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Breakup of planar liquid sheets injected at high
speed in a quiescent gas environment
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Using a combination of mean flow spatial linear stability and two-dimensional
volume-of-fluid (VoF) simulations, the physics governing the instability of high-speed
liquid sheets being injected into a quiescent gas environment is studied. It is found that
the gas shear layer thickness δG plays an influential role, where for values δG/H � 1/8,
the growth of sinuous and varicose modes is nearly indistinguishable. Here, H is the
liquid sheet thickness. With larger values of δG/H, a second peak develops in the lower
wavenumber region of the dispersion relation, and becomes increasingly dominant. This
second peak corresponds to a large-scale sinuous mode, and its critical wavelength
λcrit,sinuous is found to scale as λcrit,sinuous/H = 14.26(δG/H)0.766. This scaling behaviour
collapses onto a single curve for various combinations of the liquid-based Reynolds (ReL)
and Weber (WeL) numbers, provided that δG/H > O(10−1). For the varicose modes, the
shape of the dispersion relation does not change with variations in δG/H, and the liquid
shear layer thickness has an almost negligible influence on the growth of instabilities.
Two-dimensional VoF simulations are employed to examine the validity of the linear
stability assumptions. These simulations also show that the dominant sinuous mode
remains active as the process transitions into the nonlinear regime, and that this mode
is ultimately responsible for fragmenting the sheet. Based on an energy budget analysis,
the most influential contributors to the growth of the sinuous mode are the gas Reynolds
shear stress and the lateral working of pressure on the gas side.

Key words: aerosols/atomization, shear-flow instability, multiphase flow

1. Introduction

The current work is aimed at characterizing and understanding, via volume-of-fluid
(VoF) simulations and spatial linear stability analysis, the nature of instability growth
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for sheets being injected into a quiescent environment at high speeds comparable to the
speeds corresponding to the atomization regime for realistic fuel nozzles (Lefebvre &
McDonell 2017, p. 28). The type of understanding sought in this investigation is vital for
the development of low-order models, particularly in light of new reduced carbon fuels
entering the market (Folkson 2014). To isolate the physics of hydrodynamic breakup from
complexities associated with injector internal flow (Wang et al. 2017), a planar liquid sheet
configuration is considered.

Early work analysing the instability of liquid sheets moving in still air was presented by
Squire (1953), utilizing an inviscid analysis where it was predicted that the flow is unstable
if

WeL =
ρLU2

injH/2

σ
> 1. (1.1)

Here, the liquid density, injection velocity, sheet thickness and surface tension coefficient
are respectively given by ρL, Uinj, H and σ . Similar inviscid treatment was reported by
Hagerty & Shea (1955) and Rangel & Sirignano (1991) comparing varicose to sinuous
modes growth.

A natural progression of the early inviscid treatment was the inclusion of viscosity in
the liquid while the surrounding gas remains inviscid (Dombrowski & Johns 1963; Li &
Tankin 1991). In the work of Li & Tankin (1991), it was found that two modes of instability
exist, namely an aerodynamic and a viscosity-enhanced instability. This is in contrast
to the purely inviscid case, where only the aerodynamic mode was predicted. A more
recent comparison between viscous and inviscid instability has been provided by Boeck &
Zaleski (2005), where the complete viscous treatment is used. This amounts to the solution
of the Orr–Sommerfeld equation in both the gas and liquid phases, in conjunction with
interfacial constraints enforcing continuity of horizontal and normal velocity, and balance
of shear and normal stresses. It is shown that for atomization conditions, the perturbation
growth for the viscous case can be substantially larger than for the inviscid case.

The question of convective versus absolute instability has been a common theme in
the investigation of breakup. One of the first papers on the topic by Li (1993) considered
a thin-moving plane liquid sheet employing a potential flow treatment. The methodology
used corresponds to a spatial instability analysis, and it was reported that for sinuous mode,
there is a critical Weber number equal to 1 below which pseudo-absolute instability exists
and above which convective instability occurs. For the varicose mode, the instability was
found to be always convective. Employing an Orr–Sommerfeld system with all interfacial
conditions enforced, Teng, Lin & Chen (1997) identified a critical WeL of approximately
1 below which the flow is absolutely unstable and above which it is convectively unstable.
The configuration employed corresponds to a vertical viscous liquid sheet sandwiched
between two viscous gas regions bounded by walls. Similar findings are also reported by
De Luca & Costa (1997) concerning the critical value of WeL being approximately 1 for
sinuous modes. The conditions leading to convective or absolute instability have also been
investigated by Juniper (2007) using an inviscid approach, where the set-up consists of a
central fluid layer surrounded above and below by a second fluid. The results from this
work show that the confinement of the three fluid layers plays a critical role in the type of
instability that develops. In our work, our system is unconfined.

Considering a configuration of two planar fluid sheets where the bottom layer is liquid
and the top layer is gas, Fuster et al. (2013) reported that for low dynamic pressure ratios M
and small e/ΔG, the instability is convective, but for large dynamic pressures it transitions
to an absolute instability. The ratio M is defined as M = ρGU2

G/ρLU2
L. The distance
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Breakup of planar liquid sheets

between the liquid and gas streams is denoted as e, and ΔG is the vorticity thickness
given by ΔG = (�U)/(dU/dy|max), where �U is the velocity difference between the gas
and liquid streams. Their analysis corresponds to spatial-temporal treatment. Employing
a liquid jet surrounded by a parallel annular gas flow configuration, Delon, Cartellier &
Matas (2018) cite two mechanisms that can cause absolute instability. The first is driven
by surface tension and occurs if WeUi = ρLU2

i /(σk∗
i ) < 1, and the second is affected by

flow confinement if WeUi > 1 and M > 1, where Ui is the interfacial velocity, and k∗
i is

the largest spatial growth rate. In the present work, values for WeUi range from 5035 to
6.81 × 108 with M = 0. Hence the relevant instability is expected to be convective in our
work. The same conclusion is reached based on the WeL > 1 condition of Li (1993), Teng
et al. (1997) and De Luca & Costa (1997). At any rate, VoF simulations are also used to
confirm these expectations.

Over the last 20 years, much work has been devoted to the liquid sheet or jet breakup
occurring under coflowing gas conditions (Dombrowski & Johns 1963; Marmottant &
Villermaux 2004; Altimira et al. 2010; Tammisola et al. 2011; Fuster et al. 2013; Matas &
Cartellier 2013; Odier et al. 2015; Matas, Delon & Cartellier 2018; Delon et al. 2018;
Odier, Balarac & Corre 2018; Kumar & Sahu 2019; Jiang & Ling 2020; Singh et al.
2020; Jiang & Ling 2021). In the work of Marmottant & Villermaux (2004) and Matas
& Cartellier (2013), the authors state that under these conditions, the breakup process
occurs in two stages. At first, a primary instability develops aided by shear, leading to
wave formation. This is followed by a second stage where the crest of these waves is
exposed to an instability of the Rayleigh–Taylor type. The primary instability is set by
the vorticity thickness ΔG (Marmottant & Villermaux 2004; Matas & Cartellier 2013) or
shear layer thickness (Tammisola et al. 2011). Under slower gas velocities, the primary
and Rayleigh–Taylor instabilities do not fragment the jet completely, and under these
conditions, a flapping instability develops (Matas & Cartellier 2013), whose wavelength
is visually larger than the jet diameter (see figure 1 of Matas & Cartellier 2013). The
authors suggest that the detachment of the coflowing gas from the liquid jet caused by
the primary instability creates the perturbation that feeds into the development of the
flapping instability. This idea that a sinuous mode evolving into a flapping instability is
an amplification of the primary instability is also echoed in the work of Odier et al. (2018),
who consider a liquid jet exposed to an annular high-speed gas stream.

At least two distinct points exist between the instability phenomena occurring under
coflowing gas conditions and the present one, which arises under liquid injection into a
quiescent gas environment. First, the augmentation of the primary instability caused by
the detachment of the high-speed gas is absent in our case since the gas is stationary, and
the flow motion comes primarily from the liquid side. Second, compared to the coflowing
case, we show in the present work that the emergence of a large-scale sinuous mode is
not simply an augmentation of the primary instability but rather the manifestation of a
different mode altogether.

Large-scale instability modes being responsible for the breakup of a liquid sheet or jet
under liquid injection in quiescent conditions have been documented in the literature. For
instance, in the experimental work of Hoyt & Taylor (1977), who considered high Reynolds
number water jets issuing into still air, the jet was characterized initially by the growth of
relatively small-scale modes driven by a shear instability. Further downstream, a much
larger-scale mode developed, fragmenting the jet. Similar experimental findings have also
appeared in the work of Wu & Faeth (1995) and Crapper, Dombrowski & Pyott (1975).
More recently, via VoF simulations, Deshpande, Gurjar & Trujillo (2015) have shown that
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Figure 1. (a) Breakup of a liquid sheet injected into a stagnant air environment. (b) Side view of the
development of the primary instability followed by the appearance of a large-scale sinuous mode. The inlet
flow has a constant flat-hat profile without an imposed perturbation.

the fastest instability mode occurring at high-speed injection conditions is of such a small
length scale that it is unable to displace the entire liquid core. Moving downstream, a
much larger mode develops, breaking up the sheet. To illustrate this phenomenon more
tangibly, VoF simulation results (described in § 4) of the sheet breakup under a stagnant
environment are included in figure 1, which shows the development of the primary
instability in the near field followed by the emergence of large-scale modes leading to
the breakup of the sheet.

One of the aims of the present work is to analyse the conditions leading to the growth of
these large-scale instabilities for liquid sheets injected into a still gas environment at high
speed. To carry out this investigation, a spatial linear stability analysis is performed over
a broad range of conditions, followed by VoF simulations. A key question is whether the
dominant instability modes, which develop in the linear regime, continue to dominate as
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Breakup of planar liquid sheets

the process becomes nonlinear. As elaborated previously, this process has been analysed
well under coflowing conditions but has yet to receive the same level of attention under
a quiescent gas environment. A second aim is to identify the critical contributors to the
growth of the observed large-scale modes, which is done via an energy analysis of the
perturbation.

The paper is organized as follows. First, the linear stability analysis (LSA) and the
associated results are presented in §§ 2 and 3, respectively. This is followed by a
description of the VoF methodology at the beginning of §4, an account of the VoF
simulation set-up in § 4.1, the evaluation of LSA assumptions in § 4.2, and the comparison
of VoF and LSA predictions in §§ 4.3 and 4.4. We then extend the analysis into the
nonlinear regime via VoF in § 5, to determine the fate of the fastest growing modes.
An energy budget analysis identifying the sources responsible for the amplification of
instabilities is presented in § 6, followed by a summary and conclusions in § 7.

