >5 we use "'belts” o,

6. (1, 2, 5, n)

r and s yields FZ p and s yields F5

o and s F4 p and t F,].

F1 is no. IX 28 in [1]; F3 is on Fig. 8; for n=6 and n>7 we use

belts!" o .
7. (0, 5, 2, n)

a' and d' yields G6;
ig. 2). G ,...,G
G9 (Fig. 2) 10 13
constructions, instead of the graph a', another graph which is constructed
by adding to a' four disjoint hexagons in such a way that two vertices of
each hexagon remain 2-valent. All other Gi’ i> 413, are obtained by

a' and e!, G7; a' and b!, GS; a' and c',

are obtained by using in the preceding

successive adding to the graphs constructed above of quadruples of
hexagons in a manner analogous to that just mentioned. GO, GZ' G3 are

in Briickner [1, no. VI 5, IX 34, X 82]. G4 is on Fig. 9; G5 arises
from G4 by the indicated splitting of a face.

8. (2, 2, 2, n)

q and r vyields Hi; f' and ¢', HZ; o and gq, H3 Ho is no. VI 1
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in [1]. For even n > 2, we insert successive pairs of disjoint hexagons
asin 7, For odd n> 3, we use "belts" o .

9. (1, 3, 3, n)

h' and k' yields Ki; u and r, KZ; o and u, K4. Kﬁ is no. VII 4

in [1]. For odd n> 1, we insert pairs of disjoint hexagons as in 7;
for even n >4 we use ''belts" o .

In conclusion we remark that all the graphs we have constructed
are planar and 3-connected and therefore realizable as vertices and
edges of 3-polytopes (cf. Grinbaum [3, p. 235]).

Conjecture. The remaining sequences (3, 0, 3, pé}, (2, 3, 0, Pg,)’
{2, 1, 4, Pé), (1, 4, 1, pé), (1, 0, 9, pé), (0, 1, 10, pé) are realizable,

for all except possibly a finite number of values of Pe-

For each of these sequences we know an infinite number of odd and
an infinite number of even values of Pe rendering the sequences

realizable (cf. Conjecture 2 in Griinbaum [4]: Given a sequence
(p3, Pyreee pn) of non-negative integers satisfying (%) there exists a

constant ¢ such that either for each even, or else for each odd, p6

with P > ¢ there exists a trivalent 3-polytope P having P, i-gonal

faces for all i>3).
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