ON EXTENSIONS OF TRIADS
YASUTOSHI NOMURA

Dedicated to the memory of Professor Tapast Nakavama

Introduction

As an extension of a result due to W. D. Barcus and J. P. Meyer [4], T.
Ganea [8] has recently proved a theorem concerning the fibre of the extension
EUCF- B of a fibre map ¢ : E- B to the cone CF erected over the fibre F.
In this paper we shall establish a generalized Ganea theorem which asserts
that the homotopy type of the fibre of a canonical extension ¢’ of a triad
A—f>Y<—g—B (cf. [13]) is determined by those of f and g (see Theorem 3.4).
This generalization yields a proof of a well-known theorem of Serre on relative
fibre maps (see Corollary 3.9) and, as done by various authors (cf. [1], [10],
[12]), a theorem of Blakers- Massey (see Corollary 4.4).

Our result can be used to derive a dual EHP sequence which generalizes
a conditionally exact sequence established by G. W. Whitehead [15] and Tsuchida-
Ando [14]. The dual product introduced by M. Arkowitz ([2], [3]) allows
us to describe the third homomorphism in that sequence.

Throughout this paper we will work in the category of spaces with base-
points, generally denoted by *, and based maps. Homotopies are assumed to
respect base-points. The closed unit interval is denoted by I. Given a path
w: I->Xin X, we denote by wu,» the path defined by wy,»(#) = w((1 —)u+ tv),
where 0=u<v=1. For paths w, r with w(1) = z(0), the path consisting of w
followed by r will be denoted by w+ 7, and the inverse of w by —w. As usual,
2 and S are used, respectively, to denote the loop and suspension functors. EX
and CX denote the space of paths in X emanating from the base-point and the
cone over X respectively.

We are indebted to T. Ganea for sending us a preprint of [8].
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§ 1. Preliminaries

Let ALYeg—B be a triad and let Er,¢ be its mapping track, as defined in

[13], ie., ’
Efg=1{(a, v, ))c AXxY'xB|f(a)=7(0), g&)=r(1)}

with projections P; : Ef g—> A, P : Ef g—» B. In particular, let Ef and E; be,
respectively, the mapping track constructed for the triads A“j; YF{**, *—>Y
iB, which are usually called the fibres of f, g.

Let I : QY - Ef,¢ be the natural injection. Then we have

Lemma 1.1. (see [13]) L(r1) = L(r2) for 11, nEn(V, Y) if and only if
there exist a = n(V, QA), B n(V, 2B) such that 11 = (2 )x(a) + 72+ (2):(8).

Now let 7; : Ep,> Ey, ¥s : Ep,—> Eg be the maps induced by the following

homotopy-commutative diagram

Py
Ef g ———> A

n| g lf

B —— Y.
Lemma 1.2, (Dual excision theorem) 7, and X» are homotopy equivalences.
Proof. We define I: : Eg— Ep, by I:(B, b) =(e; *, 8, b), where e is the
constant path at the base-point of A. Then it is easily seen that I is a homo-

topy inverse of Xs.

Next let the diagram

A f#Y L«g B
¢ll (Pl ¢'Zl
aL sy & B

be homotopy-commutative. This induces the map ¥ : Ef, ¢~ Ef. g and the com-

mutative diagram

wl 02
By > E, € Ey.
AL >y < £ B,
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where the vertical maps are appropriate projections.

LemMma 1.3. There exist a homeomorphism E : Ex—- Es, 0, and an injection

l: .QEf»,g: - Eo,,, Such that the following diagram is homotopy commutative :

. EX
/— \P
/ _J’ 1
"QEf'-g’ —_— E‘bhq;z #E'f,g "—__>Ef/'gl

N |

QE,—» oY —— 2v!,

in which ¢ and P are natural injection and projection, respectively. In particular,
g h .

for a triple A—>B——>C, the fibre of the natural map 7 : Epg— Ey is of the

same homotopy type as Eg.

Proof. 1t is sufficient to define Z by setting
Za, 7, 85 a, 1,0 =a, a), (Foh, 1), (B, b))

for ac A, be B, re Y', a€ EA', B EB', 7€ E(Y'"), 1(0) =f(a), r(1)=g(b),
al(l) = ¢i(a), B(1) = ¢(b), where % : I*>I* is a homeomorphism indicated by
the following picture:

—_ > €

++ VVAAAAAAAA

Now, let a cotriad Aef—X—g—>B be given. We define its mapping cylinder
Cy.z to be the space obtained from AV (XxI)/(* x I)V B by the identifications
flx)=(x 0), gx)=(x, 1), x= X. The injections I, : A>Cysys L : B->Crg,
are obviously defined. The mapping cylinder of a cotriad *<——X—£>B is denoted
by Cg. which is usually called the cofibre of g. Any point x= X defines a path
% in Cy,g, Cg or SX which is given by

() =(x 1), 0=st=1

Lemmas 1,1~1.3 are dualized as follows:
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Lemma 1.1, Let Q : Cy,g—> SX be the map defined by shrinking A and B
to a point. Then Q" (1)) = Q™*(12) for 11, r: € n(SX, V) if and only if there exist
acsn(SA, V), B n(SB, V) such that 1= (SH)*(a) + 72+ (Sg)*(B).

Lemma 1.2'. (Excision theorem) Let /i : Cr—>Cyi, and ;i Cg- Ci, be the

maps induced by the homotopy-commutative diagram

x_2L, 4
£ A
L

B > cf_g.

Then Y. and X are homotopy equivalences.

LemmMmA 1.3'. Let the diagram

Al _x—25p
ey
fl gl

A'¢—— X' ——> B!

be homotopy-commutative, and let

] ]
A'<—f— X' —£—>B'

ol ol

C‘hé_— C?——>C+,

be the associated commutative squares. Then, for the mapping /' : Crg— Cr g
induced by the above transformation, we have a homeomorphism =' : Cy — Cy,,o,

such that the following diagram homotopy-commutes:

T
Crg =™> Cr,e > ix' > SCr.g
\ cehez
s, | 2
SX » SX' > SC, > S°X,
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In particular, the cofibre of the natural map Cg— Chog induced by a triple
h
A-£>B———>C. is of the same homotopy type as Ch.