2. Linear stability treatment

Often in LSA of two-phase flows, the approach consists of solving for the evolution of
a perturbation, which is superimposed on a base flow profile (Boeck & Zaleski 2005;
Fuster et al. 2013; Matas et al. 2018). The adoption of this methodology can run into
limitations when the base flow profile does not obey the governing equations exactly,
but satisfies them only in an approximate sense. Additionally, for the types of problem
considered here, which are motivated by fuel injection in engines and are therefore under
high-speed conditions, it is not realistic to envision a base flow field that remains stable and
steady. However, for much of the injection period, the flow fields in the near-field region
of the injector nozzle are statistically stationary. Consequently, the mean fields within this
statistically stationary or quasi-steady period can fulfil the role of the base flow field in
LSA. It is in this spirit that we adopt a mean flow stability methodology in predicting the
growth of disturbances. A detailed presentation of mean flow stability can be found in the
works of Oberleithner, Rukes & Soria (2014) and Schmidt & Oberleithner (2020).

The configuration of interest consists of a planar liquid sheet of thickness H injected
into a quiescent gas at speed Uinj. The governing equations for mass and momentum are
given, respectively, by

∇ · u = 0, (2.1a)

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν ∇2u. (2.1b)

The density ρ, and the dynamic and kinematic viscosities μ and ν, are treated as
constants in each thermodynamic phase. For the typical injection speeds and sheet
thicknesses considered in the present work, Fr2 is typically O(105) or higher, thus
gravitational effects can be ignored (Fr = Uinj/

√
gH, i.e. Froude number). Even if a length

scale pertaining to the onset of breakup is used, the value for Fr2 is still much greater
than 1, making the gravitational effects negligible.

In the present adoption of mean flow LSA treatment, rather than imposing the triple flow
decomposition of the flow field (Oberleithner et al. 2014; Schmidt & Oberleithner 2020),
a Reynolds decomposition is used, where

u(x, t) = ū(x) + u′(x, t), (2.2)

p(x, t) = p̄(x, t) + p′(x, t). (2.3)
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Here, the overline denotes the time average within the quasi-steady-state period of liquid
injection, and the prime indicates the respective fluctuating quantity.

Averaging the governing equations yields

∇ · ū = 0, (2.4a)

∂ū
∂t

+ ū · ∇ū + ∇ · (u′u′) = −∇p̄
ρ

+ ν ∇2ū, (2.4b)

and by subtracting these two equations from (2.1), we obtain

∇ · (u′) = 0, (2.5a)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū + ∇ · (u′u′ − u′u′) = −∇p′

ρ
+ ν ∇2u′. (2.5b)

Adopting a two-dimensional (2-D) dimensionality with u = u(x, y, t) ex + v(x, y, t) ey and
p(x, y, t), where the streamwise, transverse and temporal coordinates are denoted by
(x, y, t), the momentum perturbation equation can be arranged as

∂u′

∂t
+ ū

∂u′

∂x
+ v′ ∂ū

∂y︸ ︷︷ ︸
conventional advection

+ v̄
∂u′

∂y︸ ︷︷ ︸
transverse mean

+ u′ ∂ū
∂x︸ ︷︷ ︸

streamwise developing

= −∇p′

ρ
+ ν ∇2u′ − ∇ · (u′u′ − u′u′)︸ ︷︷ ︸

nonlinear

. (2.6)

The conventional advection term is the one that is typically employed in the traditional
linear stability treatments (Schmid & Henningson 2000; Criminale, Jackson & Joslin
2019). We assume that the transverse mean, streamwise developing and nonlinear terms
are negligible. In § 4.2, it is shown that within a certain distance downstream of the inlet
boundary, which depends on the type of instability considered, ignoring these additional
advection terms is warranted. This space where these assumptions hold is referred to as
the near-field region in the present work, where the LSA governing equations reduce to

∂u′

∂x
+ ∂v′

∂y
= 0, (2.7a)

∂u′

∂t
+ ū

∂u′

∂x
+ v′ dū

dy
= − 1

ρ

∂p′

∂x
+ ν

(
∂2

∂x2 + ∂2

∂y2

)
u′, (2.7b)

∂v′

∂t
+ ū

∂v′

∂x
= − 1

ρ

∂p′

∂y
+ ν

(
∂2

∂x2 + ∂2

∂y2

)
v′. (2.7c)

It is understood implicitly that the field variables and physical properties take on values
corresponding to the phase where they are being evaluated. For the mean flow fields, we
impose the following profiles for ū:

ū = [ū, v̄] = [ū(y), 0], (2.8a)

ūL(y) = −K1 erf
(y − H/2

δL

)
+ K2, y ∈ [0, H/2], (2.8b)

ūG(y) = −K2 erf
(y − H/2

δG

)
+ K2, y ∈ [H/2, W], (2.8c)
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Figure 2. Schematic representation of the problem set-up, with (a) varicose perturbation and (b) sinuous
perturbation. The flow is from left to right, and the nozzle orifice is located at x = 0.

where K1 and K2 are constants, δ is the shear layer thickness, and subscripts L and G
indicate whether the quantity in question is liquid or gas. These error function profiles are
used commonly in the literature (Yecko, Zaleski & Fullana 2002; Boeck & Zaleski 2005;
Schmidt & Oberleithner 2020), and as explained in § 4.1, they are imposed at the inlet
boundary of VoF simulations. The extent to which the VoF predictions of mean velocity
retain their expected form (2.8) throughout the computational domain is evaluated in § 4.2.
Furthermore, we also have the continuity of shear stress of the mean flow field at the mean
interface location y = H/2:

μL
dūL

dy

∣∣∣∣
y=H/2

= μG
dūG

dy

∣∣∣∣
y=H/2

. (2.9)

How sharp this mean interface location remains as we move downstream is also evaluated
in § 4.2. Equations (2.8) substituted into (2.9) and ūL(y = 0) = Uinj yield

K1 = Uinj

1 + δGμL

δLμG

, (2.10a)

K2 = Uinj

1 + δLμG

δGμL

, (2.10b)

provided that H/(2δL) � 3.
As illustrated in figure 2, the governing equations for the perturbations (2.7) are solved

in a half-domain with y ∈ [0, W]. By solving the problem in this fashion, the condition at
the liquid centreline is varied depending on whether the perturbation mode is varicose or
sinuous. Explicitly, the boundary conditions at the liquid centreline (y = 0) and at the gas
boundary (y = W) are

varicose
[
∂u′

L
∂y

∣∣∣∣
y=0

= 0, [v′|y=0 = 0,

[
∂p′

L
∂y

∣∣∣∣
y=0

= 0; (2.11a)
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sinuous [u′
L|y=0 = 0,

[
∂v′

L
∂y

∣∣∣∣
y=0

= 0, [ p′
L|y=0 = 0; (2.11b)

varicose and sinuous
[
∂u′

G
∂y

∣∣∣∣
y=W

= 0, [v′
G|y=W = 0,

[
∂p′

G
∂y

∣∣∣∣
y=W

= 0. (2.11c)

The second set of auxiliary conditions is imposed at the gas–liquid interface and
constitutes the interfacial constraints given by

[
−p′

G + 2μG
∂v′

G
∂y

∣∣∣∣
y=H/2

−
[
−p′

L + 2μL
∂v′

L
∂y

∣∣∣∣
y=H/2

= −γ
∂2η

∂x2 , (2.12a)

μL

[
∂u′

L
∂y

+ η
d2ūL

dy2 + ∂v′
L

∂x

∣∣∣∣
y=H/2

= μG

[
∂u′

G
∂y

+ η
d2ūG

dy2 + ∂v′
G

∂x

∣∣∣∣
y=H/2

, (2.12b)

[
η

dūL

dy
+ u′

L

∣∣∣∣
y=H/2

=
[
η

dūG

dy
+ u′

G

∣∣∣∣
y=H/2

, (2.12c)

[v′
L|y=H/2 = [v′

G|y=H/2 (2.12d)

and

Dη

Dt
= [v′

L|y=H/2, (2.12e)

where γ is the surface tension coefficient. Equations (2.12a) and (2.12b) represent the
normal stress and shear stress balances. Continuity of horizontal and vertical velocities
are given by (2.12c) and (2.12d). The interfacial displacement from the mean interfacial
location (y = H/2) is given by η(x, t), as shown in figure 2, and the kinematic condition
is given by (2.12e).

To proceed with the calculation of perturbation growth rate, a normal mode
decomposition is employed for treating the perturbations (Drazin & Reid 1981, p. 128):

[u′(x, y, t), v′(x, y, t), p′(x, y, t)] = [û(y), v̂(y), p̂(y)] exp[i(kx − ωt)], (2.13)

where û(y), v̂(y), p̂(y) are complex quantities, e.g. û(y) = ûR(y) + i ûI(y). For the
kinematic condition, the method of characteristics combined with the normal mode form
can be used to obtain

η(x, t) = η̂ exp[i(kx − ωt)], with η̂ =
[

v̂(L,G)

ikU(L,G) − iω

∣∣∣∣
y=H/2

. (2.14)

Since we are dealing with a spatial instability analysis, the frequency is given by ω = ωR ∈
R, and the wavenumber is given by k = kR + ikI ∈ C. The components kR and kI represent
the wavenumber and the spatial growth rate of the perturbation, respectively.
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Breakup of planar liquid sheets

ρL (kg m−3) ρG (kg m−3) μL (Pa s) μG (Pa s) γ (N m−1)

666.7 50 4.632 × 10−4 1.88 × 10−5 0.02

H (μm) W (μm) Uinj (m s−1) ReL WeL OhL
90 900 100 12 955 15 000 0.0134

Table 1. Physical properties of fluids and key non-dimensional quantities used in LSA and VoF predictions,
along with the nominal values for operating parameters.

The velocities and pressure are non-dimensionalized as

Ũ = U
Uinj

, ũ = û
Uinj

, ṽ = v̂

Uinj
, p̃ = p̂

ρLU2
inj

, (2.15a–d)

and similarly, the non-dimensional wavenumber and frequency are given by, respectively,

k̃ = kH, ω̃ = ωH
Uinj

. (2.16a,b)

In addition to the Weber number (1.1), two additional non-dimensional quantities appear
in the analysis, namely the liquid-based Reynolds and Ohnesorge numbers,

ReL = ρLUinjH
μL

and OhL =
√

2 WeL

ReL
. (2.17a,b)

The normal mode decomposition is substituted into the governing equations, boundary
conditions and interfacial constraints, and a Chebyshev spectral representation is
employed. The details of this procedure are included in the Appendix. The resulting final
system that is solved is[−C1 −C0

I 0

]
·
[k̃a

a

]
− k̃

[C2 0
0 I

]
·
[k̃a

a

]
= 0, (2.18)

where the matrices C0, C1 and C2 are the coefficient matrices pertaining to the
governing equations, boundary conditions and interfacial relations. The eigenvector and
eigenvalue being solved for in this generalized eigenvalue problem are, respectively,
a = [aL

u, aL
v, aL

p, aG
u , aG

v , aG
p ]T and k̃.

