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ON D-KKM THEOREM A N D ITS APPLICATIONS

H.K. PATHAK AND M.S. KHAN

In this paper, we introduce a new class of set-valued mappings in a non-convex set-
ting called D-KKM mappings and prove a general D-KKM theorem. This extends
and improves the KKM theorem for several families of set-valued mappings, such
as M{X,Y), Kc(X,Y), VC(X,Y), AC(X,Y) and Hc(X,Y). In the sequel, we
apply our theorem to get some existence results for maximal elements, generalised
variational inequalities, and price equilibria.

1. INTRODUCTION

The celebrated Kanaster—Kuratoski—Mazurkiewicz Theorem [6] (KKM Theo-
rem) and Fan's Lemma [4] are the fundamental works on which the whole KKM theory
of nonlinear analysis rests. In the last two decades tremendous progress has been made
in the theory and applicatons of the KKM Theorem and Fan's Lemma (see, for instance,
[7, 8, 10, 11, 12]).

Let E be a topological vector space and X be a convex subset of E. A set valued
mapping T : X -» 2E is called a KKM mapping if for each finite subset {x\,xz,... ,xn)
of X,

CO{X1, X2, . . . , I n }

It is well known (refer to [6, 10]) that if T is a KKM mapping with closed values, then
the family {Tx : x 6 X} has the finite intersection property.

There is an interesting generalisaton of the above results (see, for instance [5,
6, 8, 9, 10]) to the following.

Let X be a convex space, Y a topological space, and let S, T : X —> 1Y be two
set-valued mappings such that for each finite subset {x\,X2, • • • ,xn} of X,

n

T(co{xi,x2, • • • ,£„}) C ( J Sxi (KKM property).
»=i

Then the family {Sx : x € X} has the finite intersection property under some conditions
on T.

Received 16th April, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 $A2.00+0.00.

67

https://doi.org/10.1017/S0004972700033529 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033529


68 H.K. Pathak and M.S. Khan [2]

In this paper, motivated by the above results, we introduce a new family of set
valued mappings called D-KKM mappings and prove a general D-KKM Theorem. As
applications of this theorem we obtain some results concerning the existence of maximal
elements, generalised variational inequalities, and price equilibrium.

2. PRELIMINARIES:

A multifunction (or set-valued mapping) F : X -t 2Y is a function from a set X

into the set 2Y of nonempty subsets of a set Y.

For topological spaces X and Y, a multifunction F : X —> 2Y is said to be upper
semicontinuous if for each closed subset B of Y, {x e X : Fx n B ^ <t>} is closed, F
is closed if F is closed in X x Y, and compact if the range F(X) is contained in a
compact subset of Y.

Recall that a nonempty topological space is acyclic if all of its reduced Cech ho-
mology groups over rationals vanish.

Let X and Y be two sets and D a non-empty subset of X and denote 2Y = {B
C Y : B 7̂  </>}, and let T : X —»• 2Y be a set-valued mapping. In the sequel, we shall
use the following notations:

(i) TA= (J Tx for Z CX;

(ii) Tply = {xe D :ye Tx}; and Tfry = {x € D : y & Tx} for each y e Y.

Let X be a set (in a vector space E) and D a nonempty subset of X, and let (D)
denote the set of nonempty finite subsets of D. Then (X, D) is called a convex space if
convex hulls of any A € (£>) is contained in D and X has a topology that induces the
Euclidean topology on co A, where co denotes the convex hull. Such a convex hull will
be called a polytope of (X, D). Let kc(E) denote the set of nonempty compact convex
subsets of E.

Let T be the class of set-valued mappings. Denote

3{X, Y) = {T : X -> 2Y | T G 3} and

Jc = {r n ,T n _ 1 > . . . ,Ti \Ti€3, / = l , 2 , . . . , n for some n},

that is, the set of finite composites of mappings in ZJ.

For topological spaces X and Y, we define

C(X, Y) = {s : X —¥ Y | s is a single-valued continuous function};

K(X,Y) = {T : X -> 2Y | T is a Kakutani map; that is Y is a convex

space and T is upper semicontinuous with Tx € kc(Y) for x € X};

V(X, Y) = {T : X -+ 2Y \ T is an acyclic map; that is, T is upper semi-

continuous with compact acyclic values };
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A(X, Y) = {T : X —¥ 2Y \ T is a upper semicontinuous and approachable
with compact values} (see [1]); and

M(X, Y) = {T : X -> 2Y \ T is an Aronszajn map with Rs values}.

