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Vanishing of multizeta values over Fq[t]
at negative integers
Shuhui Shi

Abstract. Let Fq be the finite field of q elements. In this paper, we study the vanishing behavior of
multizeta values over Fq[t] at negative integers. These values are analogs of the classical multizeta
values. At negative integers, they are series of products of power sums Sd(k) which are polynomials
in t. By studying the t-valuation of Sd(s) for s < 0, we show that multizeta values at negative integers
vanish only at trivial zeros. The proof is inspired by the idea of Sheats in the proof of a statement of
“greedy element” by Carlitz.

1 Introduction

Classical multizeta values (i.e., over Z), also known as “multiple zeta values,” are
defined as the convergent series

ζ(s) = ∑
n1>n2>⋯>nr≥1

1
ns1

1 ns2
2 ⋯nsr

r
∈ R,

where s = (s1 , . . . , sr) ∈ Zr
+ with s1 > 1. We call r the depth and ∑i s i the weight of ζ(s).

Here and in the rest of the paper, Z+ is the set of positive integers and N = Z+ ∪ {0}.
Multizeta values of depth 1 are the usual Riemann zeta values. Double zeta values (i.e.,
r = 2) were first considered by Euler in 1776 [Eul75] in the study of ζ(3). After a long
time of oblivion, multizeta values of higher depth were introduced independently by
Hoffman [Hof92] and Zagier [Zag94] in 1992. During the last three decades, great
attention has been drawn to the study of multizeta values because of their appearance
in many different contexts, including the absolute Galois group [Gon01], periods of
mixed Tate motives [DG05, Gon05], knot invariants, and calculations of integrals
associated to Feynman diagrams in perturbative quantum field theory [BK97]. These
various connections with other fields have led to big progresses in the study of classical
multizeta values, although some fundamental questions still remain open (see [BGF,
Preface]).

Having learned about the rich interconnections in the classical case, Thakur, in
2002, defined two types of multizeta values over function fields [Tha04, Section 5.10],
one complex valued (generalizing special values of Artin–Weil zeta functions) and the
other with values in Laurent series over finite field (generalizing Carlitz zeta values).
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10 S. Shi

The first type was completely evaluated in [Tha04] for Fq(t) (see [Mas06] for a study
in the higher genus case). In this paper, we focus on the second type and stick to the
rational function field Fq(t).

Throughout this paper, p is a prime and q ∶= p f is a power of p. We say an integer
is q-even if it is divisible by q − 1 and q-odd otherwise. Let K ∶= Fq(t) be the rational
function field over the finite field Fq , ∞ be the rational place of K with uniformizer
1/t, and K∞ ∶= Fq((1/t)) be its completion at ∞. Let A ∶= Fq[t] be the polynomial
ring in t, A+ ∶= {monics in A}, and Ad+ ∶= {monic in A of degree d} for d ≥ 0. For
d ≥ 0 and s ∈ Z, we define the power sum

Sd(s) ∶= ∑
a∈Ad+

1
as ∈ K .(1.1)

Note that Sd(s) ∈ A if s < 0. The multizeta values at s ∈ Zr over Fq[t] are defined as
ζ(s) ∶= ∑

d1>⋯>dr≥0
Sd1(s1)⋯Sdr (sr) ∈ K∞.(1.2)

The convergence of ζ(s) at positive integers, i.e., s ∈ Zr
+, is clear from definition of Sd .

At nonpositive integers, it follows from the fact that Sd(0) = 0 for d > 0 and Sd(s) = 0
for d ≫ 0 if s < 0 (see Section 2 for details). At positive integers, the definition above
can be restated as

ζ(s) = ∑
a1 ,a2 , . . . ,ar

1
as1

1 as2
2 ⋯asr

r
∈ K∞,

where the sum is over all a i ∈ Ad i+ with d1 > d2 > ⋯ > dr ≥ 0. Following the classical
case, we say ζ(s) is of depth r and weight ∑i s i . For general introduction of results
on function field multizeta values and comparison with the classical case, we refer
the reader to the survey papers [Cha14, Tha17]. In this paper, ζ(s) is used to denote
multizeta values in both the classical and function field cases. It should be clear which
one we are referring to from the context.

A natural question to ask is when ζ(s) vanishes. In classical case, ζ(s) > 0 by
definition at positive integers with s1 > 1. Treating s i ’s as complex variables, the
series defining ζ(s) is absolutely convergent in the region {(s1 , . . . , sr) ∈ Cr ∶ Re(s1 +
⋯+ s j) > j for 1 ≤ j ≤ r} and can be meromorphically continued to C

r with singu-
lar hyperplanes {s1 = 1, s1 + s2 ∈ {2, 1, 0, −2, −4, −6, . . .}, ∑k

i=1 s i ∈ Z≤k for 3 ≤ k ≤ r}.
In particular, all the negative integer points, except when r = 2 or s1 + s2 odd, lie on
these hyperplanes. Moreover, they are points of indeterminacy. See [FKMT17] and the
references mentioned in its “Introduction” for several different approaches to define
and determine the multizeta values at these points.

In function field case, Thakur [Tha09] showed that ζ(s) ≠ 0 at positive integers.
At negative integers, the vanishing of multizeta values of depth 1 is completely
understood by Goss [Gos79]. Its vanishing behavior is quite similar to that of the
Riemann zeta values although lacking a functional equation. In this paper, we study
the vanishing of ζ(s) at negative integers of higher depth.

Replacing a by td +∑d
i=1 θ i td−i in (1.1), we can rewrite Sd(s) as a sum of monomials

in t for negative s, whose sum indices are in N
d+1 satisfying some restrictions. Denote

the set of these indices as Ud(−s). Our main result (restated as Theorem 2.8) gives an
explicit description of the t-valuation of Sd(s) in terms of elements in Ud(−s).
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Vanishing of multizeta values over Fq[t] at negative integers 11

Theorem 1.1 Assume Ud(−s) ≠ ∅, then there is a unique monomial in the sum Sd(s)
achieving the lowest degree. Moreover, this term corresponds to the element in Ud(−s)
whose reverse is lexicographically the largest.

This result implies monotonicity of the t-valuation of Sd(s) with respect to d,
using which we completely solve the vanishing of ζ(s) at negative integers (stated
as Theorem 2.10 later). See Section 2.1 for definition of “trivial zero.”

Theorem 1.2 At negative integers, ζ(s) of depth at least 2 only vanishes at trivial zeros.

Here is the outline of the paper. In Section 2, we study the behavior of Sd(s) at
negative s in detail and discuss how our main result implies Theorem 1.2. Section 3
gives the proof of Theorem 1.1.

2 Main result

In this section, we study the vanishing behavior of multizeta values in detail. We
continue to use the notations in the previous section. Our main object of study is
Sd(s), the building blocks of multizeta values. The reader will see that the vanishing
of ζ(s) is really a reflection of properties of Sd(s).

2.1 Trivial zeros

Let s < 0. We first take a closer look at when Sd(s) vanishes. Writing out the
coefficients of a in (1.1), we get

Sd(s) = ∑
θ i∈Fq

(td + θ1 td−1 + ⋯ + θd)−s

= ∑
θ i∈Fq

∑
m0+⋯+md=−s

m i≥0

( −s
m0 , . . . , md

) θm1
1 ⋯θmd

d tdm0+(d−1)m1+⋯+md−1

= (−1)d ∑
m0+⋯+md=−s

m0≥0, m i>0 q-even for i>0

( −s
m0 , . . . , md

) tdm0+(d−1)m1+⋯+md−1

= (−1)d ∑
⊕

d
i=0 m i=−s

m0≥0, m i>0 q-even for i>0

( −s
m0 , . . . , md

) tdm0+(d−1)m1+⋯+md−1 ,(2.1)

where ⊕d
i=0 m i denotes sum ∑d

i=0 m i with no carry over of digits base p. The third
equality comes from exchanging the two sum indices and the fact that ∑θ∈Fq θk = −1
if k is a positive multiple of q − 1 and 0 otherwise. The last equality follows from Lucas’
theorem.