3. Linear stability predictions

As reported in the works of Marmottant & Villermaux (2004), Fuster et al. (2013),
Tammisola et al. (2011) and Matas & Cartellier (2013) under a coflow configuration,
the size of the shear layer thickness has a profound effect on the type of instability that
develops. Hence, in the present work, which considers injection in quiescent conditions,
the impact of shear layer thickness is examined in the gas (δG) and liquid (δL) phases.
The nominal conditions considered are presented in table 1. The size H is motivated by
the orifice diameter of a commonly studied diesel type of injector, specifically the Engine
Combustion Network Spray A nozzle (Engine Combustion Network, https://ecn.sandia.
gov/). Some additional calculations have been performed (not shown) with different values
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Figure 3. Spatial growth rate versus wavenumber for different gas shear layer thicknesses: (a) δG/H = 1/10,
(b) δG/H = 1/8, (c) δG/H = 1/6, (d) δG/H = 1/4, (e) δG/H = 1/2 and ( f ) δG/H = 1. Conditions pertain to
those listed in table 1. A new peak is observed at lower wavenumbers (higher wavelengths), which becomes
dominant at δG/H = 1/6.

of W to examine the containment effect. The results have shown that the results presented
here are independent of W, provided that W is equal to at least 10H.

First, predictions of spatial growth rate (−k̃I) for both varicose and sinuous modes are
plotted as a function of wavenumber, k̃R, in figure 3. The six plots in the figure correspond
to different values of δG/H, ranging from 1/10 to 1, while liquid shear layer thickness is
held constant at δL = H/12. At low values of δG/H, i.e. for δG/H ∼ O(10−1), the peak in
these dispersion curves is located at k̃R = kH ≈ 15, which implies that the length scale of
the fastest growing mode is significantly smaller than H. As such, it is expected that these
instabilities leave the inner core of the liquid sheet largely intact, and that their direct effect
is a disruption limited to the sheet’s surface. Beginning at approximately δG/H = 1/6, a
second peak develops at k̃R ≈ 1 for the sinuous mode. With larger values for the gas shear
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Figure 4. Spatial growth rate versus wavenumber for different liquid shear layer thicknesses corresponding to
(a) varicose mode and (b) sinuous mode. Conditions pertain to those listed in table 1 with δG/H = 1/10.

layer thickness, this second peak becomes progressively more dominant, and at δG/H =
1.0, it is growing three times faster than the secondary peak.

The appearance of a dominant second peak with larger δG exists only for the sinuous
mode. For the varicose mode, the fastest growing mode remains in the much larger
wavenumber range. In fact, both sinuous and varicose mode predictions are almost
indistinguishable, with the exception of the lower wavenumber range, i.e. k̃R � 2. In this
part of the wavenumber space, the sinuous growth rate deviates strongly from the varicose
mode by manifesting much more significant growth. Since the associated length scale of
this mode is comparable to or larger than H, its growth will lead ultimately to the total
disruption of the sheet, provided that it survives beyond the linear regime. This behaviour
is tested with the VoF simulations presented in § 5.

To examine the effect of δL, the previous calculations are repeated under the same
conditions and fluid properties employed for the gas shear layer examination, but with
δG fixed at H/10. The associated spatial growth rate curves are presented in figure 4,
where δL/H ranges from H/12 to H/4. Unlike the previous predictions for the gas shear
layer thickness, the growth rate curves remain almost the same as δL is varied for both
varicose and sinuous modes. These results indicate that, at least within the linear regime
of instability evolution, the liquid-based shear layer thickness has a negligible effect.
Specifically, when we consider the fastest growing mode, the change in the corresponding
wavenumber is less than 4 % when δL is varied from H/12 to H/4.

The results shown in figure 4 lie in stark contrast to those presented by Turner et al.
(2011), who report that the size of the shear layer in the denser fluid, i.e. the liquid,
has the most significant effect on the growth rate of the disturbances. A closer look at
the differences between their approach and the present work reveals that, most likely, the
inviscid treatment (Rayleigh equation) and linear base profiles employed by Turner et al.
(2011) are the contributing factors to the observed discrepancy. In our case, the viscous
contribution is accounted for by the solution of the Orr–Sommerfeld system, along with
the imposition of the full set of interfacial constraints. Compared to an inviscid treatment,
the continuity of horizontal velocity and the shear stress condition are of particular
significance. The argument made in Turner et al. (2011) is that with ReL ∼ O(104), the
viscous term can be neglected. While that may hold true for the base or mean velocities,
the perturbation velocities have extremely sharp gradients at the interface (this is shown
in a later section, specifically in figure 24); hence neglecting their associated viscous
contribution is questionable.
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Figure 5. Phase velocities versus wavenumber for varicose and sinuous modes corresponding to (a) δG/H =
1/10 and (b) δG/H = 1. Group velocities versus wavenumber for varicose and sinuous modes corresponding
to (c) δG/H = 1/10 and (d) δG/H = 1. Conditions pertain to those listed in table 1.

The associated phase velocities cp = Uinjω̃R/k̃R and group velocities cg = Uinj ∂ω̃R/∂ k̃R
are plotted in figure 5, corresponding to the two extreme values of δG/H, i.e. δG/H = 1/10
and 1. Deviations of both cp and cg from the injection speed Uinj are noticeably more
pronounced for low wavenumbers, and this deviation corresponds, for the most part, to a
slower propagation of the disturbances. This effect is more significant for δG/H = 1, and
the wavenumber range where it occurs matches where the large-scale mode is detected
for the sinuous mode. Indeed, it is the sinuous mode where the largest discrepancies from
Uinj occur for the phase and group velocities. For the varicose mode at δG/H = 1, all
disturbances travel almost uniformly at Uinj. Even at δG/H = 1/10, the varicose mode
travels mostly with 10 % of the injection speed.

To examine whether the development of the large-scale sinuous mode occurs under a
broader range of conditions, a number of additional cases are examined, as documented
in table 2. The wavenumbers kR,crit, corresponding to the critical or fastest growing mode
for each of these cases, are extracted. The associated wavelengths λcrit(= 2π/kR,crit) are
plotted in figure 6 for the sinuous mode, and in figure 7 for the varicose mode, as a
function of the gas shear layer thickness. For the varicose case, λcrit,varicose/H increases
monotonically with δG/H, i.e. λcrit,varicose/H ∼ (δG/H)P, where P varies between 0.54 to
0.64 for all curves.

In contrast, for the sinuous modes, beyond a value of δG/H ranging between 0.15 and
0.3, all curves collapse onto a single curve irrespective of ReL and OhL, namely

λcrit,sinuous

H
= 14.26

(δG

H

)0.766
, δG/H � 0.3. (3.1)
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Case number OhL Uinj (m s−1) γ (N m−1) ReL

Case 1 0.013 50 0.02 6.477 × 103

Case 2 100 1.2955 × 104

Case 3 200 2.591 × 104

Case 4 300 3.8865 × 104

Case 5 0.066 20 0.0008 2.591 × 103

Case 6 50 6.477 × 103

Case 7 100 1.2955 × 104

Case 8 200 2.591 × 104

Case 9 300 3.8865 × 104

Case 10 0.13 10 0.0002 1.2955 × 103

Case 11 20 2.591 × 103

Case 12 50 6.477 × 103

Case 13 100 1.2955 × 104

Case 14 200 2.591 × 104

Case 15 300 3.8865 × 104

Table 2. Additional high-speed injection cases examined under LSA. With the exception of a variable surface
tension, the physical properties are the same as those listed in table 1.
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10–1

100

101

102
OhL = 0.013, ReL = 6447
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OhL = 0.066, ReL = 38 865
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λ/H ∼ (δG/H)0.766

δG/H

λ
cr

it/
H

Figure 6. Predicted critical wavelengths from LSA corresponding to the sinuous mode.

This hints at a potential universality of the scaling of the critical wavelength with gas shear
layer thickness for δG/H � 0.3. This collapse is accompanied by an abrupt change in the
magnitude of λcrit,sinuous/H, which increases by at least one order of magnitude as the
maximum growth rate shifts from the high wavenumber region to the lower wavenumber
range.

For smaller values of δG/H as shown in figure 6, i.e. δG/H �0.1, the critical sinuous
mode wavelengths still scale with δG/H, i.e. λcrit,sinuous/H ∼ (δG/H)P, where P varies
between 0.54 and 0.64. However, the collapse of all curves observed for δG/H �
0.3 is absent since each curve is distinct and varies depending on the associated
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Figure 7. Predicted critical wavelengths from LSA corresponding to the varicose mode.

values for ReL and OhL. Specifically, λcrit,sinuous/H decreases with increasing ReL or
increasing OhL. A transition region exists in the range 0.1 � δG/H � 0.3, where λcrit/H =
f (δG/H; OhL, ReL) merges from a multi-valued function to practically a single-valued
function with respect to the gas shear layer thickness.

To examine whether the dominant large-scale sinuous mode exists also at lower injection
speeds, two additional cases are considered. The first is at Uinj = 10 m s−1 (ReL = 1295
and OhL = 0.013), and the second is at Uinj = 5 m s−1 (ReL = 647 and OhL = 0.013),
with all fluid properties and H remaining the same. The resulting dispersion relations are
plotted in figures 8 and 9 as functions of δG/H.

As opposed to the double-peak behaviour observed for δG/H � 1/10 (consider figure 3),
the growth rates at these lower injection speed cases have a single peak. This implies
that as the shear layer increases, the abrupt change in critical wavelength by one
order of magnitude observed previously is absent under milder injection conditions.
A second observation is that the range of wavenumbers where the growth rate is
non-negligible is much smaller when compared to the growth rate curves under high-speed
conditions. There are no peaks or even positive growth rates at high wavenumbers. In fact,
λcrit,sinuous/H and λcrit,varicose/H are O (1) for both lower velocity cases over the range of
shear layer thickness considered.

