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Abstract

Given a Markov chain, a stochastic flow that simultaneously con-
structs sample paths started at each possible initial value can be
constructed as a composition of random fields. Here, a method is de-
scribed for coupling flows by modifying an arbitrary field (consistent
with the Markov chain of interest) by an independence Metropolis—
Hastings iteration. The resulting stochastic flow is shown to have
many desirable coalescence properties, regardless of the form of the
original flow.

1. Introduction

In this note, we describe a novel approach to the problem of coupling random fields an
by extension, Markov processes. The problem setting is as follows. Consider a probabil
space(2, £, P), upon which is defined &mily (%(z) 1z € Z) of random variables
(called arandom field, Z being some index set and each varialile) taking values

in some common measurable sp&ée &). Under measurability conditions, the marginal
distributions of the field are fully described by a keret Z x & — [0, 1], in the sense

that
P(ae(z) c dy) — P(z,dy), zeZ. 1)

Conversely, if we start with a kerndt and take definition (1) as a hypothesis, we can
construct some probability spa¢g, #,P) and a familyX(z) : @ — E (z € Z) such
that (1) holds. Such a probability is often calle@¢@upling, at least whe& consists of
two points only. The choices fdt are limitless, and it therefore becomes interesting to ask
whether a probability space and a famity= (%(z) 1z € Z) can be constructed which
additionally satisfy some previously agreed condition.

(a) The casgZ| = 2. When the index seX consists of only two (distinct) points, the
problem that we shall deal with can be phrased as follows: given two marginal distribt
tions P1(dy) and P>(dy) on a common spack, find a probability spacé, £, P) and a
realization(X1, X2) such that

P(X1 = X2) >0, X1~ P1(), X2 ~ Pa("). (2

This problem can be solve@][if and only if there exists some nontrivial measuie) on

E such that bothP1 > v and P> > v, in which case there existsmaaximalprobability P
satisfying (2) on a canonical probability spaReThis result has been the basis for a very
successful method, originally proposed by Nummelin, for coupling Markov chains [7].

(b) The caseZ| > 2. When the indexing s&f consists of more than two distinct points,
we must replace (2) by a more suitable requiremeriP ofihere is no universal definition
extending (2), but the following one seems natural.
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A new method for coupling random fields

DEFINITION I. Let Z be some index set, and consider a kerBel Z x & — [0, 1] of
probability measures on some measurable spgcé€). We say that afamilf(f(z) 1z € Z)
of random variables with values ifi, defined on some probability space, ¥, P) is a
finite coupling of the field determined Wyif both (1) holds and

P(z — X(z) has afinite range i) = 1.
The family is adiscrete coupling of the field determined Byif (1) holds and
P(z — X(z) has a discrete range i) = 1.
In our context, of course, we shall be interested in the case whereF .

One aim will be to find conditions on the kerngl such that there exists a finitely
(or, respectively, discretely) coupled field. Interest in finite couplings is due to the recel
developments in the literature on perfect simulation, which was spawned by the semir
work of Propp and Wilson [9]. The proof of existence that we offer is constructive, and i
susceptible to implementation on a computer.

The construction of Markov chains for simulation purposes is usually accomplished b
the use of a stochastic recursive representation of the Markov chain transifjonkif in
turn implies a succession of stochastic fields, mapping at each simulation epoch the curr
statez of the chain into its subsequent valiiéz). On composition of these fields, we obtain
a stochastic flow describing the simultaneous dynamics of the chain from all possible initi
states.

It is of interest (especially in the fast-growing area of perfect simulation) to construc
this flow in such a way as to force the coalescence of chains started from all possible init
states. Unfortunately, many natural stochastic recursive constructions do not lead to tf
and it would be desirable to exhibit a general recipe for the modification of an arbitrar
stochastic flow (consistent with this particular Markov chain dynamic) in order to guarante
the desired coalescence property. This is the motivation behind the present paper.

Our approach will be to modify the individual component fields of an existing flow, anc
to recombine these new fields into a flow that has improved coalescence properties.
shall use a method of modification based on the independence sampler (as commonly u
in MCMC). Our first two main results, Theorem@sand5, deal with the modified fields
themselves, showing that under suitable uniform ergodicity assumptions, the fiétgs,
can be constructed so as to have finite image with arbitrarily high probability (Therem
and with probability 1 by a suitable perfect simulation construction (The&em

Theoremst and 8 deal with the whole flow as constructed from the modified fields,
xD(z), x@(z), ..., say. Theoren® ensures the coupling of chains started at any two
arbitrary initial values. Theorer® extends this result to an arbitrary collection of starting
values. Finally, in Propositiofl, we focus on the problem of constructing perfect simula-
tion algorithms for Metropolis—Hastings chains. These algorithms are not covered by o
previous results, although their specific structure allows specialised results to be prove
Examples include the random walk Metropolis algorithm and the Langevin algorithm.

To see our field coupling methodology in action, the reader is advised to visit the UR
given inAppendix Ato see an online illustration.