For k > 0 and d ≥ 0, let

Ud(k) ∶= {(m0 , . . . , md) ∈ Nd+1 ∶ k = ⊕d
i=0 m i and m i > 0 is q-even for 1 ≤ i ≤ d}.

Let P(n) be the multiset of p-powers adding up to n with no carry over in base p.
More precisely, if n = ∑k

i=0 a i pi with 0 ≤ a i < p, P(n) ∶= {{pi}a i ∶ 0 ≤ i ≤ k}, where
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12 S. Shi

{m}k denotes the sequence m, . . . , m with m repeated k times. Then, the condition
k = ⊕d

i=0 m i is equivalent to

P(k) =
d
⊔
i=0

P(m i).(2.2)

Note that Ud(−s) is the set of sum indices in (2.1). Clearly, Sd(s) vanishes if
Ud(−s) = ∅. In [Car48], Carlitz claimed without proof that the converse also
holds. More precisely, he asserted that if Ud(−s) ≠ ∅, the term tdm0+(d−1)m1+⋯+md−1

with (m0 , . . . , md) lexicographically largest among sum indices attains the unique
maximal degree. Such (m0 , . . . , md) is called greedy. This claim was not proved until
50 years later. Diaz-Vargas [DV96] gave a proof for the case q = p, and a general proof
for any q is given by Sheats [She98].

Theorem 2.1 (Carlitz, Diaz-Vargas, Sheats) For s < 0, Sd(s) ≠ 0 if and only if
Ud(−s) ≠ ∅. Moreover, if Ud(−s) ≠ ∅, the summand in Sd(s) corresponding to the
greedy element achieves the unique maximal degree.

Böeckle pointed out that with some results in [She98], one gets a more straightfor-
ward criterion when Sd(s) vanishes.

Definition 2.2 For k ∈ Z+with base q expansion k = a0 + a1q + ⋯ + an qn , let l(k) =
∑ a i be the sum of base q digits of k. Recall that q = p f . Define

Lk ∶= min
i=0,. . . , f−1

{ l(kpi)
(q − 1)} .

We note that since k ≡ l(k) mod q − 1, Lk is an integer if and only if (q − 1)∣k, i.e., k
is q-even.

Proposition 2.3 [Böc13, Theorem 1.2(a)] For s negative, Sd(s) = 0 ⇔ d > L−s .

For reader’s convenience, we provide a proof of the result above. For d ≥ 0 and
k > 0, let

Vd(k) ∶= {(m0 , . . . , md) ∈ Ud(k) ∶ m0 > 0}.

The proposition follows from the following lemma of Sheats. We note that the
notations and expression of the lemma are slightly different from those in Sheats’
paper, but one can check that they are equivalent.

Lemma 2.4 [She98, Proposition 4.3(a)] Vd(k) = ∅ ⇔ d ≥ Lk .

Proof of Proposition 2.3 By Theorem 2.1, it is enough to show that Ud(k) = ∅ iff
d > Lk . We break it up into two cases.

If k is q-even, Ud(k) = Vd(k) ∪ {(0, m1 , . . . , md) ∣ (m1 , . . . , md) ∈ Vd−1(k)}.
Ud(k) = ∅ iff Vd(k) = Vd−1(k) = ∅, i.e., d − 1 ≥ Lk by Lemma 2.4. Since Lk is an
integer, d − 1 ≥ Lk ⇔ d > Lk .
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Vanishing of multizeta values over Fq[t] at negative integers 13

If k is q-odd, Ud(k) = Vd(k); thus, Ud(k) = ∅ iff d ≥ Lk by Lemma 2.4. As Lk is
not an integer in this case, d ≥ Lk ⇔ d > Lk . ∎

Note that in (1.2), the least d appearing in Sd(s i) is r − i. Thus, if r − i > L−s i , all
terms in the sum vanish and so does the multizeta value. With this observation, we
define

Definition 2.5 Let r > 1 and (s1 , . . . , sr) ∈ Zr
− such that ζ(s1 , . . . , sr) = 0. We call

(s1 , . . . , sr) a trivial zero of ζ if there exists some 1 ≤ i ≤ r − 1 such that r − i > L−s i .
Otherwise, (s1 , . . . , sr) is a nontrivial zero.

2.2 Existence of nontrivial zero

We now investigate nontrivial zeros of ζ(s) where s i < 0. The depth 1 case is com-
pletely understood by Goss [Gos79].

Theorem 2.6 (Goss, see [Tha04, Section 5.3]) For s negative, ζ(s) = 0 if and only if s
is q-even.

Note that multizeta values in this case reduce to Carlitz zeta values. The above
theorem shows that the behavior of zeros of Carlitz zeta at negative integers is
analogous to that of the trivial zeros of the classical Riemann zeta function. However,
unlike a direct implication from the functional equation of the Riemann zeta, the
vanishing of ζ(s), without any known functional equations in the function field case,
follows from cancellations among monomials.

The proof of the nonvanishing of ζ(s) at q-odd s [Tha04, Theorem 5.3.2] showed
that there is a unique term of least degree, 1, in the polynomial sum of ζ(s), which
could not be canceled. Similarly, the fact that multizeta values at positive integers
never vanish [Tha09, Theorem 4] follows from the strict monotonicity in d of the
∞-valuation of Sd(s). We use the same strategy to show that there are no nontrivial
zeros in higher depth case.

Definition 2.7 M = (M0 , . . . , Md) ∈ Ud(k) is called modest if (Md , Md−1 , . . . , M0)
is lexicographically the largest, i.e., Md ≥ md for all (m0 , . . . , md) ∈ Ud(k), Md−1 ≥
md−1 for those (m0 , . . . , md) with md = Md , and so on. Such element always exists
and is unique if Ud(k) ≠ ∅.

Our main result is the following theorem, which characterizes the term in Sd(s)
with least degree. Its proof is given in Section 3.

Theorem 2.8 Assume Sd(s) ≠ 0. The term corresponding to the modest element in
Ud(−s) attains the unique minimum degree in t among all summands in Sd(s).

Recall that for d ≤ L−s , elements in Ud(−s) and summands in (2.1) are in one-to-
one correspondence. Take (m0 , m1 , . . . , md) ∈ Ud(−s), then its corresponding term
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14 S. Shi

in Sd(s) has degree dm0 + (d − 1)m1 + ⋯ + md−1. Define νd(s) ∶= vt(Sd(s)), where
vt is the t-valuation. We have the following corollary.

Corollary 2.9 Fix s < 0, then

ν⌊L−s⌋(s) > ν⌊L−s⌋−1(s) > ⋯ > ν1(s) ≥ ν0(s).

Proof Since ν0(s) = vt(1) = 0 for all s, the last inequality is obvious. Assume 0 <
d ≤ L−s and let M = (M0 , . . . , Md) be the modest element in Ud(−s), then Theorem
2.8 implies νd(s) = dM0 + (d − 1)M1 + ⋯ + Md−1. Consider N = (M0 , . . . , Md−2 ,
Md−1 + Md), then N ∈ Ud−1(−s) and thus νd−1(s) ≤ (d − 1)M0 + (d − 2)M1 + ⋯ +
Md−2 ≤ νd(s), where the second inequality is equality iff d = 1 and Md = −s. ∎

With this result, we finish the discussion of the vanishing of multizeta values of
higher depth at negative integers.