4. Volume-of-fluid simulations

Capturing the full nonlinear dynamics of the perturbation process leading to the sheet
breakup is done in the present investigation using a VoF methodology (Tryggvason,
Scardovelli & Zaleski 2011). The particular flavour of the VoF method employed in
the present study consists of an algebraic VoF solver phibasedFoam (Agarwal, Ananth
& Trujillo 2022). This solver is a slightly modified version of the interFoam code,
which is part of the OpenFoam open source distribution of continuum mechanics
solvers (OpenFoam foundation, https://openfoam.org/). The discretization of the governing
equations is done via finite volume. The solver begins with the evolution of α, which is
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Figure 8. Spatial growth rate versus wavenumber for milder injection cases, for (a) δG/H = 1/10, (b) δG/H =
1/8, (c) δG/H = 1/6, (d) δG/H = 1/4, (e) δG/H = 1/2, and ( f ) δG/H = 1 (with Uinj = 10 m s−1, ReL =
1295, OhL = 0.0134).

the fraction of liquid that occupies a given computational cell. This evolution is obtained
from the solution of

∂α

∂t
+ ∇ · (uα) = 0. (4.1)

To mitigate the effects of numerical diffusion of α due to its sharpness, the VoF scheme
employs a compressive interface capturing methodology advanced by Ubbink & Issa
(1999) and Rusche (2003), with contributions from Henry Weller. Subsequently, the
following two-phase momentum equation is solved:

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · (μ ∇u) + ∇u · ∇μ + ρg + σκ ∇α, (4.2)

where the solenoidal condition of the velocity field has been used to expand the divergence
of the stress tensor. The density and viscosity are obtain from ρ = ρLα + ρG(1 − α) and
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Figure 9. Spatial growth rate versus wavenumber for milder injection cases, for (a) δG/H = 1/10, (b) δG/H =
1/8, (c) δG/H = 1/6, (d) δG/H = 1/4, (e) δG/H = 1/2 and ( f ) δG/H = 1 (with Uinj = 5 m s−1, ReL = 647,
OhL = 0.0134).

μ = μLα + μG(1 − α) (Deshpande, Anumolu & Trujillo 2012). The last term on the
right-hand side is the surface tension term based on the continuum surface force method
(Brackbill, Kothe & Zemach 1992), where σ is the surface tension coefficient, and κ is
the interface curvature defined as κ = −∇ · [nΓ ]. Here, nΓ is the interface normal unit
vector, given by nΓ = ∇α/(|∇α|). The prediction of velocity is followed by the solution
of a pressure Poisson system with variable coefficients and a velocity corrector step.
A description of the interFoam algorithm, along with an evaluation of its performance
considering the various aspects of the two-phase flow solution, is provided in Deshpande
et al. (2012).

A reported notable weakness in interFoam is the prediction of interfacial curvature,
which is fundamental in the calculation of surface tension. To remedy this difficulty,
phibasedFoam implements an improved curvature estimation by solving for a signed
distance function φdis within the interfacial region coupled to the solution of the
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Figure 10. Depiction of the VoF domain employed in liquid sheet breakup simulations, along with the
associated mesh resolution. The close-up view of the inlet provides details of the imposed velocity
profile (4.6).

Hamilton–Jacobi equation away from this region. Based on this procedure, the
predictions of curvature and the numerical convergence rate are improved noticeably.
These improvements are much more substantial for cases that are either completely or
heavily surface tension dominated. For the cases considered in the present work, which
occur at much higher WeL values, we found that the differences were negligible in
comparison to the standard interFoam.

4.1. Volume-of-fluid domain and initialization
Except for the calculations shown in figure 1, all the VoF computations presented in
the paper are 2-D, allowing for much better resolution of the interfacial region. This is
needed particularly for high-speed injection, where the perturbation eigenvectors become
extremely sharp at the interface, requiring sub-micron resolution. Carrying out these
calculations in three dimensions, where these perturbations are fully resolved numerically,
poses a significant computational expense, especially in the calculation of statistical
quantities, which require a sufficiently long time window. Additionally, since much of
the focus of the work is on the initial development of instabilities, which are 2-D in nature,
limiting the VoF simulations to two dimensions is reasonable.
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The computational domain for the VoF calculation consists of a rectangular region
having height 20H and length 100H, as shown in figure 10. This figure shows the
varying levels of resolution �x employed in different parts of the domain. Throughout
the inlet region, grid size �x = 0.375 μm is used, which is sufficiently fine to resolve
the perturbation velocities and perturbation pressure. As we move away from this region,
the grid employed becomes progressively more coarse, and far away from the location of
interest, the resolution is �x = 6 μm.

The velocity profile imposed at the inlet is given by

u(x = 0, y, t) = ū(y) + u′(x = 0, y, t), (4.3a)

v(x = 0, y, t) = v′(x = 0, y, t), (4.3b)

where mean velocities are given in (2.8), and the perturbation velocities adopt a normal
mode form (2.13), namely

u′(0, y, t) = Re
[
[ûR(y) + i ûI(y)][cos(kx − ωRt) + i sin(kx − ωRt)]

∣∣
x=0 , (4.4)

v′(0, y, t) = Re
[
[v̂R(y) + i v̂I(y)][cos(kx − ωRt) + i sin(kx − ωRt)]

∣∣
x=0 . (4.5)

Here, Re denotes the extraction of the real part of a complex expression. Substituting these
expressions into (4.3) gives

u(x = 0, y, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−K1 erf

⎛
⎝y − H

2
δL

⎞
⎠+ K2 + ûL,R(y) cos (ωRt) + ûL,I(y) sin (ωRt) , 0 < y <

H
2

,

−K2 erf

⎛
⎝y − H

2
δG

⎞
⎠+ K2 + ûG,R(y) cos(ωRt) + ûG,I(y) sin(ωRt),

H
2

< y < W,

K1 erf

⎛
⎝y + H

2
δL

⎞
⎠+ K2 + ûL,R(y) cos(ωRt) + ûL,I(y) sin(ωRt), −H

2
< y < 0,

K2 erf

⎛
⎝y + H

2
δG

⎞
⎠+ K2 + ûG,R(y) cos(ωRt) + ûG,I(y) sin(ωRt), −W < y < −H

2
,

(4.6a)

v(x = 0, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̂L,R(y) cos (ωRt) + v̂L,I(y) sin (ωRt), 0 < y <
H
2

,

v̂G,R(y) cos (ωRt) + v̂G,I(y) sin (ωRt),
H
2

< y < W,

v̂L,R(y) cos (ωRt) + v̂L,I(y) sin (ωRt), −H
2

< y < 0,

v̂G,R(y) cos (ωRt) + v̂G,I(y) sin (ωRt), −W < y < −H
2

.

(4.6b)

The imposed perturbations at the inlet are ensured to be small by having the interfacial
displacement η̂, which is obtained from (2.14), to be 1.5 % of the liquid sheet thickness H.
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Figure 11. Example of a VoF simulation corresponding to the critical sinuous mode (table 1, ω̃R = 0.3064 and
δG/H = 1) at (a) tUinj/H = 33.33, (b) tUinj/H = 222.22, along with velocity time histories of probes located
at various streamwise locations and at y = H/2.

The VoF simulations are initiated by imposing the velocity profiles of (4.6) on the
inlet boundary as depicted in figure 10. This applies to both the liquid and gas phase
portions of the inlet boundary. For example, a simulation of liquid sheet injection under
conditions listed in table 1, and with a superimposed sinuous mode, is shown in figure 11.
In figure 11(a), the sheet is captured during its initial injection period or initial transient,
and in figure 11(b), the sheet resides within the quasi-steady-state period. Velocity time
histories at various x locations and at y = H/2 are also shown in figure 11(c). These
histories show that the initial transient caused by the passage of the sheet tip is recorded
at progressively longer times with increasing distance from the inlet location. Beyond
tUinj/H = 111, as indicated by the red dashed line in figure 11(c), it is safe to assume
that we have entered a quasi-steady state, and VoF data are collected only within this time
period, i.e. not during the initial transient. This reference time tUinj/H = 111 also holds for
other excitation frequencies ω̃R of the sinuous mode pertaining to the nominal conditions
of table 1. Regarding the varicose mode, the physical domain of interest is much shorter,
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as discussed in § 4.2. Therefore, the quasi-steady period is achieved more quickly, which
implies that the reference initial time tUinj/H = 111 is more than sufficient.

4.2. Validity of LSA assumptions
With the use of the VoF simulations, the various assumptions employed in the LSA can
be examined. This entails the examination of both mean quantities as well as the various
advection terms discarded in the perturbation equation (2.6). The VoF simulations are
time-averaged from tUinj/H = 111 to tUinj/H ranging from 222.2 to 666.67, depending
on the type of instability being considered. This comprises a sufficient time period
to obtain statistically converged quantities within the domain 0 � x/H � 20. Results
corresponding to the sinuous and varicose modes are shown in figure 12. Both of these
modes pertain to their respective critical condition, where the excitation frequency results
in the peak growth rate predicted from linear stability. Here, the sinuous mode corresponds
to δG/H = 1, and the varicose mode to δG/H = 1/6. This provides a sufficient range in
the wavelengths of the perturbations observed.

Beginning with the streamwise mean velocity, the assumption made is that it conforms
to an error function (2.8), and that this profile remains constant as we move downstream.
Results shown in figure 12(a) confirm this behaviour, where ū/Uinj remains unchanged
up to x = 10H, and begins to deviate slightly from the error function at x = 15H. Even
at x = 20H, the profile retains its initial shape, but some slight smoothing takes place
at approximately y = ±H/2, i.e. the interfacial region. For the varicose mode, due to its
much smaller wavelength, deviations from the error function profile happen sooner, as
plotted in figure 12(b). Also, the deviations are concentrated in a narrower band around
the interface, where the growth of small lumps is detected. Up to x = 2H, the mean
streamwise velocity stays essentially unchanged, and this corresponds to approximately
three wavelengths of the varicose mode. By x = 4H, there is a noticeable protrusion at
the interface, while the rest of the velocity profile retains its original error function form.
This means that predictions from LSA are likely to have difficulties for this mode beyond
approximately x = 4H.

Regarding the transverse velocity, the time-averaged VoF data are shown in figure 12(c)
for the sinuous mode and in figure 12(d) for the varicose mode. As given in (2.8), it is
expected that both of these quantities should remain equal to zero. The results show that
this was accomplished well for the sinuous mode up to x = 20H, with increasing levels of
discrepancy with progressively longer distances from the inlet boundary. For the varicose
mode, the approximation holds again in a much shorter range, and in comparison to the
sinuous mode, the discrepancy is more significant. Nevertheless, its maximum value is
approximately 2 % of Uinj, which is still relatively small.

Finally, the mean liquid fraction fields are shown in figures 12(e) and 12( f ) for the
sinuous and varicose modes, respectively. Within the domain of interest, which extends
up to 20H for the sinuous mode and 4H for the varicose mode, the varicose mode better
retains its initial shape. Beyond x = 10H, the sinuous mode exhibits a noticeable degree
of smoothing. This has an impact on the interfacial constraints in LSA, which are based
on a departure η from the undisturbed interface location, i.e. y = H/2. Since beyond x =
10H or worse, x = 15H, the interface is diffused over a larger band around y = H/2, and
this implies a higher level of uncertainty in identifying the interface location, which is
expected to have consequences in the calculation of interfacial constraints. However, below
x = 10H, the degree of interface diffusion is relatively mild, and the interfacial region is
sharp.
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Figure 12. Average streamwise velocity for (a) the sinusoidal mode and (b) the varicose mode; average
transverse velocity for (c) the sinusoidal mode and (d) the varicose mode; and average liquid fraction profiles for
(e) the sinusoidal mode and ( f ) the varicose modes. The sinuous and varicose mode calculations correspond to
their critical quantities, and the associated gas shear layer thicknesses used in the calculations are respectively
δG/H = 1 and δG/H = 1/6. The operating parameters are those listed in table 1.