The following lemmas will be needed in the later sections.

Lemma 1.4. Let f: Y- 2X be the map adjoint to f : SY - X, and suppose
that f and X are, respectively, m- and n-connected. Then f is min(2n, m)-con-

nected.

Proof. By Lemma (4.1) of Berstein-Hilton [6], we have the commutative
diagram

Hio(Y) LI Hi-(2X)

:l l

H;(SY) ——ﬁ—-) Hi(X),

where ¢ is the homology suspension. Since ¢ is onto for i=<2n + 1 and mono-

morphic for <2 n, we obtain the desired conclusion.

LemMmA 1.5. Suppose we are given f : SY—>X and its adjoint f:Y->02X
and let f, Y be, respectively, m-, n-connected. Then f is [min(m, 2 n+2) +1]-
connected.

Proof. 1t is sufficient to observe that, in the following commutative diagram,

the homotopy suspension E is onto for i<2 # + 2 and monomorphic for i<2n + 1:

S«
7i-(Y) = 7;_,(2X)

lE J‘z
Sx
Ti(SY) ——u  mi(X).

§ 2. Joins and cojoins

; .

Given a triad A-—l-*A VB<—”—B consisting of inclusions, we denote its map-
ping track E;, i, by A*B, which is called the cojoin of A and B (cf.[2]. Hilton
uses the notation A+'B in [9, p. 238]). We have the diagram
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QA
\gA P/'A\"L
/Q(A\/B)—I—-?A/*\BP\A /AVB

-Qiz 2 B 22
0B

Let AbB be the flat product of A and B, i.e., the fibre E, of the injectionv
J: AVB- AXx B. Thus the sequence

L J
ApB—ANV B—AXxB
is essentially a fibre triple.
LemmMmA 2.1. Py and p. are null-homotopic.

Proof. Let r: AV B- A be the retraction resulting from shrinking B to
base-point. Note that A*B is the space of paths in AV B which emanate from
A and end in B, and that p: is the fibre map which assigns to each path the
starting point. Then we can readily see that a null-homotopy $1=0 is generated
by the correspondence (7, t) -7y (¢), 0<t<1, y= A*B.

In the light of Lemma 2.1, we have exact rows in the following diagram

f1x ok

I ~
e (RA) ® mp(2B)——m(2(AV B) )—i?nk(A*B)—>0

l= i

2N ' 2L)
(A x B e— Tt aay BNEE L (2(4bB))<—o.

Since the composition (2]).° (414 + %) is the direct sum representation, it fol-
lows by a routine argument (cf. [8, the proof of Theorem 3.2]) that I.o(2L),

is bijective. Hence we have established

ProrosiTion 2.2. ([2, p. 22]) I°(QL) : 2(AbB) > A%B is a weak homotopy

equivalence.

CoroLLARY 2.3. Suppose that A is m-connected and B n-connected. Then

A*B is (m+ n—1)-connected.

M. Arkowitz ([2, 3]) has defined the dual product [a, B] of a € z(V, 2A)
and B »(V, 2B) to be the unique element v n(V, 2(AbB)) such that (2L).
(1) = — (2iw(a) = (24)(B) + (24). (@) + (242)(B). Further, we denote the
element I,( — (24).(8) + (2i).(a)) €x(V, A*B) by <a, B, and call it the
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cojoin product of « and B. This is nothing but the second dual product [«, 81
defined in [21.

Prorosition 2.4. ([2, p. 221) The weak homotopy equivalence I°(2L) sends
[a, 81 to <a, B>.

Proof. This is easily seen by noting, in view of Lemma 1.1, that

L( = (2i)(a) ~ (24)(B8) + (2i) () + (242)(B))
=I.(— (Qiz),g(ﬁ) + (5211)«(«))

Now let £ : V> Q2A, g : V- 2B be representatives of «, § and let f : SV
> A. g SV- B be adjoint to f, & respectively. f and g obviously induce the
map fg : SV*SV->A*B. Let ¢: V-0SV be the natural injection defined by
e(v) =0, ve V, With these notations we have

Lemma 2.5. (F%2)<e, © =<a, BD.

Proof. This follows from the fact that a = (2).(e), B = (2g)«(e) and from
commutativity of the diagram

.Q(SVVSV)—I-)SV/*\SV
.Q(ng)l l/’*\g
2(AVB) -l-—> ALB.

We mention here the relationship between the cup-product and the cojoin
product. Let A, B be the Eilenberg-MacLane spaces K(Gi, p+ 1), K(G., g+ 1)

respectively. Let
c€ H?'(A*B; G)XHom(Hp:(2(AbB)); G)XHom(G, G)

be the cohomology class corresponding to the identity homomorphism of G,
where G is the tensor product G:® G,. Then Arkowitz [3] has proved

ProrosiTioN 2.6. <a, *(¢) =aUB for ac H*(V; G)), B HUV; G).

Dually, the join A*B of A, B is defined to be the mapping cylinder Cj,,p,

. P p .. .
of the cotriad A<—A x B—2~>B, where py, p. are the projections. Any point of
Ax*B is represented by the symbol (1 —-t)a®tb,ac A, b B, 0=5t<1. We have
the diagram

https://doi.org/10.1017/50027763000012058 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012058

256 YASUTOSHI NOMURA

p/'SA
S

* " SB

%)

2N

Q
AxXB A*B —> S(Ax B)
AN

%]

B 7
J
in which /i=0 and j.=~0. Also, if we denote the cofibre of AV B—>A X B by
A#B, we have a cofibre sequence
J K
AV B—A X B—>A#B.

Applying the same argument as in the proof of Proposition 2.2 to the diagram

(Sp1)x, (Sp2)
0+ Hy (A*B)5 Hy(S(Ax B P P b s 4y & Hu(SB)

(SK)4 | , (ST« Tz
0« Hx(S(A%B))«——H(S(AXx B) )¢— H.(SAV SB),

we obtain.

