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COVERAGE OF A SQUARE LATflCE BY AN INCLINED RECTANGLE

DENNIS ROSEN, * Birkbeck College, London

Abstract

By use of a method of dissection, a formula is derived for the variance in
the number of lattice points covered by a rectangle of arbitrary size, lying
on a square lattice of unit spacing and inclined to the lattice at an angle of
which the tangent is a rational fraction.

GEOMETRIC PROBABILITY; COVERAGE

1. Introduction

Kendall and Moran (1963) quote a formula for the variance in the coverage of a square
lattice by a rectangle of arbitrary size, randomly positioned, but with its sides parallel to the
two directions of the lattice. However, they note the absence of a corresponding formula for
the case where the orientation of the rectangle is also random. The result presented here
gives the variance when the rectangle is randomly positioned at a fixed angle to the lattice,
with the tangent of the angle a rational fraction; it is obtained by dissecting the rectangle into
appropriate regions for which the variances and covariances can be calculated. Although
falling far short of the goal of dealing with a randomly oriented rectangle, the result is of use
in tasks of automated image analysis involving mensuration of rectangular areas.

2. Areas of constant counting measure

With respect to a square lattice with points specified by integer pairs (x;, y;), the counting
measure of a set is the number of lattice points covered. The lines passing through precisely
the lattice points (ao+ na, b.,+ nb) with a, b coprime and n = 0, ± 1, ±2, ... , will be called
8-lines, with 8 = tan- 1 (a/b). The lines make an angle 8 with the x-axis. The distance
between consecutive points on a 8-line is D = (a2+ b2)~ and the perpendicular distance
between adjacent 8-lines is U = (cos 8)/b = (a2+ b2)-~ = 1/ D. A parallelogram will be taken
to include its left-hand edge with both ends and its lower edge with its left-hand end, but
exclude the rest of the boundary.

Lemma. Every parallelogram with a pair of sides of length D, inclined to the x-axis at an
angle 8, and separated by a distance U, contains exactly one lattice point.

Proof. Each such parallelogram is intersected by exactly one 8-line, on which it cuts off an
intercept of length D. Hence it contains exactly one lattice point.

Thus a parallelogram with the charcteristics just stated is a set of constant measure, namely
of unit measure. When such a parallelogram is a rectangle it will be referred to as a standard
unit rectangle. The union of disjoint sets of constant measure has constant measure.

3. The measure of an inclined rectangle

For a rectangle of sides L 1 and L 2 , inclined to the x-axis of the lattice at angle
8=tan-1(a/b), the sides may be written as L 1=r1D+s1U+V1 , and L2=r2D+s2U+V2
where D and U are defined as above, r., s, are integers and v: < U ~ 1 since D ~ 1. Thus the
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rectangle is decomposed into rtr2 squares of side D and of measure D2, Str2+ ssr, standard
unit rectangles and a remaining area, illustrated in Figure 1, which can be considered in terms
of its constituent regions. Region I, KLMN in Figure 1, consists of r. strips of length D and
width \I; lying end to end and parallel to side L, of the rectangle. Region II, PQRH in Figure
1, consists of r2 strips of length D and width Vt, lying end to end and parallel to side L2of the
rectangle. The final part of the remaining area, GHJK in Figure 1, is a small rectangle of sides
M, = St U + ~ and M2 = S2 U + \I; and can be decomposed either as S2 strips of length M, and
width U together with one of length M, and width \I; or else as S t strips of length M2 and
width U together with one of length M2 and width Vt. It is immaterial which decomposition is
used, although for numerical calculation it is convenient to take that which includes the
smaller number of strips. Suppose that S2 < St so that the first decomposition is taken, as
illustrated in Figure 1. Then it is convenient to consider Region III as consisting of S2 strips of
length M, and width U and Region IV as the single strip of length M, and width V2 • The mean
measures and the variances and covariances of and between the four regions can now be
calculated by integrating over a standard unit rectangle .