In conclusion, the findings depicted in figure 12 concerning mean quantities show that
the assumptions inherent in LSA are valid for the sinuous mode up to x = 10H or even
perhaps x = 15H for δG/H = 1, while for the varicose mode, the domain of validity
extends up to approximately x = 3H for δG/H = 1/6. In a more general sense, considering
the ranges in δG/H employed in the present work, the range of validity is approximately
x = 6H to x = 15H for the sinuous mode, and x = 2H to x = 15H for the varicose mode.

Turning our attention to the discarded terms in the perturbation evolution equation (2.6),
we have the transverse mean, streamwise developing and the nonlinear term. Via VoF
calculations, we can calculate these neglected terms and compare their magnitudes to the
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Figure 13. Instantaneous image plots at tUinj/H = 666.66 of the various advection terms (absolute values)
in the near field for the critical sinuous mode with δG/H = 1 under conditions listed in table 1:
(a) |ū ∂u′/∂x + v′ ∂ū/∂y|, (b) |v̄ ∂u′/∂y|, (c) |u′ ∂ū/∂x|, (d) |∇ · (u′u′ − u′u′)|.

magnitude of the retained conventional advection term. If these discarded terms can be
shown to have a much lower magnitude than the conventional term over some range in
x/H, then their omission is justified.

To get a sense of the magnitude and the general structure of each of the advection
terms, image plots of their instantaneous values within the near-field region are shown
in figures 13 and 14 for the sinuous and varicose modes, respectively. A log scale is used
to indicate their magnitude. First, the conventional term is significantly higher by orders
of magnitude than the streamwise developing and transverse mean advection. It is actually
the nonlinear contribution that competes more closely with the conventional advection
term, but even this nonlinearity is at least an order of magnitude smaller. The results also
show that the largest magnitude is concentrated in the interfacial region. Away from this
region, there are errant droplets, which are remnants of the initial transient, that give the
advection fields some degree of structure. This is apparent mostly for |y| � 2H. Regarding
the varicose mode, the same observation holds, with the exception that the shape of the
interface is understandably different.

To gain a quantitative evaluation of the magnitude of the advection terms, a time average
is taken of their absolute value as a function of x/H at y = H/2. As noted previously,
this coincides with the undisturbed interface location. Since the advection terms pertain
to fluctuating quantities, the absolute value is used in the time average. Otherwise, the
time average naturally leads to progressively smaller values tending towards zero as the
averaging period increases. The results are shown in figure 15 for both critical sinuous and
varicose modes.

For the sinuous mode, shown in figure 15(a), the conventional advection term is two to
three orders of magnitude larger than their counterpart transverse mean and streamwise
developing terms. The nonlinear term more closely approaches the magnitude of the
conventional term, and the gap between these two decreases with increasing x/H as
the nonlinearities grow in strength. For the varicose mode shown in figure 15(b), the
difference between the conventional advection term and its counterparts is even larger,
being approximately two to four orders of magnitude. Again, the nonlinear term is the
largest discarded term, and the gap between it and the conventional term lessens as we
move downstream from the inlet boundary. In summary, the assumption of only retaining
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Figure 14. Instantaneous image plots at tUinj/H = 555.55 of the various advection terms (absolute values)
in the near field for the critical varicose mode with δG/H = 1/6 under conditions listed in table 1:
(a) |ū ∂u′/∂x + v′ ∂ū/∂y|, (b) |v̄ ∂u′/∂y|, (c) |u′ ∂ū/∂x|, (d) |∇ · (u′u′ − u′u′)|.
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Figure 15. Time average of the absolute value of the various advection terms calculated under conditions listed
in table 1: (a) terms corresponding to the critical sinuous mode with δG/H = 1; (b) terms corresponding to the
critical varicose mode with δG/H = 1/6.
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the conventional advection term within the near field is warranted by the results from VoF
simulations.

4.3. Extracting growth rates from VoF
To compare VoF and LSA predictions, perturbation growth rates are employed. Our
approach for calculating these growth rates from VoF simulations is based on a procedure
presented by Schmidt & Oberleithner (2020). It employs the kinematic relationship
(2.12e), which is used to link the interface displacement with the normal perturbation
velocity, namely,

η(x, t) = v′
L(x, y = H/2, t)

i (k UL(y = H/2) − ω)
. (4.7)

The disturbed normal velocity is obtained in the VoF simulations by probing it at
the undisturbed location (x, y = H/2). The time series of v′(x, H/2, t) can be Fourier
decomposed as

v′(x, H/2, t) =
∑
n /= 0

An(x, y = H/2) exp(iωnt), (4.8)

where ωn is the frequency of the nth Fourier mode and An is the corresponding amplitude.
In the calculation of growth rate, only the fundamental mode (n = 1) is considered, and
the extraction of v′(x, H/2, t) data is extended only within a relatively small distance in
the x direction, guaranteeing that the presence of other modes is negligible. Employing the
normal mode decomposition, we have

v′(x, H/2, t) = v̂(H/2) exp(−kIx) exp[i(kRx − ωt)], (4.9)

where k = kR + ikI . Considering only the fundamental mode and only the amplitude of
both previous equations yields

A1(x, y = H/2) = v̂(H/2) exp(−kIx). (4.10)

This can be repeated at some other position downstream of x; for instance,

A1(x + �x, y = H/2) = v̂(H/2) exp(−kI[x + �x]). (4.11)

Taking the ratio of both equations above, and taking the limit as �x → 0, we obtain

− kI = lim
�x→0

[
ln A1(x + �x, y = H/2) − ln A1(x, y = H/2)

�x

]
= d

dx
(ln(A1)), (4.12)

which is the expression employed in the calculation of growth rate −kI from VoF data.

4.4. Comparison between linear stability and VoF
An examination of whether the predictions originating from the spatial LSA agree with
the full Navier–Stokes treatment provided by the VoF is presented in this subsection. The
nominal conditions pertaining to table 1 are chosen. Other VoF calculations performed
at ReL = 25 910 and OhL = 0.066 have led to a similar agreement with LSA predictions
but are excluded here for the sake of brevity. We consider two cases corresponding to the
critical sinuous and varicose modes, and examine their behaviour as a function of gas shear
layer thickness. The VoF calculations employ the inlet flow conditions described in (4.6),
and the data are obtained in the quasi-steady-state period, as commented earlier.
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Figure 16. VoF simulation results for δG/H = 1/4 corresponding to the critical (a) sinuous mode and
(b) varicose mode. The distance from the inlet is displayed in terms of liquid sheet thickness H.
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Figure 17. The VoF data corresponding to sinuous mode simulations and associated exponential curve fits
(VoF fit). The respective values for gas shear layer thickness (δG/H) and growth rate predictions from LSA are:
(a) δG/H = 1/6, −k̃I,LSA = 0.3695; (b) δG/H = 1/4, −k̃I,LSA = 0.3053; (c) δG/H = 1/2, −k̃I,LSA = 0.2237;
(d) δG/H = 1, −k̃I,LSA = 0.1559.

Example VoF results are shown in figure 16 for both modes, where a notable difference
in perturbation length scale is clearly apparent. The sinuous mode has a wavelength that is
approximately an order of magnitude longer than the varicose mode. In addition, some
degree of surface breakup is observed for both cases towards the outflow face of the
observation window as the perturbation grows.
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Figure 18. The VoF data corresponding to varicose mode simulations and associated exponential curve fits
(VoF fit). The corresponding values of gas shear layer thickness (δG/H) and growth rate predictions from
LSA are: (a) δG/H = 1/6, −k̃I,LSA = 0.3565; (b) δG/H = 1/4, −k̃I,LSA = 0.2287; (c) δG/H = 1/2, −k̃I,LSA =
0.1061; (d) δG/H = 1, −k̃I,LSA = 0.0494.

Quantitatively, the comparison between LSA predictions and VoF simulations is shown
in figure 17 for the sinuous mode, and in figure 18 for the varicose mode, as functions of
distance from the inlet. As we saw previously, in § 4.2, we consider only the near-field
region, where the assumptions of linearity in LSA, mean profiles, and the exclusion of
additional advection terms are reasonable. With decreasing gas shear layer thickness δG,
the critical growth rate for both modes increases, leading to a faster manifestation of
nonlinear effects. Consequently, the extent of the longitudinal domain shown in figures 17
and 18 is smaller with decreasing δG. For the critical varicose mode, shown in figure 18, the
differences with VoF results are more noticeable. We speculate that this is due to a more
significant departure from the assumed form of the mean velocity fields (2.8) as a function
of x, which is more prevalent in the varicose case as depicted in figure 12. Nevertheless,
there is good agreement overall between LSA and VoF in the near field.

5. Do dominant modes in the linear regime lead to breakup?

Based on the results from figure 6, it is expected that the large-scale sinuous modes,
recorded for δG/H � 0.3, are responsible for sheet fragmentation, whereas the varicose
modes, which have a much lower λcrit/H, are presumed responsible for surface
disturbances without appreciably affecting the liquid core due to their limited size. These
ideas are tested by employing VoF simulations. We understand that the complexity of
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Figure 19. The VoF results under critical sinuous mode inlet conditions: (a) δG/H = 1/6, (b) δG/H = 1/4,
(c) δG/H = 1/2 and (d) δG/H = 1.

three-dimensional (3-D) phenomena, as examined in other works (Jarrahbashi & Sirignano
2014; Zandian, Sirignano & Hussain 2017), is not fully captured in the present 2-D
simulations; however, the main characteristics of the large-scale sinuous mode, which
has been a central point in the present investigation, are captured relatively well in two
dimensions. In fact, 3-D simulations, such as those shown previously in figure 1 or those
presented in earlier work (Deshpande et al. 2015), do corroborate the presence of this
large-scale mode in breaking up the sheet.

Both critical sinuous and varicose modes are imposed on the flow inlet as described
in § 4. We consider eight cases corresponding to conditions given in table 1. Other
cases – still within high-speed injection conditions – have been observed to have
the same type of behaviour as reported here. The values employed for the gas shear
layer thickness are δG = (H/6, H/4, H/2, H). The critical frequencies corresponding to
these values of δG are, respectively, ω̃crit,sinuous = (1.452, 1.0106, 0.6079, 0.3064) for
the sinuous modes, and ω̃crit,varicose = (10.25, 8.482, 5.19, 3.42) for the varicose modes.
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Figure 20. The VoF results under critical varicose mode inlet conditions: (a) δG/H = 1/6, (b) δG/H = 1/4,
(c) δG/H = 1/2 and (d) δG/H = 1.

These critical frequencies are used in the imposed perturbations at the inlet. Since the
effect of liquid shear layer thickness is negligible, a constant value δL = H/12 is used.