ProrosiTioN 2.2!. (SK)°Q : A*B- S(A#B) is a weak homotopy equivalence.
Now recall that the generalized Samelson product <a, B>y € n(S(AV B), V)
of a=n(SA, V) and B »n(SB, V) is defined to be the unique element r such
that ¢*(7) = — (Sp1) ™ (@) — (Sp:)*(B) + (Sp) * (&) + (Sp2)*(B) in the exact sequence

¥
0~ n(SAVSB, V)<n(S(AxB), V)<—n(S(AAB), V)<0,

where AAB is the smashed product AxB/AV B and q : S(AxB)-S(AAB)
is the identification map. Note that, in this argument, A and B are assumed
to have non-degenerate base-point. The generalized Whitehead product [a, 5]
is defined to be the element @*( — (Sp)*(B) + (Sp)*(a)) = n(A*B, V). We see
from Lemma 1.1’ that the homotopy equivalence A*B- S(AA B) transforms
Ka, B> to [a, 81

We shall need, in §5, the map W : 24*2B- BbA which is defined by

Bo,2t X &, 0=21<1,

(2.7) W((l—t)a@tﬁ)z{
BXao,z-2¢, 1212,

for « € 2A, B 2B. Then the following lemma is well-known (cf. [8, §21).
Lemma 2.8. W is a weak homotopy equivalence.

Dually, we define W' : A#B->SA*SB as follows:
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( (b, 1-21¢), 0=2¢<1,
W'(a, b)(t) = i
a, 2t—1), 1=2¢<2,
; 1-5), 0=2t<1,
(2.9) W' (a, bo, s)(t) = {
, 1—-2s42st), 1252,
(5, 1 —-2st), 0=2t<1,
Wias, b, 5)(1) = {
(b, 1—35), 1=2¢<2,

for ac A, b= B, 0=s<1. 1 regret to say that I was unable to show the dual

of Lemma 2.8, but we will content ourselves with a partial result (see Corol-
lary 5.10).

§ 3. Extensions of triads

Let the diagram

A

o

Ny
3.1) Ef,g\B/g,y

P;

be associated with a triad AL>Y<—g—B, and consider the mapping cylinder Cs,, »,

of the cotriad A<£1—Ef, g—{)~2—>B. We define the natural extension
§: Cr,p,> Y
of the triad (f : g) over Cp, pr, by setting
&'(a, 1, b5 t)=r), &) =f(a), &) = gb)

for ac A, b€ B, ye Y, 0<t=<1.
Next, let f/Fg: AVB-Y be the map determined by f and g, i.e., the com-
NV .
posite AVB—EYV Y—F—>Y, where F is the folding map. We define

7't SEf,¢ Croe
by setting, for (a, 7, b) € Ef, g, 0=s<1,
(a, 45) = CA, 0=4s<1,

() ey,  1s4ss3

7(a, 7, b; s) =
(b, 4—45s) = CB, 35454,

Introduce the homotopy-commutative diagram
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Q
CPl,P, _95Ef,g
lé' lv’
o : k
(3.2) AVB ire y Y > Cfyg ————> S(AV B)

I,

Cv ———> Cy,

in which ¢’ is the map induced by the upper square and the unlabelled arrows
denote the appropriate injections and identification.

The following proposition is an extension of Proposition 1.6 of Ganea [8].
ProposiTION 3.3. ¢’ ¢ C.— Cw is @ homotopy equivalence.
Proof. ¢'is given explicitly as follows: if 2s<1, then

¢(y)=yecY, ¢Na, s)=x*, (b, s)=*,
Ca, 7,6, t; s)=(a, 1,b t; 25);

if 2s=1, then

Ny)=ye€Y,a, s)=(a, 25—1) € Cyya, C'"(b, s)=(b, 2s5—1),

(@, 4t+2s—1) & Crog, O<t< 1;5
X 2t+s—1 1-s 1+s
[} _ esr v - -9 -
¢Ma, 1, b, t; s) = T( 7s ), 2 <t< 5
(b, 3+25—41) & Crog, L}Sgtgl.

for cone parameter s and cylinder one ¢. We consider ¢’ : Cy— Cs given by

d(y) =y, ¢(a, s) =(q, s), (b, s)=(b, s),

(ay T, bv lzs ;4“)’ 0§4 u_S_S,
ea 7, boui s)={ (ars 2“”2?;;1_23 ;s) ss4usi-—s,

l <a, T, b, s—:?,; 4—-4u>, 4—s=4u=4

for suspension parameter #. It is a troublesome but routine matter to verify

that ¢’ is a homotopy inverse of ¢'.
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One of the main objects in this section is to prove the following theorem
which generalizes Theorem 1.1 in [8].

TueoreM 3.4. The fibre Ex of &' : Cp,p,—» Y has the same homotopy type
as the join Ef *Eg of the fibres of f and g.

Proof. We define F: Ef*Eg—>FEx and G : Ex - Ef +Eg by setting, for
ac A, beB, a, B, 1, re Y, 0<t<],

Fla, ) =(—a; a), F(B; b)=(8; b)
(3.5) {

F((l_t)(a (X)@t(ﬁ b))=‘ ("aZi.l; a, a‘f"ﬂ, b, t), O§2t§1

(Bo,2t-15 @, ¢+ B, b, 1), 12212,
G(r; a) = (a, e<(1) -1), G(r; b) = (r+ew, b),
G(r; a, 1,6 )=1-t)(a, 1,1 — ) Dt(r+ 72,1, b),

where e, denotes the constant path at x.

GoF can be deformed into the identity via a homotopy 0., 0<#=<2, whose
value 0,((1—1)(a, a«)®t(B, b)) is given by setting, if 0=2¢=<1, 0=u=1,

(1- tb)(a, o2t + azt,1) Dt — aza-uyt+u,1+ (a + Ba-wer % 1, b);
if 1=2¢<2, 0<u<1,

(1-t)e, (a +B)o,(1—u)t+% = Bo, 1-ur2t-1,) D t(Bo,2t-1+ Bet-1,1, b);
if 0521, 1Su=2,

(1-1t)(a, ao,zt(z—uul‘% + (th(z—uw’%l—,l) ® t(Bo,“—;l— + BHT_I,I, b);

if 1212, 142,

(1-18(a, ao, % + 6(3—;”-,1) Dt (Bo, zt-ny2-w+ %L + Bat-ne-w+ “el b).

