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Introduction

The object of this note is to state and prove two theorems of the nature of
Montel's Limit Theorem for a function which is regular and bounded in a
region G, but involving as hypothesis the limit of a mean value of the function
instead of the limit of the function itself. Theorem 2 below (with b = b' = 1),
in which G is a half-strip, was stated several years ago in a letter to A. J.
Macintyre and myself from J. M. Whittaker, who added that it could be proved
by integrating the inequality in Lemma 3 below (which is due to Dr Whittaker). |
As far as I can discover, such a proof still has not appeared in print; hence the
present one.

In Theorem 1 below, in which G is a half-plane, the mean value hypothesis
is more effective, and, by a different method, I obtain uniformly over any
interior sector the limit of the function itself, as in Montel's Theorem.

Theorem 1. Letf (z) be regular and \ f (z)| < M in the right half-plane 3t(z) > 0
and let

rr
\f(reix)-l \b dr->0 as T->oo .

o > W

where I, b(>0), a are constants and —\

Then

f(z)-*l as | z |-»oo

uniformly in | arg z \^\n — 5 for every 5 in 0<d<$n.

Proof of Theorem 1. Let

F(z) =f(z)-l (3)

We shall need the following

Lemma 1. If (j)(r) ̂  0 is measurable and

<j>(r)dr-yO as T-»oo,

t My thanks are due to Dr Whittaker for bringing this and other problems to my notice, and
for his kind permission to make use of them.
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then

as r-KX> through a set of linear density unity.

The proof of this lemma, being straightforward, is omitted.
Theorem 1 follows immediately from (1), (3),

Lemma 1 and

Lemma 2.f Let g(z) be regular and bounded in ^?(z)>0, let inf\g(jew)\,
(| 01 < in) tend to zero in a set E having the property lim r ~ lm(r) > 0, where m(r)

r-»oo

denotes the measure of the part of E contained in the interval (0, r). Then, as
r->oo, g(z)-*0 uniformly in | arg z \fL\n — d, (<5>0).

Theorem 2. Let f(z) be regular and \f(z)\<M in the half-strip | ®(z)\< 1,
J(z)>0andlet

Jo
\f(a + iy)-l\b dy-*O as T->oo

•(4)

where I, b, a are constants, b is positive and — l < a < l .

Then

T'1 \f(x + iy)-l\b dy^>0 as T->oc

, , J° (5)
uniformly in | ^ ( z ) | ^ l — 5 for every 5 in 0<<5<l,
where b' is an arbitrary positive constant.

Proof of Theorem 2. The natural approach here would be to apply the
transformation

— \inz = logZ

in the hope of obtaining the conditions of Theorem 1, with Z in place of z.
It is easily seen that this fails, since the analogue of (1) would have an additional
factor r ~1 (using the original notation) in the integrand and it would not be
possible to deduce the existence of a linear set E with the property required for
Lemma 2. However, as stated in the Introduction, Theorem 2 may be proved
directly, with the aid of

Lemma 3.± Let h(z) be regular and \ h(z)\ ̂  M' in | z \ < 1, and let

the ak being any distinct points in \ z | ^ ca < 1. Then

+ 7T^T' (M-tB)

t See (1).
X (2, P. 57).
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where

the dash attached to II implying that the factor for which j = k is to be omitted.

In order to prove Theorem 2, we first set

Ftz)=f(z)-l (3)
and apply Lemma 1 as before.

We find, using (4), that, for arbitrary e > 0,

| F(z)\<s, {®(z) = a) (6)

on a set of points whose measure m(T) satisfies

foralir>r0(£) J
As the rest of the proof of Theorem 2 consists of a number of steps, it may

be worthwhile to state the argument briefly before giving the details. From (7)
we show that there are circles, centred on the imaginary axis and of radii
(1—i<5), each containing as many distinct points, not too close together, at
which (6) holds, as we please. Hence, Whittaker's lemma gives \F(z)\<e'
(e'>0 arbitrarily small when e is chosen small) throughout such circles, and,
as these circles are shown to cover most of the strip

\®(z)\^\-5, \<J(z)<T,

the required result follows on summation of appropriate integrals taken along
chords of the circles, the contribution from the remaining parts of the strip
being insignificant, since | F(z)\ is bounded.

Remaining details of the proof of Theorem 2. Given any T>0, let Tjji

= 1, 2, 3, ..., n) denote the sequence of equal circles

I z—iy? I = 1 —i& (<5>0 arbitrary)

where yY = 1, y^-y^-i = X(8) for \i = 2, 3, ..., n, where X(5) = X, say, is the
length of the chord CM cut off the line 0t(z) = 1 —5 by the circle r,,, and n is
chosen so that

\)X (8)

Then each point of the strip | 0t(z)\ g 1 —5, 1 g . / ( z ) < r lies inside or on at least
one of the sequence of adjoining rectangles /?„(/! = 1, 2, 3, ..., n) which have
their centres on the imaginary axis and a chord C,, for a side.