2. A Markov chain on field space

The construction of the finitely (or, respectively, discretely) coupled field will be
accomplished by applying ideas originally devised by Propp and Wilg€intd a
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Metropolis—Hastings-type chain whose states are represented by candidate fields. The
cessively produced fields in this chain will have progressively ‘smaller’ ranges until suc
time as only finite range realizations of the field are produced. This will almost surely occt
after a finite number of iterations, uniformly fast in the ‘seed’ field. By the technique of
‘coupling from the past’, we generate from this chain a finitely coupled field.

We proceed to set up some notation, and then we describe the transitions of the abo
mentioned Markov chain. L&tE, &, i) be ac-finite measure space, and étbe a topo-
logical space. We shall denote ByZ; E) the space of Borel measurable functionsZof
into E. This will be thought of as the state space for a Markov cgindefined below.

We also suppose given a probability kerlz, dy) = p(z, y)u(dy) of Z into E,
absolutely continuous with respectifo The existence of the densipy(z, y) here is mainly
a matter of convenience, and can be dispensed with at the cost of small changes in the the
below.

For the construction of our Markov chain(s), we shall need an appropriate probabilit
space(2, ), which we now describe. Take = §(Z; E), and letF be theo-algebra
generated by the function evaluatians> w(z), w € Q. Define also the sél of probability
measures o2, ) which prescribe the marginals of the canonical random variable:

N={PeP Q) :Plw:w(i) cA)=Pi Aforalze Z,Ac B(E)]. (3)

Note thatlT is nonempty, since we can always take the product measure

P:@P(z, ) eIl

However, in the interests of readability, given a random varidbleQ — §(Z; E), we
shall often write ‘X< IT’ instead of the more cumbersome ‘the law3belongs talT'.

We are now ready to define our Markov chain. In general, we shall need a famil
®.(x, dy) of probability kernels satisfying@,(x,-) > P(x,-) for eachz € Z; these
will represent ‘proposals’. We suppose here also the existence of a déhgity,dy) =
0 (x, y)u(dy).

To define the Markov chai(i,,), we takeXq € I1 (‘any random variablé&g whose law

belongs toIT’), and then use induction. Givett, = (X,(x) : z € Z), let
®; ~ 0:(Xn(2), (), and putt, 1 = (Xp41(2) : 2 € Z), where
X0 = 105 P 9I0(P Xa () > £ p( Xn(0)0: (T (). D)1

X,(z), otherwise.

Here,& ~ U[O0, 1] independently oft,,.

If we fix z € Z in the above, it is immediately seen that th®cessn — X, (z2)
is a Metropolis—Hastings chain with stationary distributiBi, -) and proposal kernel
0, (x, dy). Since, moreover, by assumptidia(z) ~ p(z, -)u(-), one checks immediately
(or see [11]) that

P(X,(2) € dy) = p(z, y)u(dy), n>0; that is, X, € I1. (5)

However, when viewed as a family indexed fthe chainsX .(z) are not independent as
z varies throughouk, since wereuse the same random numiger

In the examples below, we describe some choices of the kernel dénsityy) which
guarantee that, for sufficiently large (but finiig)the realizatiory — X,,(z) almost surely
has finite range. None of the choices that we list is claimed to be ‘optimal’.
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ExaMPLE 1. The simplestexample of such achainisarguably obtained if w@takey) =
6(y), afunction ofy alone. We call this theimple field coupler. For this choice, the formula
(4) simplifies to

®~0OuE), if plz. ®)O(Xn(2)) > & - p(z, Xn(2))0(P):
Xn(2), otherwise.

Xnt1(2) = (6)
Notefirstthatif; — X (z) hasfinite range, then every subsequentfunctien X, (z)
will have finite range also. Thus the set of stateg({; E) with finite range forms an
absorbing set for any chain defined k§).(Let us now show that this chai, indeed
evolves towards a state with finite range. We shall explain in the next section how to gener:
a finitely coupled field using a perfect simulation technique.
Recall that a subse&t C Z is called small[10] for the kernelP (x, dy) on E if there
exists a probability density and a constart > 0 such that

jl’elfcp(x, Vu(dy) = ev(y)u(dy). (7

THEOREM 2. Suppose thaZ can be entirely covered by a finite union bfsmall sets
C1, ..., Cy, and suppose we can choose a probability dersitysuch a way that

Gil)i(') < Inf P(Z9 ) < Supp(zv ) < yze()s i :17"'9N’ (8)

2€C; zeC;
for positive numbersy, ... , ey, y1, ..., yn. If we define a Markov chaift,, onIT by the
prescription(6), then
P(X, has finite range eventually= 1.