FoG=1 is verified by taking a homotopy ¥., 0% =2, whose value Zy(r;

a, 7, b t)is, if 05u=1,
05 a, (rot— 7)0.1———1;—4‘ (T+Tt,1)%,1, b, 1),

where
_{ = (0,6 = Tat-ut,1 0=2t<1,
(T+Tt,1)o,(1—tm+zt—1 15212,

if 1su<2,
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(e5 @, 1o, e-nyt+ "2'1 + Te-utr “2_1,1, b, 1),

where

—= (7ot — T)«z—u)t+i2'—1,1 0=2t<1,

e p~—3
(47810, 2-urt+ “z"‘ 1522,

Thus the proof of Theorem 3.4 is complete.
F )
The composition Ef *Ey—E«—-Cs, r, will be denoted by j : Ef xEg - Cp, p,
This is given by
(3.6) J(I=~)a, ) BtB, ) =(a, a«a+B,b; 1.

Consequently, the sequence

’

_ J 3
Ef *Eg—_)CPz, Pa_——)Y

is essentially the fibre triple.

Combining Theorem 3.4 with Proposition 3.3 we obtain

CoroLLarY 3.7. Suppose that f is p-connected and g q-connected. Then &
and 7' are both (p+ q+ 1)-connected.

Remark As in Proposition 1.5 of [8], there exists a map I" : QY - 2Cp,.p,
such that @f'oI"=identity. It is sufficient to define I' by I'(0)(¢) = (*, @, *; t).
Note that the diagram

20
2Cp,,p, ———> 9SEy .

o

2Y —————>FE;,

is commutative, in which 7 is the canonical injection
Now we shall deduce the well known theorem of Serre on relative fibre

maps from Corollary 3.7. For this purpose we prove.

TreorEM 3.8. Let 0, : Cp,>Cg and 0. : Cp,—>Cy be the maps induced by
the homotopy-commutative diagram (3.1). Then the cofibres of ®; and @, have
the same homotopy type as those of &'

Proof. Let the diagram
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A
Pl/" \‘:
Ef,[! CP;,PZ

N

be associated with the cotriad P, P,. Using this, the maps 7{ : Cp,—~ Ci, and
71 ¢ Ce,— C;, are obviously defined. On the other hand, &' : Ce,»,—» Y determines
the maps & ¢ Ci,»Cg and %k : Ci,>Cyr. We see easily that the compositions
kioXi and k:°X} coincide with @ and @, respectively. Since both Ck, and Cp,
are equivalent to C.. by Lemma 1.3/, and since X and X; are homotopy equi-
valences by Lemma 1.2/, we conclude that C,, and C,, are equivalent to Cs.,

which completes the proof.

CoroLLARY 3.9. (Serre theorem on relative fibre maps) Suppose that f is
p-connected and g q-connected, and that g is a fibration. Let @1 : Cr,—> Cg, @2 :

Cr,—> Cy be the maps determined by the commutative square:
2N
Ker(f ; g) / Y,

T2 B I4

where Ker (f : g) is the fibre space induced from g by f. Then @, and 0. are
(p+q+ 1)-connected.

This follows from Corollary 3.7 and Theorem 3.8, observing that @; and

@, are, respectively, equivalent to @; and @, of Theorem 3.8.

TueoreM 3.10. Suppose that f is p-connected and g q-connected. Let V be
a l-connected space such that ni(V) =0 for i=Zp+q+1. If A, B, Y and V have
the homotopy type of CW-complexes, then the following sequence is exact:

P¥ (A, V) r\\f* (SP)*

Qo (g)* !
n(Ef,g V) (Y, V)€ n(SEf g, V),

« \
'_P\ B V) & (SP)*

2
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§ 4. Lifting cotriads

Let A(—J:—X—g>B be a cotriad and let

AL
X/ \Cf.g
\/

ng

(4.1

be the associated diagram. Consider the mapping track E,;, of the triad I,
I, and let fdg : X~ AX B be the composition Xi>X>< X&‘gA x B, where 4 is
the diagonal injection. We define ¢ : X Ey,.1, and 7 : Efsg—> 2Cr, ¢ by setting,
for xe X, a € FA, B EB,

£(x) = (F(0), % glx)), &(s)=(x s)e XxICCsg

a(4s), 0£4s<1,

4s-1
2% ax Bs) =4 (x 2571, 1=45<3
B4—4s5s), 35454

Introduce the following homotopy-commutative diagram

¢
E.,.'___" EE
N ¢ .
1 fdg
Eng —> X > AXxB

7 3
I v

ch,g ) E,I‘.J;!
in which I is the injection and ¢ is the map induced by the lower (homotopy-
commutative) square
ProrosiTiON 4.2, (! Eq—~ Ex is a homotoby equivalence.

As shown in [12], we can deduce the Blakers-Massey theorem on excisive

triads from the Serre theorem on relative fibre maps. For this purpose we prove

TrEOREM 4.3. Suppose that f is p-commected and g q-commected. Then &
and 7 are (p+ q—1)-connected.

Proof. We consider the homotopy-commutative diagram
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in which the square is associated with the triad I;, ,. By Lemma 1.2', I and
I, are, respectively, p- and g-connected. Applying Theorem 3.8 to the above
square, the map

L Cp—>Cy,

induced by the above homotopy-commutative square, is (p -+ g + 1)-coanected.

Now it is easily seen that the composition

X
Cf'—_)cﬁn__) C12 )

in which the first map is determined by ¢, coincides with the homotopy
equivalence 7 : Cr— C;, of Lemma 1.2. Thus, Cs— C,, is (p+ q)-connected,

and therefore, by resorting to Proposition 4.2 and the sequence
C:i>Cr—>Cp,»SC:—>SCr—>SCp,~> + * *,
we can infer that & and 7 are (p+ g — 1)-connected.