Theorem 2.10 For s = (s1 , . . . , sr) with s i < 0 and r > 1, ζ(s) = 0 if and only if s is a
trivial zero.

Proof It is equivalent to show that ζ(s) ≠ 0 if s is not a trivial zero. In
this case, the sum ζ(s) = ∑d1>⋯>dr≥0 Sd1(s1)⋯Sdr (sr) is nonempty. In particular,
Sr−1(s1)⋯S0(sr) ≠ 0 and

vt(Sr−1(s1)⋯S0(sr)) =
r

∑
i=1

νr−i(s i).

For any other term Sd1(s1)⋯Sdr (sr) in the sum, d i ≥ r − i for all i and there exist some
j such that d j > r − j > 0; thus, by Corollary 2.9,

vt(Sd1(s1)⋯Sdr (sr)) =
r

∑
i=1

νd i (s i) > vt(Sr−1(s1)⋯S0(sr)).

By strict triangle inequality, vt(ζ(s)) = vt(Sr−1(s1)⋯S0(sr)) = ∑r
i=1 νr−i(s i). In par-

ticular, ζ(s) ≠ 0. ∎

Remark 2.11 We note that the same strategy fails in analyzing the vanishing of ζ(s)
at integers of mixed signs. For both place t and ∞, s being positive and negative give
opposite monotonicity of the valuation of Sd(s) in d. Hence, there is no unique term
with least valuation in general. For example, let q = 3, then

ζ(−8, 2) = S1(−8)S0(2) + S2(−8)S0(2) + S2(−8)S1(2)
= (2t6 + 2t4 + 2t2 + 2) + (t6 + t4 + t2) + (1) = 0

is a “nontrivial zero” in the sense of Definition 2.5. In the sum, S1(−8)S0(2), S2(−8)
S1(2) attain the least valuation at t and S1(−8)S0(2), S2(−8)S0(2) attain the least
valuation at ∞.
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3 Proof of Theorem 2.8

The proof of Theorem 2.8 is quite complicated and combinatorial. This is because the
two conditions on elements of Ud(−s) are with respect to p and q each while p and
q are different in general. Major difficulty of the proof arises from how to track these
two conditions simultaneously.

3.1 Special case

When q = p is a prime, the problem mentioned above disappears and the theorem can
be proved in a way similar to the proof of Theorem 2.1 for q = p case by Diaz-Vargas.
Another simple case, without restriction on q, is where s is q-even, which follows
directly from the result on greedy element. We first prove these two special cases.

Proof of Theorem 2.8 for special cases. Let k = −s and M = (M0 , . . . , Md) ∈
Ud(k) be the modest element. For m = (m0 , . . . , md) ∈ Ud(k), define

wt(m) ∶= dm0 + (d − 1)m1 +⋯+ md−1

to be its weight, which equals the degree of its corresponding term in Sd(s). For both
cases, we need to show M achieves the unique minimum weight.

(1) q = p is a prime: We show that given any nonmodest element m, one can always
adjust it to get another m’ of smaller weight. Let l > 0 be the largest index such that
M l > m l . Then, M i = m i for i > l by the choice of M. Recall that P(n) is the multiset
of p-powers represented by the base p digits of n. When q = p, n is q-even iff (q −
1)∣#P(n). We split the discussion into two cases.
(a) If #P(M l) ≤ #P(m l), then there exist some pe ∈ P(m l) and pe′ ∈ P(M l)/P(m l)

such that pe < pe′ . By (2.2), pe′ ∈ P(m l ′) for some l ′ < l . Let

m’ = (m0 , . . . , m l ′ − pe′ + pe , . . . , m l − pe + pe′ , . . . , md),

then it is easy to check that m’ ∈ Ud(k) and wt(m’) < wt(m).
(b) If #P(M l) > #P(m l), then #P(M l) − #P(m l) ≥ q − 1, since both M l and m l are

q-even. Note that∑d
i=0 #P(M i) = ∑d

i=0 #P(m i) = #P(k); thus, there exists l ′ < l
such that #P(m l ′) − #P(M l ′) ≥ q − 1. Write P(m l ′) = P1 ⊔ P2, where #P1 = q −
1, and this implies m l ′ = n1 ⊕ n2 with n1q-even. If l ′ > 0, then n2 > 0 and is also
q-even. Consider

m’ = (m0 , . . . , m l ′ − n1 , . . . , m l + n1 , . . . , md),

then m’ ∈ Ud(k) and wt(m’) < wt(m).
(2) s is q-even: Recall that

Vd(k) = {(m0 , . . . , md) ∈ Ud(k) ∶ m0 > 0}.

In this case, M ∈ Ud(k) ∖ Vd(k), since otherwise (0, M1 , . . . , Md + M0) is also con-
tained in Ud(k) whose reverse is lexicographically larger. Similar argument shows
that m ∈ Ud(k) ∖ Vd(k) if m is of minimum weight. Consider the bijective map

φ ∶ (0, m1 , . . . , md) ↦ (md , . . . , m1)

https://doi.org/10.4153/S0008439521000035 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000035


16 S. Shi

between Ud(k) ∖ Vd(k) and Vd−1(k). Note that k = ∑i m i ; thus, for m ∈ Ud(k) ∖
Vd(k),

wt(m) = (d − 1)m1 + ⋯ + md−1 = (d − 1)k − wt(φ(m)).

wt(m) being minimum indicates that φ(m) = (md , . . . , m1) achieves the largest
weight in Vd−1(k). By Theorem 2.1, φ(m) has to be the greedy element in Ud−1(k).
This implies that the reverse of m is lexicographically the largest in Ud(k) ∖ Vd(k);
hence, m = M. ∎

3.2 General case

Our proof for general case is inspired by Sheats’ proof [She98] of Theorem 2.1 on
greedy element. We prove by contradiction. Roughly speaking, assuming there exists
a tuple not modest in Ud(−s) gives a term of lowest degree in Sd(s), we construct
another term with smaller degree.

We fix a prime power q = p f . In this section, x̄ denotes a column vector of
length f, where x is either an English or Greek letter, with or without subscript.
If not mentioning explicitly, its entries are denoted as x i with 0 ≤ i < f , e.g., ū =
[u0 , u1 , . . . , u f−1]t . Note that the subscripts start from 0. The zero vector is denoted
as 0̄.

3.2.1 Setup and preliminaries

Before the proof, we change to a different notation for easy expression. A d-tuple
(X1 , . . . , Xd) ∈ Nd is said to be a composition of N if N = ∑d

i=1 X i . For d > 0 and
N ∈ Z+, let

Wd(N) = {(X1 , X2 , . . . , Xd) ∈ Nd ∶ (Xd , Xd−1 , . . . , X1) ∈ Ud−1(N)}

= {(X1 , X2 , . . . , Xd) ∈ Nd ∶ N =
d

⊕
i=1

X i , and X i > 0 is q-even for i < d}.

In this new setup, the modest element in Ud−1(N) corresponds to be the lexicograph-
ically largest composition in Wd(N), which we again call it modest.

Definition 3.1 Let X = (X1 , . . . , Xd) ∈ Wd(N). Define its weight, denoted as wt(X),
by

wt(X) = X1 + 2X2 + ⋯ + dXd .

Any composition X achieving the minimum weight in Wd(N) is called optimal.

One can check that Theorem 2.8 is equivalent to the following.

Theorem 3.2 For Wd(N) ≠ ∅, the modest composition is the only optimal composi-
tion.
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Remark 3.3 The theorem holds for d = 1 trivially, since W1(N) = {(N)} has only
one composition. For d = 2, wt(X) = 2N − X1 for any X ∈ W2(N) and hence the
modest composition is the only optimal element.

The following proposition consists of some observations on how to get new modest
or optimal compositions from old ones.