The VoF results corresponding to the sinuous and varicose modes are shown
respectively in figures 19 and 20. Since the varicose modes are small, close-up
views of the near field are provided. From linear stability, λcrit,sinuous/H =
(3.938, 5.326, 7.902, 14.513) correspond to cases with δG = (H/6, H/4, H/2, H); hence
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Breakup of planar liquid sheets

the wavelength increases in proportion to the gas shear layer thickness. This behaviour is
evident in the near field, and it is also observed in the breakup region, where visibly the
length scale at breakup is consistently larger with increasing δG.

For the varicose mode, the development of the instabilities leads to the formation of
cusps at the interface, which is progressively elongated due to the surrounding shear
flow structure. Eventually, these cusps undergo breakup, but the liquid core remains
intact. Further downstream, a sinuous type of structure develops. We speculate that
the mode associated with this sinuous structure is activated by the nonlinear term in
the Navier–Stokes equation. Since this occurs in a region where the gas shear layer
thickness has grown considerably, once the sinuous mode becomes activated, it leads to
an accelerated development and subsequent fragmentation of the sheet.

A frequency analysis is performed to quantify the results from figures 19 and 20. In this
analysis, a Fourier decomposition of the vertical velocity, given by (4.8), is carried out as
a function of x/H. The intensity of each Fourier mode is evaluated and normalized by the
maximum magnitude of the modes, i.e. |v̂n(x)|/(max{|v̂n(x), n = 1, . . . , N|}), where N
varies around 104. The results are presented in terms of a spectrogram, shown in figures 21
and 22 for the sinuous and varicose modes. In these plots, the frequency pertaining to the
Fourier decomposition is shown in the y-axis, and the streamwise coordinate in the x-axis.
A dashed line is included to denote the imposed critical frequency, and a colour map is
used to indicate the intensity of each Fourier mode. The spectrograms are plotted up to the
respective breakup length for each case.

Examining figure 21 for the sinuous modes, the results show that the imposed inlet
perturbation remains the most dominant mode throughout the entire domain, all the way to
the breakup point. This implies that its dominance extends well beyond the linear regime,
which is observed for all cases of δG/H. As we move away from the near field, other
modes become activated as the process becomes nonlinear. For instance, for δ/H = 0.5
(figure 21c), this nonlinear transition begins at x/H ≈ 10; however, the critical imposed
mode remains the strongest.

The story is quite different for the varicose modes shown in figure 22. A close-up
view of the near-field region is included to aid in the visualization of the spectrogram.
The results show that in the near field, the excited critical mode remains the largest
one. This behaviour is also visually confirmed in figure 20. Further downstream,
at x/H ≈ (7, 14, 25, 32) corresponding to δG = (H/6, H/4, H/2, H), lower-frequency
modes become excited and subsequently dominate the process, i.e. the critical varicose
mode becomes inconsequential in the nonlinear regime and plays an insignificant role in
the breakup process.

6. Perturbation energy analysis

The objective of the perturbation energy analysis is to identify the most influential factors
affecting growth in both sinuous and varicose modes. This analysis bears similarities
with the work of Boomkamp & Miesen (1996), where a temporal instability in a
two-phase shear layer was considered. However, in our current work, we are studying a
spatially growing disturbance, which leads to some important terms not cancelling out
and contributing significantly to the growth of the sinuous mode.

We begin by rewriting the perturbation equations (2.7b) and (2.7c) in vector form, and
taking the inner product with the perturbation velocity, yielding[

ρ
∂u′

∂t
+ ρū

∂u′

∂x
+ ρv′ dū

dy
ex

]
· u′ = (∇ · T ′) · u′, (6.1)
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Figure 21. Frequency plots for critical sinuous modes: (a) δG/H = 1/6, (b) δG/H = 1/4, (c) δG/H = 1/2
and (d) δG/H = 1.

where T ′ is the stress tensor, namely Tij = −p′δij + μ(∂u′
i/∂xj + ∂u′

j/∂xi). Considering
a liquid region ΩL = [0, H/2] × [0, λ] and a gas region ΩG = [H/2, W] × [0, λ] as
shown in figure 23, the above expression is integrated over Ω = ΩL ∪ ΩG. Here, λ is
the wavelength, i.e. 2π/kR, corresponding to the normal mode representation of a given
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Figure 22. Frequency plots for critical varicose modes: (a) δG/H = 1/6, (b) δG/H = 1/4, (c) δG/H = 1/2
and (d) δG/H = 1.

perturbation. The integration results in

∫
Ω

ρ
∂u′

∂t
· u′ dS +

∫
Ω

ρū
∂u′

∂x
· u′ dS +

∫
Ω

(
ρv′ dū

dy
ex

)
· u′ dS

=
∫

Ω

∇ · (T ′ · u′) dS −
∫

Ω

T ′ : ∇u′ dS, (6.2)
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λ (perturbation wavelength)

ΩG ∈ [H/2, W ] × [0, λ]

ΩL ∈ [0, H/2] × [0, λ]

Gas boundary

Sheet centreline

Figure 23. Schematic representation of the domain considered for the perturbation energy analysis.

where the right-hand side has been re-expressed with the introduction of the viscous
dissipation term. This equation can be manipulated further by first noting that

T ′ · u′ =
[

T ′
xxu′ + T ′

xyv
′

T ′
xyu′ + T ′

yyv
′

]
(6.3)

and

T ′ : ∇u′ = 2μEijEij = φ = 2μ

[(
∂u′

∂x

)2

+ 1
2

(
∂u′

∂y
+ ∂v′

∂x

)2

+
(

∂v′

∂y

)2]
. (6.4)

Introducing these expressions into (6.2) yields, after some work,

1
2

∫
Ω

∂(ρ(u′2 + v′2))
∂t

dS + 1
2

∫
Ω

ū
∂(ρ(u′2 + v′2))

∂x
dS︸ ︷︷ ︸

KE

= −
∫

Ω

ρu′v′ dū
dy

dS︸ ︷︷ ︸
PROD

+
∫ λ

0
(T ′

xyu′ + T ′
yyv

′|y=H/2,Ldx −
∫ λ

0
(T ′

xyu′ + T ′
yyv

′|y=H/2,Gdx︸ ︷︷ ︸
INT

+
∫ H/2

0
(T ′

xxu′ + T ′
xyv

′|x=λx=0dy︸ ︷︷ ︸
STRx,L

+
∫ W

H/2
(T ′

xxu′ + T ′
xyv

′|x=λx=0dy︸ ︷︷ ︸
STRx,G

+
∫

Ω

−φ dS︸ ︷︷ ︸
DIS

, (6.5)

where the quantities evaluated at (y = H/2, L) and (y = H/2, G) correspond to the liquid
and gas sides of the interface, respectively. In the spectral discretization for velocity and
pressure, both liquid and gas phases contain an interfacial node precisely to evaluate the
corresponding interfacial quantities. Each bracketed term above can be separated into its
liquid or gas phase, with the exception of STRx,G and STRx,L, which are already separated
in this fashion.
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Breakup of planar liquid sheets

The term KE in (6.5) represents the time rate of change of kinetic energy of the
perturbation following the mean flow field, ū(y). The contributions to KE are given by
terms denoted as PROD, INT , STRx and DIS. The term PROD represents the energy
production due to the Reynolds shear stress (u′v′). A similar quantity (−〈u′v′〉 d〈ū〉/dy)
is mentioned in Pope (2000), where it appears as an energy sink in the mean flow field
kinetic energy and a source term for the turbulent kinetic energy. In the present work, this
connection is not entirely analogous since we employ a mean flow field that is treated
using error function profiles (see (2.8)). Nevertheless, PROD represents a source in the
evolution of KE.

The next term, INT , represents the work done on the interface, which can be divided
into normal and shear contributions as

INT =
∫ λ

0
[[T ′

yyv
′|y=H/2,L − [T ′

yyv
′|y=H/2,G]dx︸ ︷︷ ︸

normal

+
∫ λ

0
[[T ′

xyu′|y=H/2,L − [T ′
xyu′|y=H/2,G]dx︸ ︷︷ ︸

shear

=
∫ λ

0
γ

∂2η

∂x2

∣∣∣∣
H/2

× v′
y=H/2,Ldx︸ ︷︷ ︸

normal

+
∫ λ

0
T ′

xy|y=H/2,L × (u′
y=H/2,L − u′

y=H/2,G)dx︸ ︷︷ ︸
shear

=
∫ λ

0
γ

∂2η

∂x2

∣∣∣∣
H/2

× v′
y=H/2,Ldx︸ ︷︷ ︸

normal

+
∫ λ

0
μL

(
∂u′

∂y
+ ∂v′

∂x

)
y=H/2,L

× η

(
∂ ūG

∂y
− ∂ ūL

∂y

)
y=H/2

dx︸ ︷︷ ︸
shear

=
∫ λ

0
γ

∂2η

∂x2

∣∣∣∣
H/2

× v′
y=H/2,Ldx︸ ︷︷ ︸

normal

+
∫ λ

0
μL

(
∂u′

∂y
+ ∂v′

∂x

)
y=H/2,L

× η

(
∂ ūL

∂y

∣∣∣∣
y=H/2

(
μL

μG
− 1

)
dx︸ ︷︷ ︸

shear

. (6.6)

The normal term is obtained by applying the normal jump condition (2.12a) and noting
that v′ is continuous at the interface (2.12d). This results in the introduction of the surface
tension force. The shear term is manipulated by introducing the shear jump condition
(2.12b) and recognizing that d2ūL/dy2 = d2ūG/dy2 = 0 as a result of the mean profiles
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δG/H KEL KEG PRODL PRODG INT STRx,L STRx,G DISL DISG

1/6 0.427 0.573 0.022 0.726 0.089 0.036 0.195 −0.004 −0.055
1/4 0.409 0.591 0.014 0.733 0.050 0.025 0.217 −0.002 −0.031
1/2 0.425 0.575 0.007 0.747 0.026 0.015 0.224 −0.001 −0.015
1 0.387 0.613 0.003 0.781 0.010 0.006 0.207 −0.001 −0.005

Table 3. Energy budget for critical sinuous modes (ReL = 12 955 and OhL = 0.0134).

considered here (see (2.8)). This gives T ′
xy|y=H/2,L = T ′

xy|y=H/2,G. By the continuity
of horizontal velocity (2.12c), the perturbation velocities (u′

y=H/2,L − u′
y=H/2,G) can be

substituted by mean velocity derivatives. Furthermore, by the continuity of shear in the
mean flow state (2.9), the ratio of viscosities is introduced, which shows that as μL → μG,
the entire shear term in INT disappears.