Let cjja) with the a of (4) denote the segment cut off the line 0t(z) = a by
the rectangle /?„, and let us call the corresponding circle T^ " satisfactory " if
(6) holds in cj^d) over a length not less than X(l — 2e*).cj^

E.M.S.—H
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Lemma A. For T> TQ(E) the number p of " satisfactory " circles FM is at
least t[n{l -e*)].

Proof of Lemma A. By (7) we know that the measure of the intervals over
which (6) holds exceeds T( l -e) and since, with T > T&e)^T0(e), this by (8)
includes a length of at least nA(l — 2e) measured along the segments c^fa)
(pi— 1,2,3,..., n), then, for at least one of the circles FM, (6) holds on the corres-
ponding c/a) over a length not less than A(l—2e). Removing one such circle,
we have a total length at which (6) holds of at least X{h{\ — 2s)— 1} measured
along the segments c^a) of the remaining («— 1) circles, on at least one cjia) of

f 9 1
which (6) therefore holds over a length of at least A < 1 >. Proceeding

I B-1J
in this way we find that, for the pth such circle, (6) holds over a length

f 9 1
A' ̂  A < 1 — > of the corresponding segment c^a). If we set/?=[w(l— £*)],

( M-p+lJ
we have A'>A(1—2e*), and Lemma A follows.

Lemma B. Given s'>0, if e>0 is chosen sufficiently small, then \ F(z)|<£#

throughout every " satisfactory " circle rM.

Proof of Lemma B. In any " satisfactory " circle F,, let us divide the rect-
angle i?M into AT equal strips % of width N~ 1k by drawing the appropriate horizon-
tal lines, N being a large positive integer to be specified later. It may happen that
(6) fails to hold at every point of the corresponding £„(«) inside some of these strips.
If so, let Nt denote the number of such strips. Since F^ is " satisfactory", the total
width N~lN1X of these strips cannot exceed 2£*A, whence iVj^^iV. Thus
there are points in each of at least v = N— [2e*iV] of these strips, at which (6)
holds, and, working in the direction of increasing y, we select one such point in
the first strip, one in the third, and so on, taking alternate strips only. We thus
find v'H-1(= ^v or i(v +1) according as v is even or odd) distinct points in FM

at which (6) holds and for the A of Lemma 3 we have the inequality

A< l V ? 1

~ ( 'Jiy « = ou!(v'-u)! (ATUyOO!

which, taking the circle FM in question as the interior circle \ z\^a> of the
lemma, and F(z) in place of Hz), gives § by (6) the inequality

6LA(2co)lv7(l -co4)< \28-h

= eK(N, 8), say, (9)

t As usual [n(l —e*)] denotes the integral part of K(1 —e*).
t Compare (3), p. 546.
§ Remembering the definition of a " satisfactory " circle T,,.
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for N>%, if we assume (as we obviously may) that 0<e<2~6. The circle
| z | < 1 of Lemma 3 is here the unit circle concentric with F^, of course, and we
get

= MKV'+ 1 , say
(10)

where, for arbitrary <5 in 0<<5<l, jq = K,(<5) satisfies the inequalities

O<K<JC1<1 (11)

By (9), (10) and (11), Lemma 3 applied to F(z) thus gives

\F(z)\<MK
ft+tK(N,8) ( |z |gl-tf) \

<ie'+|e' (e'>0 arbitrary) I (12)

= £' J
by first choosing N sufficiently large and then e sufficiently small. This proves
Lemma B.

We are now in a position to complete the proof of Theorem 2. The
inequality (12) holds over every " satisfactory " circle and a fortiori over every
satisfactory rectangle i?M. Integrating along the lines M(z) = constant and
remembering that, by (3), | F(z)\<M+\ I \ = Mx, say, we thus have uniformly

T"1 j | F(x + iy)\ dy^T'1 \\ ° + j " satisfactory " cM(x)

+ I " unsatisfactory

by (12) and Lemma A,

by (8),
+M1(£')* (13)

Hence

T"1 I \F(x + iy)\dy<e" (fi">0 arbitrary, T>T<;'(e")) (14)
Jo

uniformly for | 8l(z)\ ^1 — 5, since the second and third terms on the right hand
side of (13) are each less than \t" provided that £ is taken sufficiently small, and
with the corresponding To(e) (of Lemma A) the first term is less than \z" for all
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Theorem 2 for the case b' = 1 follows from (3) and (14). Clearly only
minor modifications are needed in the last step of the proof, viz., the " integra-
tion " step, in order to obtain Theorem 2 with arbitrary b' > 0.

In conclusion it may be worth-while to note that in the hypotheses of both
Theorems 1 and 2 the straight line of integration may be replaced by any curve
T interior to the region of definition along which | z | tends steadily to infinity

with sufficient rapidity. We could for example ask that lim — 2:>/>0 along
r-<x> ds

F, r, s denoting the usual polar coordinate and the length of arc respectively.
My thanks are due to Dr R. O. Daviss, who kindly read the original version

of this paper and offered numerous suggestions for clarifying the arguments
involved.
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