A subset A of (X, D) is said to be D- convex if, for any N g (D), N C A implies
co N C A. If X = D, then X = (X, X) becomes a convex space in the sense of
Lassonde [5].

The following abstract class of set-valued mappings was introduced by Park [8].

A class of il of maps is denned by the following properties:

(i) i l contains the class C of (single-valued) continuous functions;
(ii) each F £ l ie is upper semicontinuous and compact-valued; and

(iii) for any polytope P, F eUc(P,P) has a fixed point.

Examples of it are C, the Kakutani maps K (with convex values), the Aronszajn
maps M (with Rs values, Rs sets {X = nX, : Xi+i C Xi, Xi € AR compact, i € N}),
the acyclic maps V (with acyclic values), the O'NeiD maps N (with values consisting
of one or m acyclic components, where m is fixed), the approachable maps A in a
topological vector space admissible maps in the sense of Gorniewicz, permissible maps
of Dzedzej, and many others.

REMARK 2.1. For a convex space (X, D), X itself is not necessarily convex. To this
end, we observe the following:

EXAMPLE 2.1. Let X be any space containing an n-simplex An as a subspace and D

the set of vertices of A n . Then (X, D) is a convex space. Note than X may not be
convex, but D -convex.

For a convex subset X of a linear space E and a topological space Y, let 5 ,
T : X —> 2Y be two set-valued mappings. If for each finite subset A of X, we have
T(co A) C SA, then 5 is called generalised KKM mapping with respect to T.

REMARK 2.2. The notion of generalised KKM mapping was introduced by Park [6]
and followed by others (see, also Chang and Yen [3]).

Let (X, D) be a convex space and Y a topological space. Let S, T : X -» 2 y

be two set valued mappings. If for each A 6 (D), we have T(co A) C 5^4, then S is
called a To -KKM mapping with respect to T. Let 5 be a Tp -KKM mapping and the
family {Sx : x € D} has the finite intersection properly, where Sx denotes the closure
of Sx. Then we say T has the D-KKM property. Denote

D-KKM(X, Y) = {T : X ->• 2Y \ T has D-KKM property}.

When X = D, a convex subset of a linear space, the set-valued maping 5 is called
a generalised KKM, with respect to T , and T is said to have the KKM property. In
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this case, we denote

KKM(AT, Y) = {T : X -> 2Y | T has KKM property}.

R E M A R K S 2.3. We remark that:

1. The notion of KKM property was introduced by Chang and Yen [3].
2. Our notion of D-KKM mapping is more general than the notion of gen-

eralised KKM mapping in the sense that we do not require A" to be a
convex subset of a linear space.

3. The following example shows that the D-KKM property is weaker than
the KKM property.

E X A M P L E 2.2. Let D e {[0,1/2), (1/2,1]}, X = [0,1] c i i , the set of reals Y = [0,1],
where both R and Y are endowed with Euclidean topology and let 5 , T : X -* 2Y be
defined as follows:

OX = ± X = \ ^ \js —, j. f JU = —,

then

(i) S and T are closed (compact) for each x € X;
(ii) T is compact (hence upper semicontinuous);
(iii) (X, D) is a convex space; and
(iv) T(co^) C SA for each A <Z (D).

However, the family (5a; : x G X} has no finite intersection property and so T 0 KKM.
On the other hand, the family {Sx : x £ D} has finite intersection property. Hence
T € D-KKM.

Let X and Y be two topological spaces. A subset B of Y is said to be compactly
closed if for any compact subset K of Y, BC\K is closed in K.

2. MAIN RESULTS

We first, present the following proposition which characterises To-KKM mappings.

PROPOSITION 3 . 1 . Let (X,D) be a convex space, Y a set, and let S : X
—¥ 2Y, T : X —¥ 2Y be two set-valued mappings. Then the following conditions are
equivalent:

(i) S is a To -KKM mapping.
(ii) co S*DY C !£Y for each y € Y.

(iii) The mapping co TS* has no Exed point in Y.
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P R O O F : (i)-^(ii): Suppose 5 is a Tp-KKM mapping with respect to T. We
now suppose that there exists y € Y such that coS^j/ <£ T^y. Then there exists
a { x i , x 2 ) . . . ,xn} e (D) C Spy and x € co{xi ,x 2 , . . . ,xn} such that x g T^y. This

n
implies that y g |J SXJ and y eTx. Hence

N

T(co{xux2,... ,xn}) <£ [b]\JSxu

t = i

which contradicts the assumption that 5 is a To-KKM mapping.
Conversely, suppose that co S^y C T^y for each y e Y. Then we show that 5 is

a TD -KKM mapping. In doing so, we adopt contrapositive approach. So, let there be a
set A = {xi,x2, • • • ,xn} € (£>) such that T(coA) (f. SA. Then there exists a x 6 coA

n
and y € Tx such that y g \J Sxi, that is, x* € S*DY for each i — 1,2,... , n and

hence x € coS*Dy. But y € Tx, it folows that x £ T^y which implies coS*Dy <£ T^y.