The next term in (6.5) represents the work done by the stresses on the lateral or vertical
faces of Ω and is given by STRx. This term can be divided further into the working of
pressure, viscous normal and viscous shear forces, namely

STRx =
∫ W

y=0

[−p′u′]λ
x=0 dy︸ ︷︷ ︸

pressure

+
∫ W

y=0

[
2μ

∂u′

∂x
u′
]λ

x=0
dy︸ ︷︷ ︸

viscous normal

+
∫ W

y=0

[
μ

(
∂u′

∂y
+ ∂v′

∂x

)
v′
]λ

x=0
dy︸ ︷︷ ︸

viscous shear

. (6.7)

Interestingly, the STRx terms are exactly zero for a temporally growing stability
(Boomkamp & Miesen 1996) since these terms are periodic at the lateral faces of Ω . In
the present work, due to the spatially growing disturbance, this periodicity does not occur,
and STRx remains finite. Finally, the viscous dissipation of the perturbed flow is denoted
by DIS, and this quantity is always negative and hence opposes the growth of KE.

To identify the responsible physics associated with the growth of instability modes as a
function of gas shear layer thickness, we compute each term in the energy budget balance
equation (6.5). This is done for both critical sinuous and varicose modes using the previous
nominal conditions of table 1. Finally, all quantities are normalized by KE = KEL + KEG.
First, we consider the energy budget for critical sinuous modes, which is presented in
table 3. The results show that the rate of perturbation kinetic energy in liquid (KEL) is
slightly lower than its gas counterpart (KEG), despite the fact that the density ratio is
ρG/ρL = 0.075. This behaviour is explained by examining the modulus of horizontal and
vertical eigenfunctions, i.e. |û(y)| and |v̂(y)|. These quantities are plotted as functions of
δG/H in figure 24. From these plots, it is evident that the extent of ΩG is substantially
larger than that of ΩL, and that both |û(y)| and |v̂(y)| remain relatively high over a much
bigger region on the gas side. Also, with larger values of δG, this behaviour becomes more
pronounced, particularly for |v̂(y)|. These effects combine to offset the density disparity
between liquid and gas, yielding values for KEG and KEL that are similar in magnitude.

Out of the terms contributing to the kinetic energy growth of the sinuous perturbation,
the Reynolds shear term PROD, in particular PRODG, has the greatest influence. However,
in the liquid phase, PRODL is essentially negligible, hovering at approximately 2 % of the
total kinetic energy growth, and declines with increasing δG/H. This is due to relatively
low values of (u′v′) combined with a fast decay of dū/dy on the liquid side.

The work done at the interface, INT , has a low value and decreases with increasing
δG. It can be shown that the normal contributions are negative and thus are interpreted as
being restorative, i.e. driving towards the decay of the perturbation. On the other hand, the
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Figure 24. Plots of absolute values of velocity and pressure perturbations for different δG/H values. For all
the plots, the interfacial displacement is 1.5 % of the liquid sheet thickness: (a) |û|, critical sinuous mode;
(b) |v̂|, critical sinuous mode; (c) |p̂|, critical sinuous mode; (d) |û|, critical varicose mode; (e) |v̂|, critical
varicose mode; ( f ) |p̂|, critical varicose mode.

tangential contributions are significantly greater and are positive, leading to the growth of
the instability. Nevertheless, the relative magnitude of this INT term is secondary to the
more dominant contributors from PROD and STRx.

With regard to the work done by the lateral stresses, their effect is appreciable but only
for the gas phase, i.e. STRx,G 
 STRx,L. Each of the components of STRx,G is inspected
further and shown in table 4, where the pressure contribution is by far the most dominant
factor. The workings of shear and normal stresses on the lateral faces of Ω are orders of
magnitude smaller. Finally, the viscous dissipation DIS plays a minor role in the sinuous
mode development, and it is lower in the liquid compared to the gas. This is due to the
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δG/H STRx,G Pressure Viscous normal Viscous shear

1/6 0.1951 0.1951 5.67 × 10−4 −5.034 × 10−5

1/4 0.2171 0.2171 4.95 × 10−5 −2.5868 × 10−5

1/2 0.2239 0.2239 3.45 × 10−5 −1.1228 × 10−5

1 0.2068 0.2068 2.525 × 10−5 −5.127 × 10−6

Table 4. Components of STRx (lateral working of stresses) for the critical sinuous modes (ReL = 12 955 and
OhL = 0.0134).

δG/H KEL KEG PRODL PRODG INT STRx,L STRx,G DISL DISG

1/6 0.641 0.359 0.006 0.681 1.270 0.031 −0.017 −0.1159 −0.850
1/4 0.644 0.356 0.010 0.678 1.311 0.025 −0.016 −0.120 −0.878
1/2 0.659 0.341 0.016 0.664 1.204 0.020 −0.015 −0.098 −0.785
1 0.670 0.330 0.015 0.656 1.160 0.017 −0.012 −0.086 −0.744

Table 5. Energy budget for critical varicose modes (ReL = 12 955 and OhL = 0.0134).

δG/H STRx,G Pressure Viscous normal Viscous shear

1/6 −0.017 −0.0165 2.21 × 10−5 −4.8874 × 10−4

1/4 −0.0162 −0.01583 1.394 × 10−5 −3.8162 × 10−4

1/2 −0.0157 −0.01548 5.988 × 10−6 −2.2473 × 10−4

1 −0.0128 −0.01265 2.835 × 10−6 −1.4789 × 10−4

Table 6. Components of STRx (lateral working of stresses) for the critical varicose modes (ReL = 12 955 and
OhL = 0.0134).

velocity gradients being more pronounced in the gas region, and this region being much
larger.

The calculations are repeated for the critical varicose modes, and the results are
presented in table 5. Unlike the critical sinuous modes, KEL for critical varicose modes
is noticeably higher compared to KEG. This can be explained by considering that the
magnitudes |û(y)| and |v̂(y)| in the varicose case decay more rapidly than in the sinuous
case as we move away from the interface.

The working of Reynolds shear, PROD, is the second highest contributor to the growth
of the varicose mode, with the gas side having the most significant influence. In terms of
its relative magnitude, it is quite similar to the critical sinuous mode. The interfacial term
INT is the most significant contributor, and its value is significantly higher when compared
to the sinuous mode. The tangential component of INT is responsible for this behaviour.
The normal component governed by surface tension is again negative and thus restorative.

The working of the lateral stresses, STRx, is relatively small for the varicose mode and
negative on the gas side. The components of this term on the gas side are included in
table 6. Similarly to the sinuous mode, the pressure contribution is orders of magnitude
greater than the viscous normal or tangential components. Nevertheless, relative to the
kinetic energy term, STRx is much smaller for the varicose mode, which highlights a
notable difference in the development of this type of instability. Another significant
difference is the dissipation term, which is substantially higher for the varicose mode.
This dissipation is confined to a small region around the interface, with larger values on
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Breakup of planar liquid sheets

the gas side. For the varicose mode, the peak values for DIS are multiple times higher than
for the sinuous mode, explaining the discrepancy observed.

7. Summary and conclusions

The present work has analysed the growth of large-scale sinuous modes under high-speed
injection conditions utilizing a combination of two-dimensional (2-D) volume-of-fluid
(VoF) and spatial linear stability analysis (LSA). In a manner similar to the coflowing
case, the shear layer thickness δG also plays a highly influential role in the present liquid
injection into a quiescent medium. For small values of δG/H, the growth curve −kI
versus wavenumber kR displays a single prominent peak, which matches between varicose
and sinuous modes. However, as δG/H grows beyond O(10−1), a second peak develops
for the sinuous mode, at a much larger wavelength greater than H. At some threshold
value of δG/H, which is approximately 0.3, this larger-scale mode becomes the critical
one and becomes progressively more dominant with increasing values of δG/H. For the
varicose mode, the shape of the growth curve does not change much as δG/H increases.
Interestingly, the shear layer thickness in the liquid plays a very secondary role in the
development of these instabilities. For liquid injections occurring at lower velocities, LSA
predictions do not show the appearance of this dominant large-scale sinuous mode. At
these lower speeds, the growth rate curve retains a single peak. This demonstrates that
the manifestation of this large-scale mode is a distinguishing characteristic of high-speed
injection.

Additional LSA calculations were run at various values of Oh and Re within
the atomization regime. The results show that for δG/H � 0.3, the wavelength of
the critical sinuous mode for all cases considered collapses onto a single curve,
namely λcrit,sinuous/H = 14.26 (δG/H)0.766. For values δ/H � O(10−1), the predictions
for λcrit,sinuous/H still scale with (δG/H)p; however, each curve is distinct, depending on
its respective values of OhL and ReL. Also, for δ/H < O(10−1), the difference between
the sinuous and varicose mode growth rate curves is essentially the same, with minor
differences occurring in the lower wavenumber range.

Two-dimensional VoF simulations are employed to evaluate the LSA assumptions –
explicitly, the neglect of additional advection terms in the governing equations, and the
assumed form of mean velocity profiles. It is demonstrated that the LSA assumptions hold
within the near field, which ranges along the streamwise direction from approximately
6H to 15H for the large-scale sinuous mode, and from approximately 2H to 15H for the
small-scale varicose mode. The range in the extent of this domain is linked intrinsically
with the type of instability considered.

Carrying out the calculation of instabilities beyond the linear regime with the use of
2-D VoF simulations, the results show that when the critical sinuous mode predicted
from LSA is imposed at the inlet, it continues to dominate well into the nonlinear regime.
Moreover, based on frequency analysis, these large-scale sinuous modes are responsible
for the breakup of the sheet. Simulation results where the critical varicose mode is imposed
show that it grows quickly and can disrupt the surface of the sheet, breaking it up. However,
since its associated wavelength is substantially smaller than H, it does not disturb the liquid
core. At some point downstream of injection, a large-scale sinuous mode develops, which
is ultimately responsible for the sheet breakup.

With regard to 3-D behaviour akin to the simulations depicted in figure 1, it can be
inferred from the previous analysis that for relatively small shear layer thickness, either
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the varicose or small-scale sinuous mode will be critical. This implies that these modes
will develop and lead to the breakup of the surface of the sheet, producing a population
of small droplets, and this behaviour is consistent with 3-D simulations shown in figure 1.
Further downstream, as δG grows, and the large-scale sinuous mode is activated by the
nonlinearity of the underlying dynamics, this mode becomes dominant, and its growth
will lead directly to the fragmentation of the sheet.

