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AMICABLE ORTHOGONAL DESIGNS-EXISTENCE 

WARREN WOLFE 

1. 

Definition. An orthogonal design in order n and of type (ui, . . . , us) on the 
commuting variables Xi, . . . , xs is an n X n matrix, X, with entries from the 
set {0, dzXi, . . . , ±x 5 } such t ha t 

xxi = ( ç u.xqin. 

Alternately, each row of X has exactly ut entries of the type i x * and the 
rows are formally orthogonal. A generic form of H a d a m a r d arrays, orthogonal 
designs have been part icularly useful for constructing H a d a m a r d matrices and 
weighing matrices (see [4] ). 

If X is as above, let X = Y,is AtXi. Then the A/s are n X n matrices such 
tha t 

(i) all entries are from {0, ± 1 } ; 
(ii) the A / s are disjoint] i.e. if * denotes the H a d a m a r d product , A t * Aj = 0 

for i 7e j \ 
(iii) AtAil = ujn; 
(iv) AiAf + AjAS = 0 ijéj. 
Using only (iii) and (iv) above, the authors of [3] show t h a t 5 ^ pin), where, 

if n = 2Aa+b - no, n0 odd, then p(n) = 8a + 26. T h e proof is based on Radon ' s 
work with sets of ant i -commuting, skew-symmetric, orthogonal matrices. 

In [11], as an a t t e m p t to further extract existence conditions from the alge­
braic properties of orthogonal designs, the following definition was made. 

Definition. A rational family in order n and of type \u\, . . . , u J is a family of 
n X n rat ional matrices, {A\, . . . , As}, where (iii) and (iv) above are satisfied. 

Note t ha t the type numbers of a rational family are positive rat ional 
numbers . 

In [11], and to some extent in [11], it is shown tha t necessary and sufficient 
conditions for the existence of a rational family can be given in terms of the 
equivalence of two rational quadrat ic forms. As the Hasse-Minkowski theorem 
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ORTHOGONAL DESIGNS 1007 

gives a complete classification of such forms, the algebraic conditions for the 
existence of orthogonal designs are known and computable. 

Even when a certain type of orthogonal design escapes extinction by the 
above results or by the rich combinatorial theory, there still remains the often 
difficult task of actually constructing an example of such a design. One of the 
most prolific generators of orthogonal designs has been the following construc­
tion: 

T H E O R E M 1.1 (Geramita-Geramita-Wallis; see [4]). Let X be an orthogonal 

design in order n and of type (u\, . . . , us) on the variables x\, . . . , xs. If 
Fi, . . . , Ys are orthogonal designs in order m on disjoint sets of variables, where 
Yi is of type (vn, . . . , viki) and Y\Y'/ = Y'jYV for i ^ j , then there exists an 
orthogonal design in order 7t - m and of type (uiVn, . . . , UiViki,. . . , usvsi,. . . , usvsks). 

Proof. If X = £ i * AiXt, then Y = J^is (At ® Yt) will be the required 
orthogonal design. 

Essentially, the construction consists of replacing the variable xt in X with 
the order m matr ix Yt. The relation YfYj1 = YjYi1 is required to give ortho­
gonality in the new orthogonal design and it became of interest to find pairs of 
matrices which satisfied this transpose commutat iv i ty . For the purpose of 
investigating the existence of such pairs, we have made the following definition: 

Definition. Two orthogonal designs, X and F, of the same order, will be said 
to be amicable if XY% = YXl. 

Suppose X and F are amicable orthogonal designs in order n, where X is of 
type (wi, . . . , us) on the variables xlt . . . , xs and F is of type (vly . . . , vt) on 
the variables yi, . . . , yu and the x / s and y/s are distinct. Wri te 

X = T.Aixi Y = ZBjyj. 

T h e ^4/s form a rational family as do the B/s and the union of these two 
families is called the amicable family obtained from X, Y. Note tha t 

(0) A t * A j = 0 for i^jt Bk*Bl = Ofork^l 
(ÏÏAtAS = uJnVi, BjB/ = VjInVj 

(ii) AiA/ + AjAi1 = 0 for i ^ j , BkBt
l + B£k

% = 0 for k ^ / 
(in) A.B/ = BjA,1 V i , V j . 
Certainly the ^4/s, respectively the B/s, must satisfy all the necessary 

conditions for the existence of a rational family; in particular s, respectively t, 
must not exceed p{n). A preliminary exhaustive search in order 4 seemed to 
indicate tha t there were further restrictions and tha t s -{- t < 8. This led to a 
closer examination of the amicable families and their relations. In [9], Shapiro 
studies a form of amicable families of matrices (or (s, t)-families in his nota­
tion) over general fields and has so generalized the results achieved in this 
paper. 
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2. Ex tended R a d o n f u n c t i o n s a n d Clifford a lgebras . Suppose 
{Au 0 ^ i ^ s;Bj, 1 rg j ^ /} is an amicable family of rational matrices ob­
tained from two amicable orthogonal designs in order n of types (uo, . . . , us) 
and (vi, . . . ,vt). 