Proposition 3.4 Suppose Wd(N) ≠ ∅. X = (X1 , . . . , Xd) is the modest composition in
Wd(N). Then
(i) (X1 , X2 , . . . , Xd−1) is the modest composition in Wd−1(N − Xd);
(ii) (X2 , X3 , . . . , Xd) is the modest composition in Wd−1(N − X1);
(iii) for any n ≥ 0, (pn X1 , . . . , pn Xn) is the modest composition in Wd(pn N).
These three statements remain true when replacing “the modest composition” with “an
optimal composition”.

Proof (i) and (ii) are obvious from definition in each case. To show (iii), we observe
that all p-powers inP(pn N) are divisible by pn . Thus, for (Yi) ∈ Wd(pn N), pn ∣ Yi for
all i since P(Yi) ⊂ P(pn N). Moreover, (Yi) ↦ (p−nYi) gives a 1-to-1 correspondence
between compositions in Wd(pn N) and Wd(N). (iii) follows from this observation
easily in both cases. ∎

Given base p expansion n = ∑ j≥0 a j p j , we define �(n) ∈ N f to be the column
vector [μ0 , . . . , μ f−1]t , where

μ i = ∑
j≡i mod f

a j .

Let ψ̄0 ∶= [1, p, . . . , p f−1]t , then

⟨ψ̄0 , �(n)⟩ = μ0 + ⋯ + p f−1 μ f−1

is the sum of base q digits of N. In particular, n is q-even iff (q − 1) ∣ ⟨ψ̄0 , �(n)⟩. Then,
X ∈ Wd(N) if and only if
(1) �(N) = �(X1) + �(X2) + ⋯ + �(Xd),
(2) for 1 ≤ i ≤ (d − 1), (q − 1) ∣ ⟨ψ̄0 , �(X i)⟩ ≠ 0.
For a composition X = (X1 , . . . , Xd) of N, define �(X) to be the f × d matrix with
columns �(X1), . . . , �(Xd).

Example Let q = 9 and N = 131. In base 3, N = 112123. Thus, �(N) = [5, 2]t .

For any X ∈ W2(N), �(X) is one of the two matrices: [5 0
1 1] , [2 3

2 0]. (128, 3) =

(112023 , 103), (104, 27) = (102123 , 10003) ∈ W2(N) correspond to the first one, and
the rest correspond to the second one.

https://doi.org/10.4153/S0008439521000035 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000035


18 S. Shi

In the example above, we give a partition of compositions in Wd(N) with respect
to matrix representation. Given B ∈ Mat f×d(N), define

W B
d (N) ∶= {X ∈ Wd(N) ∶ �(X) = B}.

We call B a valid matrix of Wd(N) if W B
d (N) ≠ ∅. Let B1 , . . . , Bd be columns of B,

then B is valid if and only if
(1) �(N) = B1 + ⋯ + Bd ,
(2) for 1 ≤ i ≤ (d − 1), (q − 1) ∣ ⟨ψ̄0 , B i⟩ ≠ 0.
For n > 0, denote τ(n) the nonincreasing sequence of p-powers in P(n) and τk(n)
be its subsequence consisting of those pi with i ≡ k mod f for 0 ≤ k < f .

Example Take q = 9 and N = 131 = 112123. Then,

τ(N) = (34 , 33 , 32 , 32 , 31 , 30 , 30), τ0(N) = (34 , 32 , 32 , 30 , 30), τ1(N) = (33 , 31).

Given X ∈ Wd(N), τk(X i)’s give a partition of p-powers in τk(N) for each k. We
call X is τ-monotonic if the sequence τk(N) is the concatenation of the subsequences
τk(X1), τk(X2), . . . , τk(Xd) for all 0 ≤ k < f . Note that there is a unique τ-monotonic
composition in W B

d (N) for each valid B.

Lemma 3.5 Suppose B is a valid matrix of Wd(N), then the τ-monotonic com-
position with respect to B is lexicographically the largest and achieves the unique
minimum weight in W B

d (N). In particular, both modest and optimal compositions are
τ-monotonic.

Proof Take X = (X1 , . . . , Xd) ∈ W B
d (N) which is not τ-monotonic. Then, there

exist some k, i , j, m, n such that i < j, m < n, with pm ∈ τk(X i), pn ∈ τk(X j). Con-
sider the composition Y = (X1 , . . . , X i − pm + pn , . . . , X j − pn + pm , . . . , Xd). Then,
Y ∈ W B

d (N) since m ≡ n ≡ k mod f . Clearly, Y is lexicographically larger than X. Easy
computation shows that wt(Y) = wt(X) − ( j − i)(pn − pm) < wt(X). ∎

Define

J ∶= {�(n) ∶ n > 0 is q-even}.

Given B = [B1 , . . . , Bd] an f × d matrix with columns B i , the conditions for B being
valid for Wd(N) can be translated as
(1) �(N) = B1 + ⋯ + Bd ,
(2) B i ∈ J for 1 ≤ i ≤ (d − 1).
We follow Sheats’ discussion in [She98] to give a characterization of vectors in J. Let
ē0 , . . . , ē f−1 be the standard basis of R f , i.e., [ē0 , . . . , ē f−1] = I, the identity matrix.
Define matrix E = [E0 , E1 , . . . , E f−1] with columns

E i ∶= pē i−1 − ē i .

Here and from now on, subscripts which should range from 0 to f − 1 are evaluated
modulo f, e.g., ē−1 = ē f−1 and E0 = pē f−1 − ē0. Given vectors ū and v̄ = Eū, we have,
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for all i,

v i = pu i+1 − u i .

Let R = [ē1 , ē2 , . . . , ē f−1 , ē0] be the permutation matrix such that Rē i = ē i+1. Then,
R f = I and ⟨Rū, Rv̄⟩ = ⟨ū, v̄⟩ for any ū and v̄. Recall that ψ̄0 = [1, p, . . . , p f−1]t . Define

ψ̄ i ∶= R i ψ̄0 = [p f−i , . . . , p f−1 , 1, . . . , p f−1−i]t

for 1 ≤ i < f . Then,

⟨ψ̄ i , E j⟩ =
⎧⎪⎪⎨⎪⎪⎩

q − 1 if i = j
0 otherwise,

which implies

E−1 = (q − 1)−1[ψ̄0 , ψ̄1 , . . . , ψ̄ f−1]t .

Given two vectors ū and v̄, we denote ū ≥ v̄ if u i ≥ v i for all i, ū > v̄ if ū ≥ v̄ and u i > v i
for some i, and ū ≫ v̄ if u i > v i for all i.

Lemma 3.6 Let ū = Eā and v̄ = Eb̄, then
(i) ū > v̄ ⇒ ā ≫ b̄. In particular, if ū > 0̄, then ā ≫ 0̄.
(ii) Let 1̄ = [1, . . . , 1]t . If 0̄ < ū < (p − 1)1̄, then 0̄ ≪ ā ≪ 1̄.

Proof ā − b̄ = E−1(ū − v̄). Since all components of E−1 are positive, ū − v̄ > 0̄
implies ā − b̄ ≫ 0̄. This proves (i). (ii) is a direct application of (i) as [p − 1, . . . , p −
1]t = E[1, . . . , 1]t . ∎

Take a positive integer n. Let Eᾱ = �(n), then we have, for each i,

α i = (q − 1)−1⟨ψ̄0 , �(p f−i n)⟩,

since R�(n) = �(pn) and ⟨ψ̄ i , �(n)⟩ = ⟨R i ψ̄0 , �(n)⟩ = ⟨ψ̄0 , R f−i�(n)⟩. In particu-
lar,

ᾱ ∈ Z f ⇔ n is q-even.

The above discussion can be rephrased as following.