An energy analysis is considered, where an examination of the contributing elements
to the growth of perturbation kinetic energy is performed. These elements are found to
be the working of the Reynolds shear stress, interfacial forces, lateral stress and viscous
dissipation. For the sinuous mode, the most influential contributing factor is the working
of the Reynolds shear stress (PROD), particularly on the gas side. This is followed in order
of significance by the working of lateral stress (STRx), also on the gas side. This lateral
stress is further subdivided into pressure, viscous normal and viscous shear. Among these
components, the working of the pressure is orders of magnitude larger than the others.
In contrast, for the varicose mode, it is the shear stress at the interface (INT) that plays
a dominant role, followed by the Reynolds shear term. The surface tension force remains
a small negative contributor for both sinuous and varicose critical modes, indicating its
tendency to suppress the instability. But in both cases, surface tension has a negligible
effect. Finally, the viscous dissipation is relatively important for the varicose mode but
almost insignificant for the larger sinuous mode, indicating that for the large sinuous mode,
there is little resistance to the development of this instability.
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Appendix. Description of LSA

The normal mode decomposition is first substituted into the governing equations (2.7),
giving

k
[
iûq
]+

[
dv̂q

dy

]
= 0, (A1a)

k2 [νqûq
]+ k

[
iūqûq + i

1
ρq

p̂q

]
+
[
−iωûq + v̂q

dūq

dy
− νq

d2ûq

dy2

]
= 0 (A1b)

and

k2 [νqv̂q
]+ k

[
iūqv̂q

]+
[
−iωv̂q + 1

ρq

dp̂q

dy
− νq

d2v̂q

dy2

]
= 0, (A1c)

where in this form we are explicitly denoting liquid (q = L) or gas (q = G) phase variables
and properties. This normal mode decomposition is also substituted into the boundary
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Breakup of planar liquid sheets

conditions (2.11) and interfacial constraints (2.12), respectively, yielding

varicose
[

dûL

dy

∣∣∣∣
y=0

= 0,

[
v̂L

∣∣∣∣
y=0

= 0,

[
dp̂L

dy

∣∣∣∣
y=0

= 0, (A2a)

sinuous
[

ûL

∣∣∣∣
y=0

= 0,

[
dv̂L

dy

∣∣∣∣
y=0

= 0,

[
p̂L

∣∣∣∣
y=0

= 0, (A2b)

varicose and sinuous
[

dûG

dy

∣∣∣∣
y=W

= 0,

[
v̂G

∣∣∣∣
y=W

= 0,

[
dp̂G

dy

∣∣∣∣
y=W

= 0, (A2c)

and

k2
(

γ
[
ûL − ûG

] [dūL

dy
− dūG

dy

]−1 ∣∣∣∣
y=H/2

+
([

p̂L − 2μL
dv̂L

dy

]

−
[

p̂G − 2μG
dv̂G

dy

]∣∣∣∣
y=H/2

= 0, (A3a)

k2
(

μLūLv̂L − μGūGv̂G

∣∣∣
y=H/2

+ k
(

μL

[
−iūL

dûL

dy
− ωv̂L

]

− μG

[
−iūG

dûG

dy
− ωv̂G

]∣∣∣∣
y=H/2

+
(

μL

[
iω

dûL

dy
− v̂L

d2ūL

dy2

]

− μG

[
iω

dûG

dy
− v̂G

d2ūG

dy2

]∣∣∣∣
y=H/2

= 0, (A3b)

k([iūLûL] − [iūGûG]|y=H/2 +
([

v̂L
dūL

dy
− iωûL

]
−
[
v̂G

dūG

dy
− iωûG

]∣∣∣∣
y=H/2

= 0

(A3c)

and
(v̂L − v̂G|y=H/2 = 0. (A3d)

Here, the substitution of the normal mode treatment has already been done for the
kinematic condition back in (2.14).

In the solution of (A1), (A2) and (A3), the Chebyshev spectral method (Boyd 2001)
is employed. The liquid and gas domains are divided into NL and NG numbers of
Gauss–Lobatto (G–L) points, respectively. These points are projections of equidistant
points on a unit semicircle on the x-axis. Hence G–L points agglomerate near the interface
and the boundaries. In order to accommodate this domain division using G–L points, the
non-dimensional vertical coordinate is transformed to vary in [−1, 1] in both the liquid
and gas domains by using the transformation

liquid ỹL = 4
y
H

− 1, for
y
H

∈ [0, 1/2], (A4)

gas ỹG = 2(y/H − 1/2)

W/H − 1/2
− 1, ∀ y

H
∈ [1/2, W/H], (A5)

where W/H is the ratio of the height of the domain from the liquid centreline (W) to the
liquid sheet thickness (H).
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After non-dimensionalization and coordinate transformation (A4), the governing
equations (A1) in the liquid phase become

k̃
[
iũL
]+

[
4

dṽL

dỹL

]
= 0, (A6a)

k̃2
[

1
ReL

ũL

]
+ k̃

[
i ˜̄uLũL + ip̃L

]
+
[
−iω̃ũL + 4ṽL

d ˜̄uL

dỹL
− 16

1
ReL

d2ũL

dỹ2
L

]
= 0 (A6b)

and

k̃2
[

1
ReL

ṽL

]
+ k̃

[
i ˜̄uLṽL

]
+
[
−iω̃ṽL + 4

dp̃L

dỹL
− 16

1
ReL

d2ṽL

dỹ2
L

]
= 0. (A6c)

Similarly, the governing equation for gas yields

k̃
[
iũG
]+

[
4

2W/H − 1
dṽG

dỹG

]
= 0, (A7a)

k̃2
[(

ρL

ρG

μG

μL

)
1

ReL
ũG

]
+ k̃

[
i ˜̄uGũG + i

(
ρL

ρG

)
p̃G

]

+
[
−iω̃ũG + 4

2W/H − 1
ṽG

d ˜̄uG

dỹG
− 16

(2W/H − 1)2

(
ρL

ρG

μG

μL

)
1

ReL

d2ũG

dỹ2
G

]
= 0

(A7b)

and

k̃2
[(

ρL

ρG

μG

μL

)
1

ReL
ṽG

]
+ k̃[i ˜̄uGṽG]

+
[
−iω̃ṽG + 4

2W/H − 1

(
ρL

ρG

)
dp̃G

dỹG
− 16

(2W/H − 1)2

(
ρL

ρG

μG

μL

)
1

ReL

d2ṽG

dỹ2
G

]
= 0.

(A7c)

The boundary conditions at the liquid centreline and the gas boundary after
non-dimensionalization and coordinate transformation yield

varicose
[

dũL

dỹL

∣∣∣∣
ỹL=−1

= 0,

[
ṽL

∣∣∣∣
ỹL=−1

= 0,

[
dp̃L

dỹL

∣∣∣∣
ỹL=−1

= 0, (A8a)

sinuous
[

ũL

∣∣∣∣
ỹL=−1

= 0,

[
dṽL

dỹL

∣∣∣∣
ỹL=−1

= 0,

[
p̃L

∣∣∣∣
ỹL=−1

= 0, (A8b)

varicose and sinuous
[

dũG

dỹG

∣∣∣∣
ỹG=+1

= 0,

[
ṽG

∣∣∣∣
ỹG=+1

= 0,

[
dp̃G

dỹG

∣∣∣∣
ỹG=+1

= 0.

(A8c)
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Breakup of planar liquid sheets

Finally, the non-dimensional interfacial constraints after the coordinate transformation are
given by the equations

k̃2
[

1
2WeL

[(ũL|ỹL=+1 − (ũG|ỹG=−1]
[

4
(

d ˜̄uL

dỹL

∣∣∣∣
ỹL=+1

− 4
2W/H − 1

(
d ˜̄uG

dỹG

∣∣∣∣
ỹG=−1

]−1]

+
[(

p̃L − 8
ReL

dṽL

dỹL

∣∣∣∣
ỹL=+1

−
(

p̃G − 8
2W/H − 1

μG

μL

1
ReL

dṽG

dỹG

∣∣∣∣
ỹG=−1

]
= 0, (A9a)

k̃2
[
( ˜̄uLṽL|ỹL=+1 − μG

μL
( ˜̄uGṽG|ỹG=−1

]
+ k̃

[(
− i4 ˜̄uL

dũL

dỹL
− ω̃ṽL

∣∣∣∣
ỹL=+1

− μG

μL

(
−i

4
2W/H − 1

˜̄uG
dũG

dỹG
− ω̃ṽG

∣∣∣∣
ỹG=−1

]

+
[(

i4ω̃
dũL

dỹL
− 16ṽL

d2 ˜̄uL

dỹ2
L

∣∣∣∣
ỹL=+1

− μG

μL

(
i

4
2W/H − 1

ω̃
dũG

dỹG
− 16

(2W/H − 1)2 ṽG
d2 ˜̄uG

dỹ2
G

∣∣∣∣
ỹG=−1

]
= 0, (A9b)

k̃[(i ˜̄uLũL|ỹL=+1 − (i ˜̄uGũG|ỹG=−1]

+
[(

4ṽL
d ˜̄uL

dỹL
− iω̃ũL

∣∣∣∣
ỹL=+1

−
(

4
2W/H − 1

ṽG
d ˜̄uG

dỹG
− iω̃ũG

∣∣∣∣
ỹG=−1

]
= 0 (A9c)

and

[(ṽL|ỹL=+1 − (ṽG|ỹG=−1] = 0. (A9d)

The Chebyshev spectral method involves expanding the non-dimensional velocities and
pressure using Chebyshev polynomials as follows:

ũq =
N+1∑
j=1

aq
u,j−1 Tj−1(ỹq) = D(N+1)×(N+1)

0,q · aq,(N+1)×1
u , (A10a)

ṽq =
N+1∑
j=1

aq
v,j−1 Tj−1(ỹq) = D(N+1)×(N+1)

0,q · aq,(N+1)×1
v (A10b)

and

p̃q =
N∑

j=1

aq
p,j−1 Tj−1(ỹq) = D(N+1)×N

0,q · aq,N×1
p , (A10c)

where Tj−1 (Boyd 2001, p. 111) are the Chebyshev polynomials, and aj−1 are the
corresponding coefficients in the expansion. In the matrix representation, D(N+1)×(N+1)

0,q

is the matrix containing the Chebyshev polynomials, and aq,(N+1)×1
u is the vector with

coefficients in the expansion.
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Similarly, the derivatives of the perturbations can be represented using matrix form. An
example for ũq is

(
dkũq

dỹk
q

)(N+1)×(N+1)

= D(N+1)×(N+1)
k,q · aq,(N+1)×1

u . (A11)

The representations of perturbations given above are substituted in the liquid and gas
phase governing equations (A6) and (A7) along with the boundary conditions (A8) and
interfacial conditions (A9), which are solved at the G–L points. This process results in a
nonlinear eigenvalue problem, which is expressed by

k̃2C2 · a + k̃C1 · a + C0 · a = 0. (A12)

Here, k̃ is the eigenvalue, and a = [aL
u, aL

v, aL
p, aG

u , aG
v , aG

p ]T is the eigenvector involving
coefficients of the Chebyshev expansion given by (A10), and C0, C1, C2 are the
coefficient matrices. The nonlinear eigenvalue problem given by (A12) is linearized
using the matrix companion method (Bridges & Morris 1984), resulting in (2.18). This
eigenvalue problem is solved using the QZ routine of the LAPACK library to obtain
the complex wavenumber and the corresponding eigenfunctions, which represent the
perturbation field.
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