Suppose further that g is a cofibration and

Xf/'A\i“
N

is the associated commutative diagram, where Coker <f : ¢ is the space
obtained from AV B by the identification f(x) = g(x), x= X. Let

Coker<f : g

7 2 Efag—> 2 Coker {f : &

be the map given by 7 = 2g°y, where q : Cy,o— Coker {f : g> is the canonical
equivalence. Note that, since g is an inclusion, Ef.z can be identified with the
space consisting of (a, 8) € EAx EB such that #ia(1) =43(1), ie., the space
Si,,i. as defined in [13].
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Since 7 is homotopic to m : S;,i,—~ 2 Coker {f : & which is given by
m(a, B) = (2i)(a) — (2:)(B),
and since the sequence
742 Coker {f ¢ ) > mi( T ) > mh(Siyi)—>ma(2 Coker <f : g)

is exact by Proposition 3.3 of [13], where T3, i, is the subspace of EA x EB X
EE Coker {f : g> consisting of (a, 8, 7) such that 7is, 1) = f1a(s), 7(1, ¢) = £8(¢),
it follows

CoroLLARY 4.4. (Blakers-Massey) If f and g are, respectively, p- and q-

connected, and if g is a cofibration, then Ti, i, is (p+q—2)-connected.

CoroLLARY 4.5. Suppose that f is p-connected and g q-connected. Then, for

any CW complex V with dim V<p+ q — 2, the following sequence is exact :

z(V, A)

Py
~
*

\

a(V, Crg).
L,

a(V, 2Cfr,g)—> n(V, X)

/
A

m(V, B)

The dual of Theorem 3.8 is stated as follows:

TueoREM 4.6. Let 0| : Eg—E,, and 0, : E;— Ei, be the maps induced by
the homotopy-commutative square (4.1). Then the fibres of O, and @, are homo-
topy-equivalent to those of &.

§5. The dual EHP sequence

In this section we construct, for a triad A—f—>Y<—g—B, a dual of the EHP
sequence and examine its behaviour. The dual EHP cohomology sequence was
first defined by G. W. Whitehead [15] and has been extended by Tsuchida-
Ando [14].

First, consider the map u : Ef X Eg— Ef, . defined by
w((a, @), (B, b)) =(a, a+4, b)

for ac A, b€ B, --a, B EY, and the “‘projections” IT; : E7 X Eg— Ef,g, 1> :
Ef x Eg— Ey,¢ defined by
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I((a, a), (B, b)) = (a, a, *),
”2((“) (X), (By b)) = (*’ B) b)'

We say that an element p < n(SEy.q, V) is primitive with respect to p if
and only if (Sp)*(p) = (SH)*() + (SIL)*(p).
Now let
q E}*Eg—)S(E; X Eg)
be the map which shrinks to a point the ends of the join. We have a map
K =Q°j: Ef+Eg—>SEy,g,

where j : E;#E;—>Cp,p,and Q : Cp,p,—SEf, ¢ are defined in (3.6), (3.2). Then
we see at once that % = (Su)°q. Note that .&  is equivalent to the map
obtained from p by the Hopf construction. The following lemma allows us to
call ™ the dual Hopf invariant associated with the triad £, &

Lemma 5.1, (cf. [10, Theorem 11) pe n(SErq, V) is primitive with respect
to u if and only if < *(p) =0.

Proof. We consider the diagram associated with the join Ej+FEg:

Sp0* _ (sE7, v)
*
H(Ef*Ey, V)a—  n(S(Ef xEp), V)
(sz)* T[(S,Eg, V).

Then, by Lemma 1.1/, g*° (Su)*(p) =0 if and only if there exist « € =(SE7, V),
B e n(SEz, V) such that

(Sw)*(p) = (Sp)*(a) + (Sp)*(B).

Suppose first that the latter equality holds. We denote the injections
E; > E; XEg, Eg—>E7 x Eg by i1, i, respectively. Applying (Sp))*(Si)™ to both
sides, we obtain (SIL)*(p) = (Sp)*(a). Similarly, (STL)*(p) = (Sp.)*(B). This
proves that p is primitive.

Conversely, since ITx = (ITyo4k) opr, k=1, 2, “primitive” implies the existence
of a, B such that (Sp)*(p) = (Sp)*(a) + (Sp)*(B). g.ed.

We now describe an approximation to the fibre and cofibre of &' by means
of the cofibres of f, g. Let
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YT C.D,,PZ - CPIV Cp,
be the map obtained by shrinking the “center” Ey, g x %— of the cylinder part
of Cp,p,, and let @, : Cp, > Cgq, 0, : Cp,—~ Cr be as in Theorem 3.8. Let
ki:Y->Cr and k: Y->Cq
denote natural injections and let
o1 Ef>2Cs and @ : Eg- 2C,
denote the (Freudenthal) suspension maps given by
(5.2) ola, ) = —a—a, (B, b)=B-b

for ac A, beB, a, = Y.

Introduce the diagram

¢
Ef xEg —>  Cor,p, —> Y > Ce
ldl*dz l’u, 4
(5.3) 2Cs*2C, Cr, N Cr, YxY 4

lW l@V@ lmxh
L

CgbCp ——————> CyVCf —CygX C ————3 Cy# Cy,

where W is the map defined in (2.7) and 4 is the diagonal injection. That
homotopy-commutativity holds in the middle square, ie., (kX k)eodog'>Jo

(0, V @;) o', can be verified by taking the following homotopy :

@ 7,55 -0 =5+ xI(EE2E ) Loy (gt )y (LF3UF3=8u)
(5.4)

a—»f(a)x[*+(&+r)](3~43u)' b—»[(r—73)+*](1+43“)><g(b)

where 0su<1,a€ A, b B, ye Y!, 0=t<1. Therefore the map 6 is induced
so that the right square be commutative. Moreover, using (3.6), (5.2) and
(2.7), we can verify the following:

(a+B)(4s) e Cy 0<4s<1,

(b, 2—4s)eC 12452,
[NV 0y) oo j1((1 = 5)(a, &) Ds(B, b)) = 5= be s

(a, 4s—2) e Cr 2=45s<3,

(a +P)(4s—3)eCr 354554,
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B(4s) e Cg 0<4s<1,

(Lo We(orka)]((1—s)(a, &) ® s(B, b)) = b2=45)€Cy 1=ds=2,
: a(4s—2)e Cy 2<45s<3,
alds—3)e Cy 3<4s=4.