Let 

at = - ) = A tAo1 for 0 ^ i ^ s and 0 , = - ^ = 3 ^ for U ; ^ / . 

Then 
a0 = ^n and {atl S i S s; fijl S j S t} is a family of rea/ matrices where 
ai = —ai1, Pj — 0 / and 

( ( i W = -InVi, M = 7 n V i 

(* ) < (ii) a**, + apt = 0 for i ^ j , 0*0, + 0 A = 0 for k * l 

[(ni) atPj + Pfin = 0 V * , j . 

Definition. A family of real matrices {a* 1 S i ^ s; 0j 1 è j S t} will be 
called a Hurwitz-Radon family of type (s, t) (or, simply an H-R(s, t) family) in 
order nil at = —at1 \/i, 0;- = 0 / \/j, and the relations (*) are satisfied. 

T h e relations (*) are a form of the relations found by Clifford (see [2]) in his 
a t t e m p t to generalize the quaternions. Formal algebras over R which satisfy 
these relations are the so-called Clifford algebras and were used by Kawada and 
Iwahori (see [5]) in their s tudy of sets of ant i -commuting real and complex 
matrices. 

Definition. A Clifford algebra of type (s, t) on R, denoted Cs'\ is an algebra 
over R with generators e, ai , . . . , as, bi, . . . , bt and fundamental relations 

(i) e2 = e, eat = ate = at for 1 ^ i ^ s 
ebj = bj€ = bj for 1 ^ j ^ t 

(ii) at
2 = - e for 1 ^ i ^ s, bj2 = e for 1 ^ j ^ t 

(iii) diCLj = —ajCLi for i ^ j , bkbi = —bibk for k ^ I 
(iv) atbj = —bfoi ior 1 ^ i ^ s, 1 ^ j ^ t. 

If e = 1, then Cs,t is seen to be the Clifford algebra associated with the 
quadrat ic form s • ( — 1 ) _L t • (1 ). For details of such Clifford algebras, we 
refer the reader to W i t t (see [10]). 

Our interest in such algebras is natural , since the existence of an H-R(s, t) 
family in order n implies t h a t the algebra Cs'1 has a matr ix representat ion of 
degree n over R. Thus , if there is no representation of Cs,t of degree n over R, 
then there is certainly no H-R(s, t) family in order n. 

On the other hand, every matr ix representat ion of degree n of Cs'1 does not 
directly give rise to an H-R(s, t) family in order n\ for example, the images of 
the a^s (respectively b/s) need not be skew-symmetric (respectively sym­
metric) or even orthogonal. However, we shall see t h a t the existence of such a 
representat ion of CStt does indeed imply the existence of an H-R(s, t) family. 
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Kawada and Iwahori describe completely the representation theory of Cs,t 

(see [5]). In their connection with quadrat ic forms, these same algebras were 
investigated by Lam (see [6, pp. 126-139]). 

If we let d be the degree of the irreducible matrix representation of Cs,t over 
R of minimal degree > 1, then the following theorems are res ta tements of the 
corresponding theorems of [5]. 

T H E O R E M 2.1. If s + t = 2k, then Cs,t is a central simple algebra over R, and d 
(as defined above) is given as follows: 

(i) if t - k = 0 or 1 (mod 4) , then d = 2*; 
(ii) if t - k = 2 or 3 (mod 4) , then d = 2*+1. 

T H E O R E M 2.2. If s + / = 2k + 1, then Cs,t is a semi-simple algebra over R, 
and d is given as follows: 

(i) if t - k = 0, 2, or 3 (mod 4) , then d = 2*1"1; 
(ii) i f t - k = l (mod 4) , then d = 2 \ 

If 5 + t = Sh + p, 0 ^ p < 8, then d = 2 a + 5 where à is given by the follow­
ing table: 

TABLE I: Values of ô 

P 

/(mod 4) 0 1 2 3 4 5 6 7 

0 0 1 2 2 3 3 3 3 
1 0 0 1 2 3 3 4 4 
2 1 1 1 1 2 3 4 4 
3 1 1 2 2 2 2 3 4 

Definition. Let w, / be integers, w > 0, t ^ 0. We define 

Pt(n) = max{s |C s - 1 , t has an irreducible matrix representation over R of 
degree n). 