Proposition 3.7 [She98, Lemma 3.4] J = (EZ f ) ∩ (N f /{0̄}).

3.2.2 Criterion for Wd(N) ≠ ∅

For d > 0, define

Id ∶= {�(n) ∶ ∃ v̄1 , . . . , v̄d−1 ∈ J such that �(n) > v̄1 + ⋯ + v̄d−1},

Jd ∶= J ∩ (Id/Id+1).
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For d = 0, we set J0 = ∅. By definition, Jd consists of those �(n) such that n can be
written as a sum of d many, but not d + 1 many, positive q-even numbers without carry
over in base p. Then,

Wd(N) ≠ ∅ ⇔ �(N) ∈ Jd−1 ∪ Id .(3.1)

The next proposition by Sheats characterizes elements in Im and Jm .

Proposition 3.8 [She98, Proposition 4.3] For m ≥ 1,
(i) Im = {Ex̄ ∈ N f /{0̄} ∶ x̄ ∈ R f and min0≤i< f (x i) > m − 1},
(ii) Jm = {Eā ∈ N f /{0̄} ∶ ā ∈ R f and min0≤i< f (a i) = m}.

With (3.1), it implies the following result which is indeed equivalent to Proposition
2.3.

Corollary 3.9 Let �(N) = Eᾱ, then Wd(N) ≠ ∅ iff min0≤i< f (α i) ≥ d − 1.

3.2.3 Modest/optimal composition

The following results give estimation on components of the modest and optimal
compositions.

Proposition 3.10 Let X = (X1 , . . . , Xd) ∈ Wd(N) be modest or optimal. Then,
�(X i) ∈ J1 for 2 ≤ i ≤ d − 1, Xd = 0 if N is q-even, or �(Xd) ∈ I1/I2 if N is q-odd.

Proof We prove by contrapositive.
N is q-even: If Xd ≠ 0, then X is neither modest nor optimal from the discussion

in Section 3.1. If �(X i) = v̄1 + v̄2 for some 2 ≤ i ≤ d − 1 and vectors v̄1 , v̄2 ∈ J, define

Y ∶= (X1 + a1 , . . . , X i−1 , a2 , X i , . . . , Xd).

Since v̄ i ∈ J, both a i ’s are q-even. The sum of entries in Y has no carry over in base p.
So Y ∈ Wd(N). Moreover, Y is lexicographically larger than X and wt(Y) = wt(X) −
(i − 1)a1 < wt(X).

N is q-odd: Suppose �(Xd) = w̄1 + w̄2 with w̄1 ∈ J, w̄2 ∈ I1. We have Xd = b1 ⊕ b2
with �(b i) = w̄ i and b1q-even. Define Y ∶= (X1 + b1 , X2 , . . . , Xd−1 , b2). Then, similar
argument as above shows that Y ∈ Wd(N), Y is lexicographically larger than X, and
wt(Y) < wt(X). ∎

Take N ∈ Z+, let ū = �(N) and β̄ = E−1ū.

Lemma 3.11 Let v̄ = Eᾱ ∈ N f with 0̄ < v̄ < ū. Suppose min0≤i< f (⌊β i⌋ − ⌈α i⌉) = k for
some k ∈ N, then there exists some w̄ ∈ J with v̄ ≤ w̄ ≤ ū and ū − w̄ ∈ Jk ∪ Ik+1.

Proof To find such an w̄ is equivalent to find a γ̄ with w̄ = Eγ̄. Recall that if x̄ = Eā,
x i = pa i+1 − a i . By Propositions 3.7 and 3.8, we get the following conditions on γ̄:
(1) v i ≤ pγ i+1 − γ i ≤ u i ,
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(2) γ i ∈ Z and min0≤ j< f (β j − γ j) ≥ k.
To construct γ̄, take an l such that ⌊β l ⌋ − ⌈α l ⌉ = k. Let γ l = ⌈α l ⌉. For i = l − 1, l −
2, . . . , l − f + 1, define inductively

γ i = min(⌊β i⌋ − k, pγ i+1 − v i).

Condition (2) holds automatically by the construction of γ i . The construction also
implies v i ≤ pγ i+1 − γ i for i ≠ l . To prove it for i = l , we first show that γ i ≥ ⌈α i⌉ for
all i. By definition, γ l = ⌈α l ⌉. We prove the rest by backward induction. Suppose γ i+1 ≥
⌈α i+1⌉. If γ i = ⌊β i⌋ − k, then clearly γ i ≥ ⌈α i⌉ since ⌊β i⌋ − ⌈α i⌉ ≥ k; otherwise,

γ i = pγ i+1 − v i

= pγ i+1 − pα i+1 + α i ≥ α i .

Since γ i is an integer, we have γ i ≥ ⌈α i⌉. Now, we have v l ≤ pγ l+1 − γ l , since

pγ l+1 − v l = pγ l+1 − pα l+1 + α l ≥ ⌈α l ⌉ = γ i .

Next, we show pγ i+1 − γ i ≤ u i . For i = l ,

u l − (pγ l+1 − γ l) = pβ l+1 − β l − (pγ l+1 − γ l)
= p(β l+1 − γ l+1) − (β l − γ l)
= p(β l+1 − γ l+1) − (β l − ⌈α l ⌉)
> p(β l+1 − γ l+1) − k − 1 ≥ −1,

where the last inequality comes from that β l+1 − γ l+1 ≥ k and p ≥ 2. Since the left-hand
side is an integer, we have

u l − (pγ l+1 − γ l) ≥ 0.

Now, let i ≠ l . If γ i = pγ i+1 − v i , then pγ i+1 − γ i = v i ≤ u i ; otherwise, γ i = ⌊β i⌋ − k,
then a similar computation as in the i = l case shows pγ i+1 − γ i ≤ u i . ∎

Proposition 3.12 Take N with base p-expansion N = ∑n
i=0 a i pi , where an ≠ 0. Sup-

pose Wd(N) ≠ ∅. Let X = (X1 , . . . , Xd) ∈ Wd(N) be modest or optimal, then
(i) X1 ≥ an pn . In particular, X1 > N/2.
(ii) N ≤ wt(X) < 2N.
(iii) Wd(N − X1) = ∅ if d ≥ 2. In particular, by (3.1), �(N − X1) /∈ Id .

Proof We prove each case separately.
X modest: Let ū = �(N) and ᾱ = E−1ū. By Corollary 3.9, mini(⌊α i⌋) = m ≥ d − 1.

Let k = n mod f and β̄ = E−1(an ēk). Lemma 3.6 implies ⌈β i⌉ = 1 for each i. By Lemma
3.11, we can extend v̄ = an ēk to some w̄1 ∈ J with ū − w̄1 ∈ Jm−1 ∪ Im . In particular, we
can write ū − w̄1 as ū − w̄1 = w̄2 + ⋯ + w̄d−1 + w̄d , where w̄ i ∈ J for 2 ≤ i ≤ d − 1 and
w̄d ∈ Nd . Take B = [w̄1 , . . . , w̄d], then B is a valid matrix, i.e., W B

d (N) ≠ ∅. Let Y be
the τ-monotonic element in W B

d (N), then Y1 ≥ an pn since w̄1 ≥ an ēk . X is modest so
X1 ≥ Y1 ≥ an pn . This proves (i).

We prove (ii) by induction on d. For d = 1, X = (N) and wt(X) = N . Suppose (ii)
holds for d − 1. By Proposition 3.4 (ii), Y = (X2 , . . . , Xd) is modest in Wd−1(N − X1).
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By induction, N − X1 ≤ wt(Y) < 2(N − X1) < N . Thus, N ≤ wt(X) = N + wt(Y) <
2N .