It follows that homotopy-commutativity holds in the left square.
The middle square of (5.3) induces the map ¥ : Ex - CgbCr. We see at

F X
once from (5.4) that the composite Ef*Eg;—> E:v——CgbCy is given as follows:

("C(zs,1+f)><(—(xzs,1+p) 05281,

(XeF)((1—s)ta, a)Ps(B, b)) ={
(Bo,25-1+7) X (Bo,25-1+ 0) 1=52s<2,

where
r=[a+B) =8)++1s,s, p=L((-f-a)=a)+x]1=s
Further we have

(B=b)opesx (~a —a) 0<2s<1,

[We(o1%02)1((1 = 5)(a, «) Ds(B, b))={ R
(B=b)X(—a—a)ys-2s 1=2s=2.

From these results we infer
LeMMA 5.5. We(ai%a;) is homotopic to XoF.

LeMMA 5.6. Suppose that f and g are, respectively, p- and q-connected and,
Surther, let Y be r-comnected. Then Wolsi*a:) is [p+qg+min (p, q, r+1) + 1]-
connected and 6 is [p + g+ min (p, g, r) + 2]-connected.

Proof. Since the adjoints of ¢, ¢ are respectively (p+7+1)- and (g+7
+ 1)-connected, it follows from Lemma 1.4 that o; and o, are respectively min
(2p, p+7+1)-connected and min(2q, ¢+ 7+ 1)-connected. Thus, by Lemma
2.8, Wo(a1*a2) is [p+ g+ min(p, g, r + 1) + 1]-connected. To prove the second
half, note that, by Lemma 5.5, X is [p+ g+ min(p, q, r + 1) + 1]-connected.

Introduce the homotopy commutative diagram

SX
SEx. — > S(Cgzb Cy)

4

Cy ——— Ce#Cy,
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in which the suspension maps X, ¢ are respectively (p+q +7+2)-, (p+q-+
min(p, q) + 3)-connected. This completes the proof of the second half.

LemMA 5.7. The composition

SF v a
S(E;*Eg) —>SEyv—>Cov—>Cn—>SEf,¢

is homotopic to S : S(Ez*Eg) > S’Ey, ¢, where ¢' is the equivalence in (3.2),

O the map which results from shrinking Cryg and 3 the suspension map given by

(2-2H)eY 12212,
S¥e s a7, b,s;t)={

(a,1,b,s;2t)=CCp,p, 0=2¢<1,
Slesa; t)=1(a 21) if 2t<1, =7(2-2¢t) if 2t=1,
SWe; b tr=(b, 28 if 281, =7(2-2¢t) if 2t=1

for ac A, be B, re Y, 0<s<1, 0<t<1, r= EY.

Proof. In the following diagram, the squares are homotopy-commutative :

N SF
S(Ef+Eg) —> SEy, ~——3 SE.

Since 9;°2>SF is given, explicitly, by

la, «a+B, b, s;2t) 021
((1=-35)a a)®s(p, b), t)ﬁ{ . atf

we see that homotopy-commutativity holds in the left triangle by (3.6). From
& =@Q->j, follows the conclusion of the lemma.

Let e : Cfyg—>Cv and €' : Y- Cyv denote canonical embeddings. Combining
Lemmas 5.6, 5.7 with Puppe’s sequence associated with %/, we obtain the fol-

lowing reuslt.

ToeoreM 5.8. If f, g and Y are. respectively, p-, q- and r-connected, and if
A, B and Y have the homotopy type of CW-complexes, then for any 1-comnected
space V such that 7i( V) =0 for i=p+q+r+2, the following sequence is exact :
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&* o* (SuNH*
n(SEy,g, V)<—n(Cfyg, V)(_'“'TE(S(E;*Eg), V)e— ©(S’Ef,q, V)
S s
———n(SCfg, V)¢——n(S(E;*Eg), V)¢—= - -,

where E* is (3)* and 9* denotes "o (L' Z°SF)*™'.  Further, if mi(V)=0 for
i=p+q+r+3, them the sequence

74 &* 2%
w(Ef*Eg, 2V)<——n(SEs,g, 2V)<—1(Cfeg, QV)<—- - -

is exact.

Note that 2%(p) = 2%(p,) for pi, ;2= n(S(E7*Eg), V) if and only if p, =
S *(t) + p for some r€ 7(S*Efq, V).
As an application of Theorem 5.8 we get.

ProrosiTION 5.9. Let A and B be, respectively, p- and q-connected. Then
the map A : QA*QB - S(B*A) defined by

A((1=)a®tp) = (a+ B, B),
is (p+ g+ min(p, q))-connected.
Proof. Consider the triad B—“—>BVA<2—A. It follows from the theorem
of Blakers-Massey that the maps @] : 2A->E;, 0;: @B~ E;, are (p+q-—1)-

connected (cf. Theorem 4.6), where @, @, are both induced by the commutative

diagram
B 7
1
\A/iz'

Since BV A is min(p, g)-connected and Cii, is contractible, it follows from
Theorem 5.8 that .« : Ei*E;,— SEi i, = S(B*A) is (p+q+ min(p, ¢) +1)-con-
nected.

BV A.

We see that the composite

) !
*0;

0)%0 N7
QA*QB——>Ej*E;,—>S(B*A)

is just 4. This completes the proof, noticing that @{*@; is (p + g+ min(p, q))-
connected.
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The above proposition enables us to obtain the following result mentioned at
the end of §2.

CoroLLARY 5.10. W' : A# B—SA * SB, as defined in (2.9), is (p+q + min
(D, q) +2)-connected, if A and B are respectively p- and q-connected.