By Radon 's result previously metioned, it follows tha t po(n) = pin). Since 
the dimension of a Clifford algebra is always a power of 2, pt(2

a • b) = pt(2
a) if 

& is odd, and hence it suffices to consider n = 2a. Fur ther , the following rela­
tions may be observed: 

PROPOSITION 2.3. 

( i ) P i ( 2 ) - 1 = 1;P 2(2) - 1 
(ii) pt(2n) = pt-i(n) + 1; 

(iii) pt(n) = pt+s(2
4n). 

1 ; P B ( 8 ) - 1 = 0 ; 
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Proof. If n = 24a+6, 0 S b < 4, then p,(w) - 1 = 8a - t + X where X is 
given by the table below: 

TABLE II: Values of X 

\ . b 

/(mod 4 j \ . 0 1 2 3 

0 0 1 3 7 
1 1 2 3 5 
2 - 1 3 4 5 
3 - 1 1 5 6 

(i) follows immediately from the table. 
(ii). Suppose n = 2 4 \ If t = 0 (mod 4) , then Pt(2n) - 1 = 8A - t + 1. 

Now / - 1 = 3 (mod 4) and pt-i(n) - 1 = 8h - (t - 1) - 1 = 8A - /. If 
* E= 1 (mod 4) , then p«(2») - 1 = 8h - t + 2andp ,_ i (w) - 1 = 8A - {t - 1) = 
8A - t + 1. If / = 2 (mod 4) , then Pt(2n) - 1 = 8A - t + 3 and p*_i(w) -
1 = 8A - (/ - 1) + 1. = 8h - t + 2. If / = 3 (mod 4) , then P t(2w) - 1 = 
8h - t + 1 and p t_i(n) - 1 = 8h - (t - 1) - 1 = 8h - L 

T h e proof is similar for other values of n. 
(iii) is proven in the same manner as (ii). 

Note t ha t the pt(n) are in fact completely determined by p(/) and the above 
proposition. This is illustrated by the following table. Note the 8-periodicity. 
(The beginning of the second period is indicated by the dot ted line.) 

We appear to have considered only one side of the problem, i.e. given t 
symmetric, ant i -commuting orthogonal matrices of order n, pt(n) — 1 is the 
maximum number of skew-symmetric, ant i -commuting orthogonal matrices of 
order n which ant i -commute with the given t matrices. One could jus t as well 
begin with skew-symmetric matrices and ask for a limit on the number of 
ant i -commuting symmetr ic orthogonal matrices. Let us consider this approach. 

Definition. Let n and 5 be integers, n > 0, s ^ 0. Define 

as{n) = max{ / |C 5 ' ' - 1 has an irreducible matr ix representat ion over R of 
degree n\. 

Indeed, vs{n) — 1 is the maximum number of ant i -commuting symmetr ic 
orthogonal matrices in order n which one might find t h a t an t i -commute with a 
given set of 5 ant i -commuting skew-symmetric orthogonal matrices. 

Lam shows tha t , if n = 2Aa+b • n0, where n0 is odd, 0 ^ b < 4, then 
<ro(n) = 8a + b + [b/S] + 2 (Bracket denotes the integral pa r t of rat ional 
numbers , see [6, p. 132]). 

Adams et al. looked a t sets of symmetr ic matrices of order n, such t ha t non­
zero linear combinations of the matrices were always non-singular (see [1]). If 
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R s(w) is the maximum number of such real matrices which form a set with the 
above property, then they show tha t Ks(n) = pin/2) + 1. 

If {Au 1 ^ i S t\ is an H~R(0, t) family in order n, then for any /-tuple 
(ci, . . . , ct) of elements of R 

M i + • • • + ctAty = (c!2 + . . . + Ct*)in. 

Hence, if (ci, . . . , ct) ^ 0 , then CiA1 + . . . + ctAt is non-singular and 
{A f, 1 rg i ^ /} is one of the families t h a t Adams considered. 