This completes the proof.

( i i i )o(i) : Suppose that y e coTS'y for some y GY, then there exist a finite set
{xi, x 2 , . . . , xn} C £> and a finite set {t/i, y2, • • • ,yn) QY with Xj € S*y and y< G Txt,

n r»

/ = 1,2,... , n such that y = ^Z *̂J/» > where 0 < Ai < 1 and ^Z »̂ = 1 which implies
i=i n t=i

that y € T(co(xi,x2,... ,xn)) and y g (J 5XJ. Hence 5 is not TD-KKM.
i=i

Conversely, suppose that 5 is not a To-KKM mapping, then there exist {xi,x2,
m

•••,xm} C D and z € T(co{xi ,x 2 , . . . ,x m }) such that z & (J SXJ . Since z
m m j = l

<£ U SXJ, it follows that x € \JiY\Sxj). This implies x, e S*z for each
i=i >=i

j = 1,2,... ,m and Txj C T5*z. Hence co( (J TxA C coTS*z, and so z € coT5*2:.
vi=i y

 n

This completes the proof. U
In our next proposition, we state some properties of the To -KKM family.

PROPOSITION 3.2: Let (X, D) be a convex space, and let Y, Z be two topological
spaces. Then

(i) T e D-KKM(X, Y) if and only if T\A e D-KKM(AF) for each polytope
A of (X,D),

(ii) if T e D-KKM(X, Y) and / € C(F, Z), then fT 6 D-KKM(X, Z); and
(iii) if Y is a normal space, A a polytope of (X, D), and if T : A -> 2y is a

set-valued mapping such that for each / 6 C(Y, A), fT has a fixed point
in A then T € £>-KKM(r, A). g
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P R O O F : (i) is obvious. To prove (ii), let 5 : X -» 2Z be a fTD-KKM mapping
such that Sx is closed for each x € D. Then, for a set {xi, x 2 , . . . , xn} 6 (D), since 5
is a D-KKM mapping with respect to fT, we have

n

/T(co{xi,x2)... ,xn}) C \JSxu
«=i

which implies that

r(co{a:i, x2,... , xn}) C Z1 m SxA = (J /25ii.

Therefore, / - 1 5 is a T D - K K M mapping. By hypothesis, T € D-KKM(X, Y) and
hence the family {f~1Sx : x € D} has finite intersection property which im-
plis that { ( /~ 1 5x) : x € D} has finite intersection property. This shows that
fT € D-KKM(X, Z) and we complete the proof of (ii).

To prove (iii), let S : A —> 2Y be a Tjr>-KKM mapping such that Sx is closed
for each x € A. Suppose, if possible, that the family {Sx : x G A} has no finite
intersection property, then the exists a finite subset {x i ,x 2 , . . . , x n } of A such that

U Sxi = 0, and so f] ( ^ V ^ ) = Y.
i = l t = l

Let {aj}"= 1 be a partition of unity subordinated to {F\5x i}" = 1 such that each
cti has its support in some Y\Sxi(i = 1,2,... , n ) , and let A' = co{xi,X2,... , x n } .
Define the mapping / : Y -> A' by

n

f(y) = Ylai(y)xi> for e a c h ^ e y-

Then / € C(Y, A). Hence, by our assumption, there exists x 6 A such that x
n

€ / T x ; that is, there exists f € Tx such that x = /(£) J3 cti{Oxi- Suppose /(^) = {i

€ {1 ,2 , . . . ,n} : ai(O > 0 } . Since »»(£) > 0 implies £ 0 SXJ , i = 1,2,... , n , and so

f 0 T(A ' ) . This implies that T ^ £>-KKM(X, Y) and we complete the proof of (ii). D

This theorem generalises the well-known Fan-KKM Theorem [4, Theorem 3].