Suppose (iii) fails. Take (X′1 , . . . , X′d) ∈ Wd(N − X1), then (X1 + X′1 , X′2 , . . . , X′d) ∈
Wd(N). But this contradicts that X is modest.

X optimal: (ii) holds automatically by the minimum weight property.
To prove (i), we first show that X1 ≥ pn . If N is q-even or d < 3, by Section 3.1 and

Remark 3.3, optimal is equivalent to modest, and thus (1) holds. We assume N is q-
odd and d ≥ 3. Then, X1 + X2 > pn , since otherwise X1 + X2 < pn < N/2 and wt(X) >
N + 2(N − X1 − X2) > 2N . For wt(X) being minimal, X1 ≥ X2 which implies X1 ≥
pn . Now, suppose X1 = ∑n

i=0 b i pi with 0 < bn < an , then N − X1 > pn . Note that
(X2 , . . . , Xd) is optimal in Wd−1(N − X1). Thus X2 ≥ pn and N − Xd > (bn + 1)pn .
But by Proposition 3.4 (i), (X1 , . . . , Xd−1) ∈ Wd−1(N − Xd) is optimal and thus mod-
est since N − Xd is q-even. In particular, X1 ≥ (bn + 1)pn . Contradiction.

At last, we show (iii) holds. If not, let (X′1 , . . . , X′d) ∈ Wd(N − X1) be optimal.
Then, X′1 > (N − X1)/2 by (i). (X′2 , . . . , X′d) being optimal in Wd−1(N − X1 − X′1),
wt(X′2 , . . . , X′d) < 2(N − X1 − X1′) < N − X1. Let Y = (X1 + X′1 , X′2 , . . . , X′d), then
Y ∈ Wd(N) and wt(Y) = N + wt(X′2 , . . . , X′d) < 2N − X1. However, wt(X) = N +
wt(X2 , . . . , Xd) ≥ 2N − X1. Contradiction. ∎

3.2.4 Constructing composition of smaller weight

Suppose Theorem 3.2 fails. Then, q = p f with f > 1. Take the least d and some N such
that there exist M = (M i), O = (O i) ∈ Wd(N) with M modest, O optimal, and M ≠
O. Then, N is q-odd, d ≥ 3, and M1 > O1 by Section 3.1, Remark 3.3, and Proposition
3.4 (ii), respectively. Let pa be the largest p-power in P(M1) ∖P(O1). By Proposition
3.4 (iii), we may assume a ≡ f − 1 mod f . Let

ū ∶= �(N), x̄ ∶= �(M1), ȳ ∶= �(O1),
η̄ ∶= E−1ū, ᾱ ∶= E−1 x̄ , β̄ ∶= E−1 ȳ.

By our construction, x f−1 > y f−1 since both M and O are τ-monotonic. Define

v̄ = [v i]t ∶= [min(x i , y i)]t , w̄ = [w i]t ∶= ȳ − v̄ .

Then, w f−1 = 0. Note that w̄ > 0̄, since otherwise x̄ > ȳ and x̄ − ȳ ∈ J, �(N − O1) =
(x̄ − ȳ) + �(M2) + ⋯ + �(Md) ∈ Id , contradicting Proposition 3.12 (iii). Let 0 ≤ k ≤
f − 2 be the least subscript such that wk > 0. We have the following result.

Lemma 3.13 (i) ⟨ψ̄ i , w̄⟩ < ⟨ψ̄ i , ē f−1⟩ for 0 ≤ i ≤ k.
(ii) ⌊η i⌋ − β i ≥ d − 2 for all i, and there exists k < l ≤ f − 1 such that ⌊η l ⌋ − β l = d −

2 and ⌊η i⌋ − β i ≥ d − 1 for l − f < i ≤ k, i.e., i = l + 1, l + 2, . . . , f − 1, 0, 1, . . . , k.

Proof We show (i) by contradiction. For each 0 ≤ i ≤ k, by definition of ψ̄ i ,

⟨ψ̄ i , ē f−1⟩ = p f−1−i

and ⟨ψ̄ i , w̄⟩ is a sum of p-powers less than p f−1−i since w j = 0 for −1 ≤ j < i. Suppose
⟨ψ̄ i , w̄⟩ ≥ ⟨ψ̄ i , ē f−1⟩ for some 0 ≤ i ≤ k. Then, there is a subset of p-powers in the sum
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⟨ψ̄ i , w̄⟩ whose terms add up to p f−1−i . In other words, there exists some w̄′ ≤ w̄ such
that

⟨ψ̄ i , w̄′⟩ = ⟨ψ̄ i , ē f−1⟩.(3.2)

Another observation is that w̄ represents those p-powers pb in P(O1) ∖P(M1). In
particular, b < a for each b since O1 < M1. w̄′ ≤ w̄ represents a subset of such p-
powers. Let M be the sum of p-powers represented by w̄′, then M < pa and �(M) =
w̄′. Note that �(pa) = ē f−1, then (3.2) implies

M ≡ pa mod q − 1.

By the choice of pa , we can find some j > 1 such that pa ∈ P(O j). Consider
composition

X = (O1 − M + pa , . . . , O j − pa + M , . . . , Od),

then X ∈ Wd(N) and wt(X) < wt(O). Contradiction.
To prove (ii), we note that E(η̄ − β̄) = �(N − O1) = �(O2) + ⋯ + �(Od) ∈ Id−1.

Hence, by Proposition 3.8 (i), η i − β i > d − 2. Thus,

⌊η i⌋ − β i ≥ d − 2,

for all i. On the other hand, �(N − O1) /∈ Id implies mini(⌊η i⌋ − β i) = d − 2. Let l be
the largest subscript such that ⌊η l ⌋ − β l = d − 2. Then, for l < i < f ,

⌊η i⌋ − β i ≥ d − 1.

To finish the proof, we show ⌊η i⌋ − β i ≥ d − 1 for 0 ≤ i ≤ k. By construction, we have

x̄ = v̄ + w̄1 , ȳ = v̄ + w̄ ,

where w̄1 ≥ ē f−1. For 0 ≤ i ≤ k,

β i = (q − 1)−1⟨ψ̄ i , ȳ⟩
= (q − 1)−1(⟨ψ̄ i , v̄⟩ + ⟨ψ̄ i , w̄⟩)

(by (i)) < (q − 1)−1(⟨ψ̄ i , v̄⟩ + ⟨ψ̄ i , ē f−1⟩)
≤ (q − 1)−1(⟨ψ̄ i , v̄⟩ + ⟨ψ̄ i , w̄1⟩)
= (q − 1)−1⟨ψ̄ i , x̄⟩ = α i .

Note that E(η̄ − ᾱ) = �(N − M1) ∈ Id−1, then by Proposition 3.8 (i), we have
⌊η i⌋ − α i > d − 2 for all 0 ≤ i < f . For 0 ≤ i ≤ k, β i < α i by the above calculation,
and thus ⌊η i⌋ − β i ≥ d − 1. ∎

Define, for 1 ≤ j ≤ d,

ū j = [u0, j , . . . , u f−1, j]t ∶=
d
∑
s= j

�(Os), θ̄ j = [θ0, j , . . . , θ f−1, j]t ∶= E−1ū j .

Note that ū1 = ū and θ̄1 = η̄. By Lemma 3.13 (ii), we have

⌊θ l ,2⌋ = d − 2, ⌊θ i ,2⌋ ≥ d − 1 for l − f < i ≤ k.(3.3)
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The following construction uses θ̄ j to get a new composition Z ∈ Wd(N) whose
weight is less than that of O. Let ϕ̄1 = [ϕ i ,1]t ∶= θ̄1. Define ϕ̄2 = [ϕ i ,2]t inductively as
following.