On the other hand, is a family with Adams ' proper ty bu t it is not 

an H-R(0, 1) family. However it is interesting to note how Adams ' number 
R s(w) is related to oo(n). First we prove two lemmas. Let 

A = 
0 1 

- 1 0 
0 1 
1 0 Q = 

LEMMA 1. If {Mi, 1 ^ i ^ t) is an H — R(t, 0) family in order n, then 

{A ® M\, 1 ^ i ^ t , P ® In,Q® In) 

is an H-R(0, i + 2) family in order 2n. 

Proof. By tensoring each of the Mt with A, we have constructed symmetr ic 
orthogonal matrices which ant i -commute because the M/s do. T h a t the other 
two matrices are symmetr ic orthogonal, and ant i -commute properly follow 
from properties of A, P, and Q. 

LEMMA 2. If {Nj} 1 S j ^ t] is an H-R(Q, t) family in order n, then 
{A ® Q ® I2 ® Nj, 1 ^ j S t, U ® A ® J2n, A ® P ® Q ® In, Q ® Q ® 
A ® 7n, P ® Ç ® ,4 ® In, h ® P ® A ® In, A ® P ® P ® 7W} is aw 
H-R{t -\- 6, 0) family in order 8n. 

Proof. Again follows from the properties of A, P, Q, and the N/s. 

PROPOSITION 2.4. a0(n) = pin/2) + 2. 

Proof. By Lemmas 1 and 2, (T0(w) ^ p(n/2) + 2 and p(8w) ^ o-0(w) + 6. 
Thus , 

p(n/2) ^ (TO(W) - 2 =" p(8») - 8. 

But by the explicit form of p, we have 

p(Sn) - 8 - p(w/2). 

Hence a0(n) = pin/2) + 2. 

This then gives a description of <ro(n) in terms of p(l). Now consider o-s(w) 
for 5 > 0. 

PROPOSITION 2.5. (i) <n(2) - 1 = 2; cr3(4) - 1 = 0; a5(8) - 1 = 0; 

(x6(8) - 1 = 0 ; (77(8) - 1 = 0 . 
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(ii) <r8(2n) = crs-i(n) + 1. 
(iii) as(n) = as+8(2

4n). 

Proof. If n = 24a+&, 0 g b < 4, then cr,(w) - 1 = 8a - s + rç where y is 
given by the table below: 

TABLE IV: Values of v 

\ . 6 

5 (mod 4 j \ . 0 1 2 3 

0 1 2 3 5 

1 - 1 3 4 5 
2 - 1 1 5 6 

3 0 1 3 7 

As in Proposition 2.3, the proof consists of considering various cases. We 
leave those verifications to the reader. 

Now as(?i) — 1 is completely determined by cr0(/) — 1 (and hence p( / /2) ) 
and the above proposition. 

Finally, one might ask, for a given n, what is the maximum total number of 
ant i -commuting skew-symmetric and symmetric orthogonal matrices of order n. 

Definition. Let n > 0 be an integer. Define 

r(n) = max{pt(n) + t\t ^ 0}. 

PROPOSITION 2.6. If n = 2G • no, where nQ is odd, then r(n) = 2a + 2. 

Proof. We first char t some values of r{n) for various n. For example, if 
n = 2 4 \ by looking a t Table I I , one sees tha t the maximum value for 

Pt(n) - 1 + / is 8/* + 1. Thus r ( 2 a ) = 8h + 2 = 2(4/*) + 2. 

n 2Ah 24^+1 24/2+2 24A+3 

r{n) 2(4/0 + 2 2(4/* + 1) + 2 2(4/* + 2) + 2 2(4/* + 3) + 2 

Clearly one could have defined r{n) as the maximum of crs(n) + 5, 5 ^ 0. 
But , from Table IV, one sees the numbers would coincide exactly. 

Our results in this section lead us to the following theorem. 

T H E O R E M 2.7. Given n > 0, if there exists an H-R(s, t) family in order n, 
then 

(i) s + t ^ rin) - 1 
(ii) s g Pt(n) ~ M ^ <r,(w) - 1. 

COROLLARY 1. If there exists a pair of amicable designs X and Y of types 
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(uQ, . . . , us) and (vi, . . . , vt) respectively in order n, then s ^ pt(n) — 1. 
Similarly t ^ as(n) — 1. 

Proof. We have already seen t h a t if X and F exist they give rise to an 
H-R(s, t) family in order n and hence 5 ^ Pt{n) — 1. 

COROLLARY 2. If X and Y exist as in Corollary 1, then s + t ^ r(w) — 1. 