THEOREM 3 . 3 . Let (X, D) be a convex space, Y a topological space, let t :

X —¥ Y be a single-valued mapping, S : X -> 2Y a set-valued mapping satisfying the

conditions:

(i) 5 is tr> -KKM mapping.
(ii) For each x € D, Sx is compactly closed in Y; and

(iii) there exists a non empty compact convex subset Do of D and a compact
subset KofY such that f| Sx C K.
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Then fl Sx^%.

PROOF: Suppose, on the contrary, that f] Sx = 0 then |J (Y\Sx) = Y. It

follows that |J ((Y\Sx)nK) = K. Since K is compact and Y\Sx is compactly open
x€£>

in Y for each x e D, there exists a finite set {xi,x2, • • • ,xn} e (D) such that

(*) \J((Y\Sxi)nK)=K.
i=l

Let txi = yi for each i 6 {1,2, . . . , n } . Now, we suppose that £>i = co(D0

i, 2/2, ••• , 2/n}) • Then D\ is a compact convex subset of Y. By (*) and (iii), we have
(Y\Sx) = Y which implies that L)(Y\Sx)nD1 = Dx. By compactness of Dx and

(ii) there exist a finite subset {zi, Z2,... , zm}tx € D\ of X such that IOJ = tzj € Z?i
m

for each j € {1,2,... , m} and U(Y\S:E.,) f| £»i = I>i. Let { a j } ^ ! be a patition of
i=i

unity subordinate to {(Y\Sxj) n D\} ._x and let A* = co{w\, W2, • • • , wm}. We now
define the function / : A* —> A* by

m

f(y) = Y,(*j(y)wj(y <E A*).
i=i

Clearly / is a continuous function and so it has fixed point in A*, that is, there is a
y* e A* such that f{y*) = y*.

Let J(y*) = {j € {1,2,... ,m} : ctj(y*) > 0}. Since ctj(y*) > 0 implies y*
E Y\SZJ , it follows that for each a j € J(y*), Y* £ SZJ . Hence

y* = Yl <*jW)wj $ y Szit

a contradiction to assumption (i). This completes the proof. D

REMARK 3.1. We remark that:

(1) For the case D = X, Theorem 3.3 reduces to Theorem 2 of Chang and
Yen [3].

(2) In the case X is a convex subset of Y, D = X and t is the inclusion
mapping, then Theorem 3.3 reduces to Fan-KKM Theorem [4, Theorem
3].

It may be observed that many others had defined several families of set valued map-
pings such as, M{X,Y) (see[10]) KC{X,Y) (see [7]), VC(X,Y) (see [11]), Ac(X,Y)
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(see [1]) and ii§(X,Y) (see[10j). It can be easily proved that the above families are
contained in D-KKM (X, Y) by the above proposition, and so we omit the proof. We
have an interesting example (Example 3.1 below) which shows that the D-KKM family
is indeed larger than the others.

E X A M P L E 3.1 . Let D e { [ - 1 , 0 ) , (0,1]}, X = [ - l , l ] c . R and Y = [-1,1], where R
and Y both are endowed with the Euclidean topology and let 5 = T : X -4 2Y be
denned as follows:

Tx =

4. SOME APPLICATIONS

We now apply the main results of Section 3 to get some existence theorems for
maxmal elements of a binary relation, price equilibria, and generalised variational in-
equalities.

Let D be a set, and let ~ be a binary relation on D. We call y*(y* € D) a
maximal element of D (with respect to binary relation ~) if x ~ y* for all x € D.

We now use Theorem 3.3 to obtain the following theorem.

THEOREM 4 . 1 . Let (X, D) be a convex space, ~ be a binary relation defined
on D, and let t 6 D-KKM(X, X) satisfy the following conditions:

(i) for each x £ X, x & co{y € D : y ~ x for some y = tx},
(ii) for each x S X, the set {y € D : y ~ x} is compactly closed in X, and
(iii) there exists a nonempty compact convex subset Do of D and a compact

subset K of X such that for each y € X\K, there is x € Do with x ~ y.
Then ~ has a maximal element on D.

PROOF: Define 5 : X -> 2X by

Sy = {y€D:y~ x}(x G X).

Then, by assumption (ii), for each x e X, Sx is compactly closed in X. By assumption
(i) for each x € X, x g cotS'x, hence, by and Proposition 3.1, 5 is a tn-KKM
mapping. Moreover, condition (iii) implies that f] Sx C K. Hence, by Theorem 3.3,

x€D

we have

Suppose y* € |") 5a; then x ~ y* for all x G D. It follows, therefore, that y* is a
x€D

maximal element on D.
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This completes the proof. U

For the case that t is a single-valued continuous mapping we have the following:

COROLLARY 4 . 2 . Let (X, D) be a convex space, ~ be a binary relation defined
on D, and let t G C(X, X). If the conditions (i) and (ii) of Theorem 4.1 hold, and if
for each x G X, x # co{y G D : y ~ sx, y — tx} then ~ has a maximal element on D.