ϕ i ,2 =
⎧⎪⎪⎨⎪⎪⎩

θ i ,2 for k < i ≤ l
min(θ i ,2 − 1, pϕ i+1,2) i = k, k − 1, . . . , 0, f − 1, f − 2, . . . , l + 1.

For j = 3, . . . , d, define ϕ̄ j = [ϕ i , j]t recursively as

ϕ i , j =
⎧⎪⎪⎨⎪⎪⎩

θ i , j for k < i ≤ l
min(ϕ i , j−1 − 1, pϕ i+1, j) i = k, k − 1, . . . , 0, f − 1, f − 2, . . . , l + 1.

Proposition 3.14 For 1 ≤ j ≤ d, let

z̄ j = [z0, j , . . . , z f−1, j]t ∶= Eϕ̄ j .

Then
(i) ϕ̄ j − ϕ̄ j+1 ∈ Z f

+ for 1 ≤ j ≤ d − 1.
(ii) z̄ j ∈ Z f for all j.
(iii) min0≤i≤ f−1(⌊ϕ i , j⌋) = ⌊ϕ l , j⌋ = d − j for 2 ≤ j ≤ d.
(iv) zk ,2 = uk ,2 + 1 ≤ uk .
(v) 0 ≤ z l ,2 ≤ u l ,2 − p.
(vi) 0 ≤ z i ,2 ≤ max(u i ,2 − (p − 1), 0) for l − f < i < k.
(vii) z i , j = u i , j for k < i < l and 2 ≤ j ≤ d.
(viii) 0 ≤ z i , j ≤ max(z i , j−1 − (p − 1), 0) for l − f ≤ i ≤ k and 3 ≤ j ≤ d.

Proof (i): By construction, ϕ i , j − ϕ i , j+1 > 0 for all i , j. Hence, it is enough to show
(a) θ̄ j − θ̄ j+1 ∈ Z f for 1 ≤ j ≤ d − 1;
(b) {ϕ i , j} = {θ i , j} for all i , j, where {x} is the fractional part of x.
We note that for 1 ≤ j ≤ d − 1,

E(θ̄ j − θ̄ j+1) = �(O j) ∈ J.

This implies (a) by Proposition 3.7. (a) says {θ i , j} = {θ i , j+1} for all i and j. Also
p{θ i+1, j} − {θ i , j} ∈ Z since pθ i+1, j − θ i , j = u i , j ∈ N. With these two properties in
mind, starting with the initial case {ϕ i ,1} = {θ i ,1} since ϕ̄1 = θ̄1, following the induc-
tive construction of ϕ i , j , one can check that (b) holds.

(ii): Since ϕ̄1 = η̄, z̄1 = Eη̄ = ū ∈ Z f . For j > 1,

z̄ j = Eϕ̄1 −
j−1

∑
s=1

E(ϕ̄s − ϕ̄s+1).

By (i), ϕ̄s − ϕ̄s+1 ∈ Z f for each s; hence, z̄ j ∈ Z f .
(iii): We first show that ⌊ϕ i , j⌋ ≥ d − j for 2 ≤ j ≤ d and k < i ≤ l . This is the same

as showing

⌊θ i , j⌋ ≥ d − j
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for 2 ≤ j ≤ d, since ϕ l , j = θ i , j by construction. Note that for each j, Eθ̄ j =
∑d

s= j �(O j) ∈ Id− j+1. Thus, the statement follows from Proposition 3.8.
Next, we prove ⌊ϕ l , j⌋ = d − j for each j. The j = 2 case is given by (3.3). For 3 ≤ j ≤

d, θ̄2 − θ̄ j = ∑ j−1
s=2 E−1�(Os). By Propositions 3.8 and 3.10, θ l ,2 − θ l , j ≥ j − 2, which

implies ⌊θ l , j⌋ ≤ ⌊θ l ,2⌋ − ( j − 2) = d − j. Thus, the statement follows since ⌊θ l , j⌋ ≥ d −
j.

Last, we show ⌊ϕ i , j⌋ ≥ d − j for l − f < i ≤ k by induction on j. For j = 2, we have

⌊θ i ,2 − 1⌋ ≥ d − 2

for l − f < i ≤ k by (3.3). Taking i = k, since ⌊pϕk+1,2⌋ = ⌊pθk+1,2⌋ ≥ d − 2, we get

⌊ϕk ,2⌋ = min(⌊θk ,2 − 1⌋, ⌊pϕk+1,2⌋) ≥ d − 2.

Note that

⌊ϕ i+1,2⌋ ≥ d − 2 ⇒ ⌊pϕ i+1,2⌋ ≥ d − 2
⇒ ⌊ϕ i ,2⌋ = min(⌊θ i ,2 − 1⌋, ⌊pϕ i+1,2⌋) ≥ d − 2.

Hence, a backward induction on i starting from k implies that for k ≥ i > l − f ,

⌊ϕ i ,2⌋ ≥ d − 2.

Suppose ⌊ϕ i , j−1⌋ ≥ d − j + 1 for l − f < i ≤ k. Then, ⌊ϕk , j−1 − 1⌋ ≥ d − j and ⌊pϕk+1, j⌋ ≥
d − j, since ⌊ϕk+1, j⌋ ≥ d − j by previous statement. This implies ⌊ϕk , j⌋ = min(⌊ϕk , j−1 −
1⌋, ⌊pϕk+1, j⌋) ≥ d − j. Similarly, we have

⌊ϕ i+1, j⌋ ≥ d − j ⇒ ⌊pϕ i+1, j⌋ ≥ d − j
⇒ ⌊ϕ i , j⌋ = min(⌊ϕ i , j−1 − 1⌋, ⌊pϕ i+1, j⌋) ≥ d − j.

Again, a backward induction on i shows that ⌊ϕ i , j⌋ ≥ d − j for k ≥ i > l − f .
(iv): Since

pϕk+1,2 − (θk ,2 − 1) = pθk+1,2 − θk ,2 + 1 = uk ,2 + 1 > 0,

ϕk ,2 = θk ,2 − 1 and zk ,2 = uk ,2 + 1. By construction,

uk ,2 = uk − yk ≤ uk − wk ≤ uk − 1,

so uk ,2 + 1 ≤ uk .
(v): The second inequality is given by

z l ,2 = pϕ l+1,2 − ϕ l ,2 ≤ p(θ l+1,2 − 1) − θ l ,2 = u l ,2 − p.

To show z l ,2 ≥ 0, we have min0≤i≤ f−1(⌊ϕ i ,2⌋) = ⌊ϕ l ,2⌋ = d − 2 by (iii). This implies

z l ,2 = pϕ l+1,2 − ϕ l ,2 ≥ p(d − 2) − (d − 2) − {ϕ l ,2} ≥ 0.

(vi): For l − f < i < k, if ϕ i ,2 = pϕ i+1,2, z i ,2 = pϕ i+1,2 − ϕ i ,2 = 0; otherwise, ϕ i ,2 =
θ i ,2 − 1 and z i ,2 = pϕ i+1,2 − (θ i ,2 − 1) ≤ p(θ i+1,2 − 1) − (θ i ,2 − 1) = u i ,2 − (p − 1).

(vii): This follows directly from the construction of the ϕ̄ j ’s.
(viii): We break up the proof into three cases.
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For l − f < i < k, we only need to check for the case where ϕ i , j = ϕ i , j−1 − 1, since
otherwise z i , j = 0. In this case, ϕ i , j − 1 ≤ pϕ i+1, j and

0 ≤ z i , j = pϕ i+1, j − (ϕ i , j−1 − 1) ≤ p(ϕ i+1, j−1 − 1) − (ϕ i , j−1 − 1) = z i , j−1 − (p − 1).