Indeed, the bounds r(n), pt(n), and as(n) are sharp limits on the numbers of 
variables in an amicable pair of designs. Our purpose now is to show tha t , 
given n > 0, t ^ 0, there does indeed exist an H-R(pt(n) — 1 ,0 family in 
order n and hence an H-R(s, I) family exists in order n for s S Pt(n) — 1. First 
we need two building lemmas. 

Let A, P, and Q be the 2 X 2 matrices as defined before Lemma 1. 

LEMMA (Slide). If {M*, 1 ^ iS i S- s; Nj} 1 ^ j ^ /} is an H-R(s, t) family 
in order n, then {P 0 Mk, 1 ^ i ^ s, A ® In; P ® Nj, 1 ^ j S t, Q ® In] is 
an H-R(s + 1, t + 1) family in order 2n. 

Proof. Orthogonali ty, symmetry , skew-symmetry, and an t i -commuta t iv i ty 
follow from the properties of A, P, Q, Mi$, and N/s. 

LEMMA ( Jump) . If {Mu 1 è i ^ s; Njy 1 ^ j ^ /} is an H-R(s, t) family in 
order n, then {{A ® P ® A ® Q® Mu I ^ i ^ s\ A ® P ® A ® Q ® N jt I ^ 
j ^ t, Q ® Q ® Q ® Q ® In, P ® I* ® Q ® In, Q ® P ® h ® Q ® In, 

Q ® Q ® P ® Q ® In, I8 <S> P ® In, P ® Q ® A ® A ® In, I2 ® P ® A ® 
A ® In)) is an H-R(s, t + 8) family in order 24n. 

Proof. The proof is tedious bu t follows directly. 

T H E O R E M 2.8. For any positive integer n, there exists an H-R(pt(n) — 1, 0 
family in order n where 0 ^ t. Indeed, the matrices may be assumed to have 
integer entries. 

Proof, (i) {A; Q, P] is an H-R(l, 2) family in order 2. 
(ii) [P ® P ® P, P ® P ® Q, P ® Q ® I2 , A ® Q ® A, Q ® h ® h] is 

an H-R(0, 5) family in order 8. 
(iii) A ® P ® A ® Q, Q ® Q ® Q ® Q, P ® I± ® Q, Q ® P ® I2 ® Q, 

Q ® Q ® P ® Q, h®P,P®Q®A®A,I2®P®A®A,P®A® 
h® A) is an H-R(0, 9) family in order 16. 

Theorem 1 of [3] gives H-R(p0(n), 0) families in order n for all n. Now, 
working within the first period of Table I I I , one sees tha t , by using these 
families and (i), (ii), (iii), one can find big enough families by sliding down the 
diagonals with the slide lemma. For example, (i) gives an H-R(pi(2) — 1,1) 
family in order 2. By repeated use of the slide lemma, one constructs from this 
family an H-R(p2(4) — 1,2) family in order 4, an H-R(p^(S) — 1,3) family in 
order 8, an H-R(pA(16) — 1,4) family in order 16, . . . etc. 
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Using the j ump lemma one can jump from period to period in Table I I I , 
constructing large enough families. Again, for example, from the family in 
(i) one can jump to an i / -P(p 9 (2 5 ) — 1, 9) family in order 25, then to an 
# -P(p 1 7 (2 9 ) - 1, 17) family in order 29, . . . etc. 

COROLLARY 1. For any positive integer n, there exists an H-R(s, t) family of 
integer matrices in order n for s ^ PtW — 1. 

Proof. We just throw away skew-symmetric matrices from the big family in 
the theorem. 

COROLLARY 2. In order n there exists a pair of amicable designs, X and Y, of 
types (1, . . . , 1) and (1, . . . , 1) on the variables x0, . . . , xs and yi, . . . , yt 

respectively if and only if s ^ PtW — 1. 

Proof. By Corollary 1 to Theorem 2.7, 5 ^ PtW — 1. 
Conversely, suppose {Au 1 ^ i ^ s; Bj} 1 ^ j ^ /} is one of the H-R(s, t) 

families in order n we constructed in Theorem 2.8. We note tha t all the matrices 
have entries from {0, ± 1 } . We claim tha t the AJs (and the B/s) are disjoint. 
This follows from the easily proven property tha t if A, B, C, and D are matrices 
of the same order then (A ® B) * (C ® D) = (A * C) ® (B *D). For 
example, in the slide lemma, if we assume tha t the M/s are already disjoint, 
then (P ® Mi) * (P ® Mj) = 0. 