Proof. Consider the commutative diagram

Q SK Sw
A*B —3 S(AxB) —> S(A#B) ——> S(SA%:SB)

lT

BxA T
lO'B*O'A
A
9SB*0SA > S(SA%SB),

in which T is the switching map, 4 the map as defined in Proposition 5.9, T
the involution resulting from inversing suspension parameter, and o4, op are
defined by sa(a@) =@, os(b) = —b. Since ags*oa is (p+ g+ min(p, q) + 3)-con-
nected and SK°@ is a weak equivalence by Proposition 2.2/, we get the desired

conclusion.

LemMma 5.11. Let ¢ : Y- 2SY denote the canonical embedding, «(y) = 3. Let
W' :Cg#Cr - SCg’?SCf be the map described in (2.9). Then the homotopy
class of the composition
Y-S Com5Cy # CrrrSCe#SCy
coincides with the cojoin product {(2Sk;)ce, (2Sk;)oe>, where ky : Y- Cy, b :
Y - Cg are inclusions.

Proof. This follows from

LW o000) (9)I(E) = [(W'o Ko (ke x k) o 4)(3)1(2)
{ (5,1-2HeSC; 0=2t<1,
"Ly, 2t-1esc, 1=2t=2.

With the above preliminaries, we can establish the dual EHP sequence for

a triad A->Y<-B.
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THEOREM 5.12. Let A—£> Y«g—B be a triad inm which A, B, Y have the ho-

motopy type of CW-complexes. 1If f, g and Y are respectively p-, q- and r-con-
nected, then the diagram

6 2 X2 _
#(SEf,g, V) b= 1(Cyrg, V) 4—— n(S(Ef*Eg), V) 4—— n(SErq, V)
Q" lk* R* l(se)*‘
arx P a*

w(Crypyy V) €=— (Y, V) e 1(SC % SC#, V) é&~——— 1(SCp, ¢, V)

commutes and exact rows for 1-connected space V such that n;(V) =0 for i=p
+ g+ min(p, q, 7) +2, where FP* is the map induced by <{(2Sk:)ce, (2Sk)oe>
and R* = (W'of030SF)* ! is bijective.

Proof. Note that W' : Cg#Cr—>SCg*SCy is (p+¢q-+min(p, q) + 2)-con-
nected. Then we see that the theorem follows from (3.2), Lemmas 5 6, 5.11.

CoroLLARY 5.13. If Y is r-connected, then, for a l-comnected space V such

that n;(V) =0 for i=37r+2, we have an exact sequence:

&* (S)*
n(SRY, V) é—— (Y, V) —— a(S(QY*2Y), V) &——(S2Y, V)
R*|=
P =L, o
n(SY%SY, V)
W’*l::
n(Y#Y, V).

This follows by applying Theorem 5.12 to the triad * > Y« *,

In case where V is the Eilenberg-MacLane space in Corollary 5.13, # can
be described in terms of cup-products in the light of Lemma 2.5 and Proposi-
tion 2.6.

Finally, we shall furnish @* with some meaning. Consider the situation
(3.1). Let v: Csg—>V be given and write u: Y >V for the composite
Y—k—>Cng—v> V. v gives rise to liftings 7 : A—>Eu, §: B~Es. Let us denote
the action of 2V on Ey by m : VX E,—- E,. Then we get.

ProrosiTION 5.14. Let © denote the adjoint of 7"*(v). Then

mylz, PH@))} = PF(f).

https://doi.org/10.1017/5S0027763000012058 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012058

272 YASUTOSHI NOMURA

Moreover, given h : K-> A, k: K- B with foh=gok, we can find [: K-
Ef g such that Piol~h, P,ol=k We see easily that the composite

Si 7
SK—>SEf,g—>Crye—>SAV SB,

where the last arrow is the identification map resulting by shrinking Y to a
point, is homotopic to the difference j;°(Sh) — s,° (Sk), where j; : SA->SAV SB,
j» * SB—»SAVSB are inclusions. Thus, in case K is a suspension, wey'o(S])
represents the generalized Toda bracket {u g _ Z} (see [5]).

Further, we assume foh~gok=~0. Then h, k can be lifted to % : K- E%,
%k : K-> E;. We may choose the composite

{n, Rk} __ .
——)Ef X Eg—)Ef,g

K
for . As 9o/ =0, vey' is primitive with respect to u. Therefore we get
von'o(SI) =voy' o (SI)oS{h, &} +voy'o (SIL) o S{h, }.
A simple caiculation shows

ProrosiTioN 5.15. woy'o(SI) : SK— V represents the difference — us(h) + ug

(k) of functional u-operations.

§ 6. The EHP sequence

This section studies the situation dual to that considered in §5. Namely,
by generalizing a result of Ganea [8] to a cotriad, we will regain “symmetry”.

Let A<~f—-X—g—>B be a cotriad and consider the associated diagram (4.1).
The notations of §4 will be used without specific mention.

First, we try to seek an approximation to the fibre and to the cofibre of ¢.

Introduce the diagram

_ L J ~ K
Ef PEf——— E;VE; —> E;xEf ——> FE; 4Ey

lqz\/ql lm;xw;

. L
(6.1) XV X E;, % E, o

Vool

Ex Eii, I— O
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in which p is the “multiplication” defined at the beginning of §5, ¥ the folding
map, @ and @, the maps as defined in Theorem 4.6, and ¢, ¢; are the projec-
tions. It-is easily seen that the middle square homotopy-commutes, and hence

induces the maps g, ».

THEOREM 6.2. Let f, g be respectively p-, q-connected and let X be r-connected.
Then o is [p+ g+ min(p, g, r+1) — 1]-connected and v is [p+q+ min(p, q, »
+ 1) — 2]-connected.