By applying elementary methods it immediately follows that the mean measure .At of the
whole rectangle equals its area, that the variances of Regions I, II and IV are riDV2(1 -
DV2), r~DVt(l- DVt} and u, V2(1 - u, V2) respectively, the covariance, cov (I, II), between
Regions I and II is zero, cov (I, IV) = r.M, V2(1 - DV2) and cov (II, IV) = r2VtV2(1 - DVt)(l -
Mt \I; + Vt \1;).

The variance of Region III involves cov (i, j), the covariance between the ith and jth strips.
The latter may be calculated by moving the rectangle so that G, the bottom left-hand corner
of the first strip (Figure 1) is a lattice point and then rotating axes about G so that the new
axes (X, ,Y) are inclined at angle f) to the old (x, y). The S2 strips of Region III are fractions,
Mt / D, of standard unit rectangles, in the ith one of which the lattice point is at (Xi' l':) where
Xi =Yisin f) + Xi cos f), l': =Yi cos f) - Xi sin f) = i]D and Xi' Yi are appropriate solutions of the
Diophantine equation

(1) y.b -xia = i.

With Eij = IXj - Xii, F';j = D - Eij, and Gij equal to the lesser of Eij and F';j' it then follows that

for M, ~ Eij, cov (i, j) = -Mi/D2
;

(2) for Eij~ M, ~ F';j' cov (i, j) = (DMt - DGij - Mi)/D 2
;

for M, ~ F';j, cov (i, j) = -(D - Mt )2/D 2.

The covariances between the strips of Region III and that of Region IV can be written as
cov (i, S2) and have values equal to the corresponding cov (i, j) values multiplied by V2D.

The covariance between Region I and each strip of Region III is zero. The covariance
between Region II and each strip of Region III is r2 ~(1 - DVt)(D - M, - Vt)/ D 2

•
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Since var (m), the variance on the measure, m, of the rectangle, is given by ~ var (I) +
2~ cov (I, m) where I, m = I, II, III, IV, then on collecting terms and rearranging,

var (m) = ~(1- DVz)L;ID + \1;(1- DVt)L~/D

(3) + M2{Mt(1- MtU) - UVt(l- DVt)(2'2Mt - 2'2 \I; + M2)}
+ 2~ cov (i, j) + 2~ cov (i, S2),

where cov (i, j) and cov (i, S2) are given by (2) and the modification of (2) as noted. The case
where S2 = 0 is included in (3) if the last two terms are then taken as zero.

4. Comments on the results

If M1 , the remainder of L,ID, is less than or equal to sin 0, then

(4) 2~ cov (i, j) + 2~ cov (i, S2) = -(s~ - S2 + 2DV2)MilD2

and if M1 ~ D - sin 0 then

(5) 2~ cov (i, j) + 2~ cov (i, S2) = -(s~ - S2 + 2DV2)(D - Mt)21 D2.

Except for these cases, (3) must be evaluated after collecting solutions to (1) with
i = 0, 1, 2, · .. , S2, although with some combinations of L, and 0, (4) and (5) will also be true
with less restricted ranges of M«, thereby simplifying the formula for var (m). The variables
which may be set, that is, the size of the rectangle through L t , L 2 and its inclination to the
lattice through 0 = tan- t (alb) make var (m) vary in a highly discontinuous way.

When the rectangle is aligned with the lattice so that 0 and a are zero, b = D = u = 1,
'2 = S2 = 0 and M1M2 reduce to Vt , ~, (3) reduces to the formula of Kendall and Moran
(1963), namely

var (m) = ~(l- V2)Li + Vt(1- \I;)L~+ VtV2(1 - Vt)(l - V2).

If the formula derived here is used in image analyses of digitized images then care must be
taken, as previously noted (Rosen (1980)), to distinguish between lattice and grid. In the
processing of digitized images, it is usual to work with pixels (picture elements) and if these
are taken to lie in a lattice then the edges of the area formed by a group of pixels lie on a grid
which transects the lattice.
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