Let 

X = InXo -\- AiXi -\- . . . -{- Asxs 

Y = Biyi + ... +Btyt. 

Then X and Y are amicable designs of the required type. 

Note t ha t the corollary also shows tha t X and Y exist if and only if 
t ^ as(n) — 1, for Corollary 2 asserts tha t every possible pair (s, t) is obtained 
and hence surely the maximum / for a given 5 is obtained. 

COROLLARY 3. Given 0 < k ^ n, then there exists a pair of amicable designs, 
X, Y, of types {u\, . . . , us) and (v\, . . . , vt) where J2 ut = k,J2 vi = m a x { ^ ( w ) , 
<rk-i(n) - 1}. 

Proof. Case (i): If pk(n) ^ ak-i(n) — 1, then we construct an H-R(pk{n) — l,k) 
family in order n. As in Corollary 2, this family gives us a pair of amicable 
designs of types (1, 1, . . . , 1) and (1, 1, . . . , 1) on the variables X\, . . . , xp (n) 

and }>i, . . . , yk. Now by equating variables or setting variables equal to zero 
we will get all tuples {u\, . . . , us) and (v\, . . . , vt) wmich satisfy the conditions 
in the s ta tement of the theorem. 

Case (ii): If <rk_i(n) — 1 > pk{n), then we construct an H-R(k — 1, 
<jk-i(n) — 1) family in order n and proceed as before to find pairs of amicable 
designs. 
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3 . R a t i o n a l f a m i l i e s a n d a m i c a b l e p a i r s . In many orders, looking a t the 
algebraic properties, by way of the rational families, does not give any in­
formation on the existence of amicable orthogonal designs. If n is odd and a2 

and b2 are in Q, then let A = aln, B = bln. Then A A l = a2In, BBl = b2In and 
ABl — BAl. Is the same possible for (0, ± 1 ) matrices? 

In order n = 2(mod 4) , if there exists an orthogonal design of type (a, b), 
then a and b are sums of two squares and ab is a square (see [4]). So, suppose a, b 
and c, d are two pairs of rational numbers such tha t a, b, c, and d are sums of two 
squares and ab and cd are squares. Then , let a = ax

2 + a2
2, b = au2, c = cx

2 + C22, 
and a7 = cv2. Now let 

#1 a2 
_—a2 ai_ 

, B = u 
- a 2 a i 

_—ai —a2_ 
, C = 

Cl C2 

-C2 —Ci_ 

{A, B} is a rational family in order 2 of type [a, 6], { C, £>} is a rat ional family in 
order 2 of type [c, d], and I ^ = YXl for X in {4 , B] and F in {C, D). We 
could tensor these families with In to achieve similar families in any order 
2 • n. 

This would indicate t ha t we cannot hope to achieve any new existence 
theorems for amicable orthogonal designs in these orders using the methods of 
rational families. Any non-existence s ta tements for pairs of amicable orthog­
onal designs would appear to have to be combinatorial . We shall give examples 
of such results in orders 2 • n, where n is odd. Recall the following results in [11]. 

T H E O R E M 3.1. If n = 4 (mod 8) , then there exists a rational family in order n 
and of type: 

(i) [a, b, c, d] if and only if abed is a square and, at every prime p, 
sp((a, b, e,d)) = 1; 

(ii) [a, b, c] if and only if, at every prime p, sp( (a, b, c, abc )) = 1 ; 
(iii) [a, b] if and only if ab is a sum of three squares; 
(iv) [a] always. 

Note. sP(f) is the ^-adic Hasse-invariant of the rational quadra t ic f o r m / . 

Now, suppose X = Ylis AtXi and Y = X V BjJj a r e amicable orthogonal 
designs in order n and of types (ai, . . . , as) and (bx, . . . ,bt) where s è 2. 
Consider the family of matrices {A1A2

tBi, 1 ^ i ^ t, A3, . . . , As}. I t is easy 
to verify t h a t this set is a rational family in order n and of type 
[aiatbi, . . . , a i a 2 ^ , a3, . . . , a , ] . 

T H E O R E M 3.2. If there exist amicable orthogonal designs in order n, where 
n = 4(mod 8) and of types: 

(i) (ai, a2, a3) and (bx, b2, bz), then aia2azb1b2b3 is an integer square; 
(ii) (ai, a2, a3) and (bi, b2), then, at every prime p, ^ ( (a ia 2 &i, aia2^2, a3, 

azb1b2)) = 1. 