REMARK 4.1. For the case D = X = DQ = K is a compact convex subset of a
topological vector space and t is the identity mapping on X, our Corollary 4.2 reduces
to Theorem 5.1 of Yannelis and Prabhakar [14].

In the sequel, let E denote a topolgical vector space, E* the dual space of E, and
let (u, v) denote the pairing between u G E and v G E*.

We now apply Theorem 4.1, to obtain the following theorem concerning general
variational inequalities of Yao type [13].

COROLLARY 4 . 3 . Let X be a nonempty subset of E, let {X,D) be a convex
space, let t G D-KKM (X, X), and let g : X -»• X, f : X ->• E* be two single-valued
functions satisfying the following conditions:

(i) For each x G X, x & co{y G D : sup (g(y) - g(z), f(z)) >0,y = tx},
(ii) For each x G X, the set {y e D : (g(x) — g(y), f{y)) ^ 0} is a compactly

closed subset of X, and
(iii) There exists a nonempty compact convex subset Do of D, and a compact

subset K of X such that for each y G X\K, there is xo € t~1(Do) with
(g(x) — g{y), f{y)) > 0. Then there exists y* G X such that

(9(x) ~ ff(2/*). f(y*)) < 0 for all x G D.

PROOF: Define a binary relation ~ on D by y ~ x if {g{y), / (x ) ) > {g(x), / (x)) ,
x, y G D. Then it is easy to see that all conditions of Theorem 4.1 are satisfied. Hence
there exists y* G D such that x ~ y* for all x G D. Hence, we have

(g(x), /(2/')> ^ (g(y*), f(y*)), for all x e D. Q

For the case g := idx (the identity mapping on X), we have the following:

COROLLARY 4 . 4 . Let (X, D) be defined as in Corollary 4.3. Let t € D-
KKM(X, X) and let f : X -> Em be a function. Let condition (i) of Corollary 4.3
hold, and let the following conditions hold:

(ii) for each x G D, x & co{y G X : sup (y - z, f(z)) > 0, y G tx} ,

(iii) for each x G D, the set {y G X : (x — y, f(y)) ^ 0} is a compactly

closed subset of X, and

(iv) there exists a nonempty compact convex subset Do of D, and a compact

subset of K of X such that for each y G X\K, there is xo G t~l(Do)

such that (x — y, f(y)) > 0.
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Then there exists y* € D such that

(x-y*, f{y*)) ^ 0 for all xeD.

REMARK 4.2. For the case D — X, our Corollary 4.4 reduces to Corollary 6 of Chang
and Yen [3]. For the case t is a single-valued continuous function, we have the following:

COROLLARY 4 . 5 . Let (X, D) be as defined in Theorem 4.1. Let T € C(X, X),
and let f : X -*• E* be a function such that conditions (iii), (iv) of Corollary 4.4 hold.
If for each x e D, x g co{y € X : (y - tx, f{sx)) > 0 } , then there exists y* € D such
that

(x-y*, / (» ')) < 0 for all xeD.

In the sequel, we denote by D C X a closed convex cone in E. We now present
the following corollary concerning the existence of price equilibria (see, also Border [2,
p. 39], Chang and Yen [3, Corollary 7] and Tian [13]).

COROLLARY 4 . 6 . Let (X, D) be a convex space, D a closed convex cone in E
let t S D-KKM(X, X), and let f : X —> E* be a function such that the assumption
(i)~(iv) of Corollary 4.4 hold. Then there exists y* € X such that

(x, f(y*)) ^ 0 for all xeD and (y*, f(y*)) = 0.

P R O O F : By Corollary 4.4, there exists y* € D such that

{x-y*, f(y*)) s? 0 for all x e D.

With any loss of generality, we may assume that 0 € D. So, taking x = 0 in the above

inequality yields (y*, f(y*)) ^ 0, and setting x = 2y* yields (y*, f(y*)) ^ 0. Thus

(y\ f(y*)) = 0. Hence
(x, F(y*)) ^ 0 for all x € D. g

REMARK 4.3. For the case that D — X, on Corollary 4.6 reduces to Corollary 7 of
Chang and Yen [3].
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