Proof. Apply the suspension functor to the right square and then augment

as follows :
Q, ' SK
EzxEf ———> S(Ez x Ef) —> S(E; % Ey)
J/m;»«m; lsm; X 0})
- Q- _
E‘Il*‘EI2 —_— S(EllXEIZ) SP
(6.3)
Se ) Si
SX ————» SE; ;, ———> SCs
b |
. 2
cf,g _— CD:, b2 —> Cy

in which py : Ei,,1,~> A, p» : E;,,1,~ B are projections, 7 the map determined by

the commutative diagram :

s
X

I

1
Ae— Fp g,

g . B
2 B

and / the map induced by the identification maps @, @;. It follows from 1.3’
that / is a weak homotopy equivalence, since Cr is homotopy-equivalent to the
mapping cylinder of a cotriad *«<C:—*. Also, by Theorems 4.3 and 4.6,
01*0; is (p + g+ min(p, ¢))-connected.

Define a map &' : Cy,, 5, Cr, as the canonical extension of a triad

I I
A—Cy, o<—B (see §3). We see that &0y = identity. Since the fibre of & is
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equivalent to E7*E;, by Theorem 3.4, we get the following commutative

diagram

i ¢
0 Hi(Er Er)—> Hi(Cpy, p)—>Hi(Crg) - 0

o

b
h 7
0« Hi(Cy) ¢—~—Hp (Cpy.p) ——Hi(G.g) <0,

in which the rows are exact for k< p-+ g+ min(p, ¢, r+ 1)+ 1. Chasing this
diagram, we conclude thet hoj is (p+ ¢+ min(p, g, +1) +1)-connected.
Now, since @s;°j = Suo Q. by (3.6), homotopy-commutativity of (6.3) implies

So°SK° Q1= Sic Su°@Q,° (0:1%0,)
= SioQs0jo (O[*By) = [ohojo(@;*D;).

Upon noticing that SKoQ, is a weak equivalence by Proposition 2.2/, we infer
that Sp is [p+ g+ min(p, ¢, » + 1)J-connected.
Finally, the connectivity of » follows from the homotopy-commutative

diagram

s
S(E; b Ef) ———> SE:

[

0
E; 4 EFf ———— Cx

where the vertical maps are “suspension maps”, the left of which is [p+q+
min(p, g)J-connected, whereas, the right is [ + g+ min(#, p + g — 1)]-connected.

q.e.d.
Next, using the map u' @ Cr,¢— CrV Ce which results from shrinking the

center of cylinder to a point, we define the Hopf invariant
H: QCr g Cr*Cq
associated with a cotriad f, g as the composition
QC/,g&).Q(CfV Cg)—I>Cf % Cq.
The following is dual to Lemma 5. 1.

LEMMA 6.4. Let 7, : Cr,g—> CrN Cg, 12 : Cr g—>CsV Cq be the “injections”
which are respectively the compositions of Cr,g— Cys, Cg (projections) with Cy,
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Cz;»> CsNCy. Then Hy(v) =0 for v=nl(V, QCy,g) if and only if the equality
(2u)se(1) = (271)+(7) + (272)4(7) holds.
Now we shall define F' : C:— Cs#*C,, dual to the map F defined in (3.5).

Put
Fl(x, s) = (,ﬂx):zi, 1S = = Fo,s+ Ko, s xe X, 0=s<1,

FI(B) =48 BE€ Ei,1,< (Crg),

where — %, s (Cr), %,s= (Cg)’. This corresponds to the map .7 defined by

Ganea [8]. We see easily that the following diagram is commutative:

I .
2Crg =————> E, .,

o k

Vol

Cs*C¢ 6———— C:s.
Observe that it seems difficult to define a dual of G' given in Theorem 3. 4.
LemMma 6.5. The composite map

injection

¢ G QF .
—> Ei——>Ev—>2C:——>2(Cr*Cyg)

;.chf,g
is homotopic to QH, where & is the suspension map.

LemMMA 6.6. The diagram homotopy-commutes:

o0
Ez $ Ef — > (=

W’l
Fl

SE; > SEs

wl
/\

_ a [
SE;SE; —22" 45 Ci2Con

where w is the tnvolution swiltching factors and o, o2 are given as follows:

al(2s) 2s=1

ala, x5 8) ={
(x,2-2s) 2s=1
B(1-2s) 2s=1

’ ; )={
(% B3 s (x,2—25) 2s=1.
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Hence, if f, g and X are respectively p-, q- and r-comnected, then F' is [p+q+
min(7z +1, p, g) — 1]-connected.

Proof. This follows by combining the following facts:

p is [p+ g+ min(p, g, r+1) —1]-connected by Theorem 6.2,
W' is [p+ g+ min(p, g) — 1]-connected by Corollary 5. 10,
g1, o» are respectively [p+ min(p, ) +11-, [g+ min(q, ) +1]-connected by

Lemma 1.5.
LemMmA 6.7. Let 1, : SQEs—> X, I, : SRE; - X be respectively the composite
maps of canonical ones:
@ _ )
SQE— Efr—> X, SQE;~— E;—>X.

Then the homotopy class of the composition

il wo__ v projection
QE+QFE; —>QEs+xQFE;—>Ez b Ef—> Ex———X

coincides with the generalized Whitehead product [l;, L], where t denote inversions.

This follows from the fact that the above composition is equal to Fo (g,
V g) o Lo Wo (xt).

Combining Lemmas 6.5, 6.6, 6.7 with Theorem 6.2 and noting that 7 is
(p +q+7—1)-connected, we get

THEOREM 6.8. Let f, g and X be p-, q- and r-connected respectively, and let
k be a positive integer. Then, for any CW-complex K with dim K+ k<p+q+
min(r+1, p, @) — 3, we have the following exact sequence

2(K, 2"V Epag) > + + *n(K, QEfsg)— —>n(K, @°Cs,g) —

! T

*

(K, Q"' X)~~> « « +n(K, 8X)———>n(K, QFE1,1,)—>

~ n
2K, 2(Cr2Co))~—>n(K, Epsg)—n(K, 2Cy.¢)

Rlz P l ¢ I*l
2K, QEs* QE; )—>n(K, X)——>n(K, Ei.1,),

in which Py is the map induced by [, I,] and R the bijection (t*t)y°(QF oG0
pe W)*_l.
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