Proof, (i) As in the remarks preceding the theorem, the amicable family 
obtained from the pair may be translated into a rational family in order n and 

C2 

-C\ 

-ex 

-c2J 
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of type [aia2bi, a-ia2&2, ^ 1 ^ 3 , #3]. The result now follows by application of 
Theorem 3.1. 

(ii) Follows similarly. 

Examples of amicable orthogonal designs which are eliminated by the above 
theorems are easily found. No pair of types (1, 1, 1) and (1, 1, 2) can exist in 
order 4 • nG, n0 odd, since the product of all type numbers is not a square. 
Since the necessary condition of (ii) fails a t the prime 3, amicable orthogonal 
designs of types (1, 1, 1) and (1 ,3 ) does not exist in order 4 • no, nQ odd. 

In order n = 8(mod 16), a pair of amicable orthogonal designs can have a t 
most 8 variables, namely 4 variables in each. The translation method used 
above and a result analogous to Theorem 3.1 will give results only in a few 
special cases. However, these results are now superseded by the results of 
Shapiro who has completely determined the question of the existence of 
amicable families. Translat ing his language of similarities of quadrat ic forms to 
one of orthogonal designs, Ave find the following result. 

T H E O R E M 3.3. If there exists amicable orthogonal designs in order n = 2m • no, 
where n0 is odd, and of types (a\, . . . , am+\) and {b\, . . . , bm+i), then 
Il™+1 cif Tl™+1 bj is a square and at every prime, p, sp((ai, . . . , am+i )) = 

Sp((bi, . . . , & m + l » . 

Similar conditions can be given for the existence of amicable orthogonal 
designs with fewer than r(n) variables. Thus the algebraic nature of pairs of 
amicable orthogonal designs is completely understood. 

4. Fur ther ex i s tence c o n d i t i o n s . Disjointness and 0, ± 1 entries in the 
coefficient matrices of amicable orthogonal designs have led to some curious 
combinatorial results and prophesize a rich theory of this vein. 

PROPOSITION 4.1. There is no symmetric design of type (2, 2) in order n, 
n = 2(mod 4) . 

Proof. We require the following lemma: 

LEMMA. / / there exists a symmetric (0, ± 1 ) matrix, A, in order n which has 
zero diagonal and A A1 = 2In, then n = 0(mod 4) . 

Proof of Lemma. We simply note that , by applying suitable simultaneous row 
and column operations, such a matrix can be pu t in the form 

[o i i o"| 

l_o i —i oj 
T o prove the proposition, we let w = 4s + 2 and proceed by induction on s. 
Assume there is a 6 X 6 symmetric orthogonal design A of type (2, 2) on the 
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variables x, y. We must assume x occurs in the diagonal by the lemma, and by 
simultaneous row and column operations we may put A in the form 

;y 0 0 

A = 

X x y 
X — x a 
y 
y 
0 

If a = ±y, then A - io s\ where A' is 4 X 4 and B is 2 X 2. But this 

is nonsense since BBl = (2x2 + 2y2)I2. 
If a = 0, then 

^ = 

X x y y 0 0 
X — x 0 0 y y 
y 0 

y 0 
0 y 
0 y 

and we are unable to put any more ^-entries in the third column. 
So now assume the proposition is true for s > 1 and further assume that 

there exists a symmetric orthogonal design, A, of type (2, 2) in order 
4(s + 1) + 2 on the variables x and y. Again we may assume A is of the form 

y 0 . . X X y 
X — x a 
y 
y 
y 

Ha -.y, then A 
[A' 0 1 

diere A' is 4 X 4 and B is now an orthog­

onal design of type (2, 2) in order 4s + 2, contradictory to the inductive 
hypothesis. 

So a = 0. Using row and column operations, we can put A in the form 
rA' 0 1 

^ 1 0 R \ w n e r e ^ ' 1S 8 X 8 and I? is an orthogonal design of type (2, 2) 
in order 4(5 — 1) + 2, again an impossibility. 

PROPOSITION 4.2. Suppose X and Y are amicable orthogonal designs in order 
n = 0(mod 4) where X is oj type (1, 1, l ,ai , . . . , as) and Y is of type (bi,... ,bt). 
Then there exists an orthogonal design in order n of type (1, b\, . . . , bt). 
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Proof. Let X = J^\+3 A ,Xj. Then by applying row and column operations to 
X and Y simultaneously, we can assume tha t 

A! = ® 
W/4 

0 
- 1 0 

0 
At = © 

re/4 

0 
- 1 

o 0 

A, © 
re/4 

0 o 
l 

- l 0 o -
L-i o 

The relations AiY1 = Y A t
l i = 1, 2, 3 now will force Y to be skew-symmetric 

and Inx + Y is the required orthogonal design. 

