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In a recent paper, E. T. Copson (2) proves the following result:

Theorem C. Let k;>0 (i=1, ..., m), k,+...+k, =1, and the real
sequence (a,) satisfy the inequality

Apim é 'Zl kian+m—i (n = 0: 19 2: )' (1)

If (a,) is bounded, then it must be convergent.

The direction of the inequality in (1) is clearly immaterial, since we may
replace a, by —a, and reach the same conclusion. For m = 1 this reduces
to the classical result that a bounded monotone sequence is convergent. Of
the following examples (the first two of which are quoted by Copson) in which
the hypothesis k;>0 does not hold, namely

Ania é %(an+2+an)’ (2)
Ani3 é _%an+2+%an+1+%am (3)
Ani3 < Qpi2+ 0y —adp, (4)
a,,354a,,,—5a,.,+2a,, (5)

the conclusion of Theorem C is false for (2) and (4), but true for (3) and (5),
so that the condition k;>0 is sufficient but not necessary. It is the purpose
of this note to supply a necessary and sufficient condition for the conclusion
of Theorem C.

After this paper had been accepted for publication, I discovered in con-
versation with Professor D. Borwein that he had already considered this
problem in a forthcoming paper (1). His theorem is somewhat more general,
but its specialisation still does not cover examples (4) and (5) above. Also
my method is of independent interest in that it is constructive and specifically
indicates the form which (a,) must take (that is, it solves the inequality (1)).

Consider the sequence-to-sequence transformation

a0
1, = PoGn+ P10y 1+...+pa,_; = kZO Pty =Pla) (n=0,1,..), (6)

where / is a fixed non-negative integer, (a,) is a complex sequence (we take
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a; = 0 for i<0) and p; are arbitrarily given complex numbers (not all zero)—
and we can suppose without loss of generality that p, # 0. The associated
polynomial is then

p(2) = po+piz+ ...+pz', p(0)#0. Q)
For the specialisation to Theorem C we take (a,), (p,) real, = m—1,
Po = l’pi = I—kl_”‘—ki (l= 1, ey m—l), P = 0 (i g m),

and then (1) is equivalent to

tn é tn—l (” g n1); (8)
if also (a,) is bounded, then (by (6)) so is (¢,), and hence (by (8)) (¢,) must be
convergent. The problem is therefore to determine under what conditions
the transformation (6) (which is, apart from a multiplicative constant, a Nérlund
summability method associated with the polynomial p) evaluates no bounded
divergent sequence.

Returning to the general case, we remark that the matrix P = (p,;) defined
by (6) is conservative, i.e. (2,) converges whenever (a,) converges (P evaluates
every convergent sequence) since it satisfies the well-known necessary and
sufficient conditions (e.g. Peyerimhoff (3, Theorem II.1))

o0

sup Y |pmwl<oo, 3Ilimp, (k=0,1,..), Ilim Y pg. ®

n k=0

The first result to be proved is:

Theorem 1. Let (t,) be the transform of (a,), with associated polynomial p,
as defined by (6) and (7).

(@) If p has no zero on the unit circle, (a,) is bounded, and (t,) is convergent,
then (a,) is convergent.

(b) If p has a zero 1/A on the unit circle, then there exists a bounded divergent
(a,) for which (t,) is convergent. If A # 1, the choice may be made so that
t,=0®mz=).

Proof. Writing the formal power series

o0

1(z) = OZO: t,z", a(@)= ) a,z"

n=0
(6) is a Cauchy product, obtained from #(z) = p(z)a(z). If we also denote

p(z) = 1/p(z) = Zo Paz"  (since p(0) # 0)
we then have a(z) = p(2)¢(z), so that
a, = kZO I_’n—ktk = ZO pl;;cltk = P_l(tn) (n = 0) 13 -")r (10)

where P~! = (p;.1) is the (unique two-sided) inverse matrix of P.
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Suppose the factorisation of p(2) is
p(2) = po(1—4,2)™...(1 = 4,z)™.

Then p(z) is expressible in partial fractions, the fractions corresponding to a
factor (1—Az)™ being of the form

Ki K2 Km
+.ot .
1-2z  (1-1z2)? (1-iz)"
Take a typical partial fraction

%o _y, Zo<p+k l)/1"2";

(1-Az) =
its contribution to a, (given by (10)) is x,a,, where
r__ - ptn— k—1 n—k
a,,—k;0< n—k >A b (11)

(10) and (11) hold without any restrictions on (a,) and (f,) other than the
basic relation (6) between them.

Suppose now that (z,) converges. If | 1|<1 then (a;) converges, and so
the complete contribution to (a,), corresponding to such a 4, is a convergent
sequence.

On the other hand, if | A |>1, it is easily verified that

, o +n—k—1\,,- &
ank_Z+l<p ’:l—-k )l = Z hote (12)

is a conservative (indeed, regular) sequence-to-sequence transformation, since
its matrix (h,,) satisfies (9). Hence if (z,) converges, then (c;) converges, and
moreover

o +n—k—1\,,_
k;o(p n—k )2 ktk

(plnl)'kzo( n—k+1)..(n~k+p—1A"*, = 2¢'(n), (13)

where g'(n) is a polynomial of degree p—1. Combining (11), (12), (13), we get
a; = 2'q'(n)—c;

(compare this derivation with the one given in Peyerimhoff (3, pp. 17-18) for
the case p(z) = 1—-2z), and we can apply the same argument to all the partial
fractions corresponding to a given A, adding the results together to obtain the
overall contribution to a,.