For i = k, again, we may assume ϕk , j = ϕk , j−1 − 1, then

0 ≤ zk , j = pθk+1, j − (ϕk , j−1 − 1)
≤ p(θk+1, j−1 − 1) − (ϕk , j−1 − 1) = zk , j−1 − (p − 1),

where the second inequality follows from the fact that θ̄ j−1 − θ̄ j = E−1�(O j−1) ≥ 1 by
Propositions 3.8 and 3.10.

For i = l , by (iii), we have

z l , j = pϕ l+1, j − ϕ l , j ≥ p(d − j) − (d − j) − {ϕ l , j} ≥ 0.

Finally, z l , j = pϕ l+1, j − θ l , j ≤ p(ϕ l+1, j−1 − 1) − (θ l , j−1 − 1) = z l , j−1 − (p − 1). ∎

Proposition 3.14 implies that the matrix

B = [z̄1 − z̄2 , . . . , z̄d−1 − z̄d , z̄d]

is a valid matrix of Wd(N). Let Z = (Z1 , . . . , Zd) be the τ-monotonic element in
W B

d (N). We show that wt(Z) < wt(O) and hence get a contradiction.

3.2.5 Estimation on wt(Z)

For 2 ≤ j ≤ d, define

Z′j ∶= Z j + Z j+1 + ⋯ + Zd ,
O′j ∶= O j + O j+1 +⋯+ Od .

Then, �(Z′j) = z̄ j and �(O′j) = ū j . And weights of Z and O can be expressed as

wt(Z) = N + Z′2 + ⋯ + Z′d ,
wt(O) = N + O′2 + ⋯ + O′d .

To describe these Z′j , O′j explicitly, for each 0 ≤ i ≤ f − 1, denote

τ i(N) = (τ i ,u i , τ i ,u i−1 , . . . , τ i ,1).

We recall that τ i(N) is defined as the subsequence of the nonincreasing sequence of
p-powers in P(n), where the exponents of powers in it are congruent to i modulo f.

Let τ i ,0 = 0. Then, by τ-monotonicity, we have

Z′j =
f−1

∑
i=0

z i , j

∑
s=0

τ i ,s , O′j =
f−1

∑
i=0

u i , j

∑
s=0

τ i ,s .

By Proposition 3.14 (vii),

O′j − Z′j = ∑
i∈I

(
u i , j

∑
s=0

τ i ,s −
z i , j

∑
s=0

τ i ,s) ,
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where

I = {l , . . . , f − 1, 0, . . . , k}.

For j = 2 and i ∈ I, we have the following:
(1) By Proposition 3.14 (iv–vi), zk ,2 = uk ,2 + 1 and for i ∈ I/{k}, z i ,2 ≤ u i ,2, where

“=” holds iff z i ,2 = u i ,2 = 0.
(2) τ f−1,u f−1,2 = pa since it is the largest p-power not in P(O1) whose exponent is

f − 1 mod n. In particular, u f−1,2 > 0; hence, z f−1,2 < u f−1,2 by (1).
(3) Let τk ,zk ,2 = pb , then zk ,2 = uk ,2 + 1 implies that pb is the last p-power in τk(O1).

By our choice of k, pb ∈ P(O1) ∖P(M1). In particular, pb < pa .
With these observations, we have

O′2 − Z′2 ≥ τ f−1,u f−1,2 − τk ,zk ,2 + ∑
i∈I/{k , f−1}

τ i ,z i ,2 = pa − pb + ∑
i∈I/{k , f−1}

τ i ,z i ,2 .

Thus,

wt(O) − wt(Z) =
d
∑
j=2

O′j − Z′j ≥ pa − pb + ∑
i∈I/{k , f−1}

τ i ,z i ,2 +
d
∑
j=3

O′j − Z′j .(3.4)

The next lemma gives a lower bound for ∑d
j=3 O′j − Z′j .

Lemma 3.15 Let I = {l , . . . , f − 1, 0, . . . , k}, then
d
∑
j=3

O′j − Z′j > −∑
i∈I

τ i ,z i ,2 .

Proof We note that τk ,zk ,2 > 0 since zk ,2 > 0 by Proposition 3.14 (iv). The statement
is trivial if z i , j = 0 for all i ∈ I and 3 ≤ j ≤ d. Assuming they are not all vanishing, the
statement follows from the following calculation:

d
∑
j=3

O′j − Z′j =
d
∑
j=3

∑
i∈I

(
u i , j

∑
s=0

τ i ,s −
z i , j

∑
s=0

τ i ,s)

> −∑
i∈I

d
∑
j=3

z i , j

∑
s=0

τ i ,s

> −p ∑
i∈I

d
∑
j=3

τ i ,z i , j

> −p2/q ∑
i∈I

τ i ,z i ,2

≥ −∑
i∈I

τ i ,z i ,2 .

The first inequality is trivial. The last one follows from the assumption f ≥ 2. For the
second inequality, we note that each p-power appearing in the sum ∑z i , j

s=0 τ i ,s repeats
at most p − 1 times and the largest term is τ i ,z i , j , which indicates ∑z i , j

s=0 τ i ,s < pτ i ,z i , j .
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By a similar argument and Proposition 3.14 (viii), for all i ∈ I and 3 ≤ j ≤ d, we have
τ i ,z i , j ≤ q−1τ i ,z i , j−1 ; thus,

d
∑
j=3

τ i ,z i , j ≤ q−1
d−1
∑
j=2

τ i ,z i , j <
p
q

τ i ,z i ,2 .

This gives the third inequality. ∎

Now, we are ready to claim the contradiction, which finishes the proof of
Theorem 3.2.

Proposition 3.16 wt(Z) < wt(O).

Proof We first show τ f−1,z f−1,2 < pa . Assume z f−1,2 > 0 since otherwise τ f−1,z f−1,2 =
0. Then, τ f−1,z f−1,2 ≤ q−1τ f−1,u f−1,2 because z f−1,2 ≤ u f−1,2 − (p − 1) by Proposition 3.14.
Note that τ f−1,u f−1,2 = pa as we mentioned earlier, and thus τ f−1,z f−1,2 < pa .

Putting together (3.4) and Lemma 3.15, we have

wt(O) − wt(Z) > pa − 2pb − τ f−1,z f−1,2 .

Here pb and τ f−1,z f−1,2 are p-powers less than pa , and they are distinct since their
exponents fall into different residue classes mod f. We break up the proof into three
cases.

(1) p ≥ 3: wt(O) − wt(Z) > 0 since 2pb + τ f−1,z f−1,2 < pa .
(2) p = 2 and b + 1 < a: 2pb + τ f−1,z f−1,2 = pb+1 + τ f−1,z f−1,2 ≤ pa ; thus, wt(O) −

wt(Z) > 0.
(3) p = 2 and b + 1 = a: In this case, we have k + 1 = l = f − 1 and I = {0, . . . , f − 1}.

By Proposition 3.14 (v), u f−1,2 − z f−1,2 ≥ 2. Hence,

O′2 − Z′2 = (
u f−1,2

∑
s=0

τ i ,s −
z f−1,2

∑
s=0

τ i ,s) +
k
∑
i=0

(
u i ,2

∑
s=0

τ i ,s −
z i ,2

∑
s=0

τ i ,s)

≥ pa + τ f−1,1+z f−1,2 − pb +
k−1
∑
i=0

τ i ,z i ,2 ,

and by Lemma 3.15,

wt(O) − wt(Z) =
d
∑
j=2

O′j − Z′j

> pa + τ f−1,1+z f−1,2 − pb +
k−1
∑
i=0

τ i ,z i ,2 −∑
i∈I

τ i ,z i ,2

= pa + τ f−1,1+z f−1,2 − pb − pb − τ f−1,z f−1,2

= τ f−1,1+z f−1,2 − τ f−1,z f−1,2 ≥ 0. ∎
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