This is the first combinatorial result on the types of amicable orthogonal 
designs in order n, n = 0(mod 4) . I t precludes the existence of certain amicable 
pairs which are not eliminated by algebraic techniques. For example, a pair of 
orthogonal designs of type (1, 1, 1) and ( 1 , 1 , 16) in order 20 does not contra­
dict the condition of Theorem 3.2. Yet, the existence of such an amicable pair 
would, by the proposition, imply tha t there exists an orthogonal design of type 
(1, 1, 1, 16) in order 20 and this is impossible. The existence problem for 
amicable pairs certainly has the di-polarity between algebraic and combina­
torial properties tha t we noted for orthogonal designs. To date we have found 
only a few results in the spirit of the above proposition, but each one seems so 
unique tha t we believe tha t there is a rich and complex combinatorial theory in 
this area. 

PROPOSITION 4.3. Suppose X is an orthogonal design in order n, n = 0(mod 4) , 
n ^ 4, and of type (1, 1, n — 2). If Y is an orthogonal design in order n and of 
type (ui, . . . , us) and such that XYl = YX\ then ux 9^ 1 for any i. 

Proof: Wri te X = Axxx + A2x2 + A&z, Y = Y,is Bjyj where AiAJ = In, 
i = 1,2,^3^43* = (n — 2)In and BjBj1 = Ujln. We may assume tha t 

'1 o"i , . ^ro r Ax = e 0 x and A2 = © 1 0 
Careful consideration of the relations 

AzAi1 + AiA%% = 0 and BjAi1 = AiBj1 for i = 1, 2 will lead the pat ient and 
persistent reader to conclude tha t A 3 and all the Bfs are split into blocks of 

2 X 2 matrices of the form | T ^ I • Under the usual representation of the U :]• 
complex numbers as 2 X 2 matrices, this matrix corresponds to the complex 
number a + hi. Thus , we may identify A 3 and Bj, j = 1, . . . , s with matrices 
of order n/2 and with entries a + bi, a, b in the set {0, dbl}. The reader should 
also observe tha t , then, 

O M s = -At^Bj = Bf j = 1 , . . . , 5 
(ii) AZAZ* = (« - 2 ) / n / 2 , BjBj* = UjIn/2 j = 

(in) AtBj* = BjAt* j = 1, . . . , s. 
1, 
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Note t ha t (i) and (ii) assert tha t , if a + bi is an ent ry in A$ not on the 
diagonal, then neither a nor b is a zero. 

Assume tha t one of the w/s , say U\, is 1. Then the entries in B\ mus t be from 
the set {0, ± 1 , zki} with one non-zero ent ry in each row and column. We claim 
tha t B\ must be a diagonal matrix. For suppose there is a non-zero en t ry in the 
i, j position and let ztj be the corresponding ent ry in A%. Then , from (iii), we 
find tha t ztj = dbz^ and hence is either real or pure imaginary. But , as we have 
noted, the only such entries in A% are the zero diagonal entries and hence ztj 

occurs on the diagonal i.e. i = j . 

Now we a t t e m p t to construct the matr ix B\, We may assume the first 
diagonal ent ry is 1. Then , if x is the next diagonal entry, x = ± 1 or zti and 
(iii) implies ZnX = — Zu where Zn is the ent ry in A3. We see t h a t x j* zbl 
and so x = dLi. Let y be the third diagonal ent ry . Now (iii) will give t ha t 
Zuy = —zu and z^y = ± ^ 2 3 , clearly an impossible si tuation. 

T h e above proposition arose from the false hope tha t , for n — 2a, one could 
always find a pair of amicable designs in order n both of type (1, 1, 2, 4, . . . , 
2 a _ 1 ) . These pairs would be especially nice as they use the maximum number of 
variables for an amicable pair in order n and give a double binary system for 
finding all possible pairs of amicable orthogonal designs, each with two vari­
ables. However, the existence of the pair both of type ( 1 , 1 , 2 . . . , 2a~l) would 
imply the existence of a pair of types (1, 1, 2a — 2) and (1, k) which is im­
possible for a > 2. T h e amicable orthogonal designs of types (1, 1) in order 2 
and types (1, 1, 2) in order 4 are the only exceptions. 
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