(@ If|4; | # 1(j =1, ..., r), then all possible cases are covered by the
arguments detailed above. More precisely, if

fdjl>1forj=1,...,5 | |<lforj=s+1,..,r,
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it follows that, when (2,) converges, a, is of the form

a, = q:(MA] +... +q(mis+c,
where g;(n) is a polynomial of maximum degree m;—1 (j = 1, ..., s) and (c,)
converges. Consequently, provided there are no zeros of p(z) on the unit

circle, (a,) is either convergent or unbounded when (z,) converges. In other
words, if (a,) is bounded, then it must be convergent.

(b) Suppose that p has a (simple or multiple) zero 1/4 on the unit circle.
Writing
(z) = p(z)a(z) = q(2)(1—Az)a(z),
q(z) is then a polynomial and hence defines a conservative matrix Q (in the same
way that p(z) defines P), and (z,) is the Q-transform of the sequence (a,— Aa,- ;).
If 2 # 1 then a, = A" is a bounded divergent sequence, and

a,~2a,_,=0(@z=1);
hence t, = 0 (n =2 I). If A = 1 a suitable choice is

(all) = (1" O’ 1, %’ 0, %’ 1, %’ &’ 0’ %’ %’ 1’ %’ %’ %’ 0’ %’ "');
then (a,) is a bounded divergent sequence, and a,—a,_,—0; since Q is con-
servative, it follows that (z,) converges. This completes the proof.

Remark 1. If p has real coefficients and a zero 1/4 on the unit circle, then P
always evaluates a real bounded divergent sequence (a,). For if A =1 the
argument just given applies, while if A # 1 the choice a, = Re A" makes
t,=0@mz1D).

Remark 2. Note that the application of Theorem 1 to the original problem
depends on (8), namely the ultimate monotonicity of (¢,). In Theorem 1(b)
we were able to ensure that ¢, = 0 (n = /) if p has a zero on the unit circle
different from 1. However, if 1 is a zero of p, the construction of a bounded
divergent (a,), yielding a monotone (t,), may not be possible; for instance,
the monotonicity of (a,—a,_,) implies the ultimate monotonicity of (a,), so
that in the simple example

Qni2 < 2an+1_am p(Z) = 1—2,
the boundedness of (e,) implies its convergence, despite the zero of p on the
unit circle. Thus as a supplement to Theorem 1 we now prove:

Theorem 2. Let p(z) = (1—-2)"q(z), where m is a positive integer and the
polynomial q has no zeros on the unit circle. If (a,) is bounded and (t,) is real
and ultimately monotone (and hence convergent), then (a,) is convergent.

Proof. If p(z) = (1—2)"q(z), then ¢, = P(a,) = A™(Q(a,), where Q is the
conservative matrix defined by ¢, and Aw, = u,—u,_,, A%u, = A(Au,), etc. If
g has no zeros on the unit circle then, by Theorem 1(a), Q evaluates no bounded
divergent sequence. Now we assume (by hypothesis) that (a,) is bounded and
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(¢t,) ultimately monotone. Then using (m times) the fact that (Au,) ultimately
monotone implies (u,) ultimately monotone, we see that (Q(a,)) is ultimately
monotone and hence (being bounded) converges. But since @ cannot evaluate
a bounded divergent sequence, (a,) must also converge.

Recalling the equivalence of (1) and (8), the following theorem now gives
the complete solution to the original problem. The sufficiency part follows
from Theorems 1(a) and 2, and the necessity part from Theorem 1(b) and

Remark 1.
Theorem 3. Letk;i=1,....,m)bereal, k,+...+k, =1,
pi=l—ki—. =kii=1,...m=1),p() = 1+pz+...+pp_12"" 1,

and let the real sequence (a,) satisfy the inequality

m

AGim S Y kilyemo; (1=0,1,..).

i=

Then in order that the boundedness of (a,) shall always imply its convergence,
it is necessary and sufficient that p(z) shall have no zeros in the set

C={z:|z]=1,z# 1}.
As Copson (2, p. 163) points out, the hypothesis k;>0(G =1, ..., m) in
Theorem C suffices to imply that the only zeros of p are outside the unit circle
(this makes the transformation (6) equivalent to convergence), and Theorem C

therefore follows from Theorem 3. The application of Theorem 3 to the
examples (2), (3), (4), (5) is immediate.

Remark 3. A natural generalisation of the problem would be to replace
(1) by

n
Qi1 = Zokniai (n>ny);

i=

this is equivalent to ¢, < t, (n>n,), where

By =1— Z Ky to=Qoy tys1 = Gpyy+ . hya; (n20). (14)
o

v=1i i=
If the transformation (14) is mercerian (i.e. equivalent to convergence) then

boundedness of (a,) would imply its convergence. For example (see Rado

(4, modification of Theorem 3)), it would suffice that (#,;) should be conservative
and

limsup Y |h,|<1.
=0

n-w i
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