Proof. Clearly, from (6), ifz is fixed the process; — X, (z) is a Metropolis—Hastings
Markov chain onE (an independence sampler, in fact), with stationary distribution
p(z, Hu(-). Therefore we certainly havé), sinceXp(z) is already stationary. Now, for
everyz € Z,the chaim — X, (z) must almost certainly move eventually. This will happen
the first time from (6) at time if and only if

(P2, ®)0(X4(2))) > & - (P(2. Xa(2))0(P)). ©)
By (7) and (8), ifz € Ck, the event (9) contains the event
€xvk(P) > yi§ 0(P), (10)

which will occur eventually for some pai®, &) since the pairs are independent, by the
Borel-Cantelli lemma. When it occurs at timgsay,all Markov chains¥,,, (z) for z € Cy

will accept thesamgump to @, reducing the range af— X, (z) on Cy to a single point.
Note that after this common jump, the range o@gris likely to break into more than one
point, since the stationary distribution #{z) depends on. However, this procedure will
never create more than a finite number of break points at each iteration. This analysis
valid on each of the small se;, ..., Cy that coverZ, and another application of the
Borel-Cantelli lemma now shows that each of these sets must experience a common ju
within a finite timer = max{ny, ..., ny}, beyond which the realizatia¥, ,, must always
have a finite range. O

The simple field coupler does not usually generate finitely coupled random fields in
fixed, finite number of iterationg, say, if the ‘seed’ fieldty is not already finitely coupled.
To state an analogy with the behaviour of ergodic Markov chains, we make the followin
definition.

https://doi.org/10.1112/5146115700000070X Published online by CaB@ridge University Press


https://doi.org/10.1112/S146115700000070X

A new method for coupling random fields

DEeriNITION 3. A random fieldX = (X(z) : z € Z) is calledfinitely coupled withire > 0
it P(z — X(z) has finite range> 1 — e.

With this definition, we can paraphrase Theor2ras follows. For eack > 0, there
existsn such that¥,, is finitely coupled withine. It is not true thatX,, is finitely coupled
(within e = 0) for anyn. Thus, given a realizatiofp of a seed field, we can never be
certain that the realizatioi,, generated by the simple field coupler has finite range. This
is important, as sampling the field at a random time may lead to a biased sample, as
shall see in Section 3. We shall construct a finitely coupled fiehy a perfect simulation
technique in the next section. For practical implementation of this technique, it is not eve
necessary to be able to generate an initial fiéj¢since its shape over the small g&tis
completely forgotten once the event (10) occurs.

The bounds (8) are not needed to implement the simple field coupler. If they are availab
however, we can obtain an estimate of the speed of convergence to a finitely coupled fi
within € > 0. By the proof of Theorer, the realizatiorX,, has finite range as soon as the
event (10) has occurred for eakh= 1, ... , N. If we denote byr} the first hitting time of
the set{(y, x) : exvr(y) > yx6(y)} by the IID serieg®™, ™), we have

P(X, has finite range > P(max(7y, ..., Ty) < n),

and this is independent &f. This bound can be explicitly computed in particular cases.
If Z is only covered by a countable collection of 1-small sets, we can still run the
algorithm (6), but the realizatiak,, will generally not have a discrete range in a finite time.
We end our description of the properties of the simple field coupler with some commen
about the assumptions of Theor@mlLet us suppose that = E, so that we may think of
the kernelP as the transition function of a Markov chain with state spéce
Itis afairly easy exercise (left to the reader) to show tuaerage of: by a finite number
of 1-small setaind irreducibility imply that the whole sét is petite, and aperiodicity then
gives the whole seft as small. This last statement implies tiRais uniformly ergodic.
Itis therefore of interest to know if the converse holds. Unfortunately, this case is not <
straightforward. Indeed, iP is uniformly ergodic, it does not follow tha can be covered
by a finite, even countable, collection of 1-small sets.
As a counterexample, consider the random scan Gibbs sampler with uniform target
E =10, 1] x [0, 1]. Here, the kerneP is given explicitly by

P(x1, x2; dy1 X dy2) = 5(8.,(dyD)dyz + 8., (dy2)dy1).

Since for(xy, x2) # (x1, x3) € [0, 1] x [0, 1], P(x1, x2; -) andP(xy, x5; -) are mutually
singular measures unlesg = xj or x2 = xJ, it is impossible to partitiorE into even a
countablecollection of 1-small sets. Howevek, is still small (and hence is uniformly
ergodic), for every part of the state space can be reached in two steps:

P?(x1, x2; dy1 x dyp) > 3dy1 x dyz = ev(dy1 x dyp).

In this counterexample? did not have a density with respect to somdinite product
measure orE. However, the random scan Gibbs sampler on a discrete state gpac&?2
say, does have a joint densjbyx, y), and still there is only a countable covering by 1-small
sets. Note that with a strictly positive continuous density and a locally compact state spa
E, there always is at leastfmite covering by 1-small sets (see Corollatpelow).
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Intuitively, what is needed for a finite covering by 1-small sets is that the chain be able 1
dolargejumps in the state space. We offer the following sufficient condition (which implies
that the whole state spageis 1-small).

COROLLARY 4. Supposethak (x, dy) has a strictly positive continuous density with respect
to somer -finite reference probability on Z. If Z is compact, or i is only locally compact
and the limitp (oo, y) :=lim,_, » p(z, y) > 0exists and defines a probability density, then

P(X%, has finite range in finite time= 1.

Proof. If Z is locally compact, we add a point at infinity, making it compact. Thus we
can always assume thatis compact. Thus/ = sup, , p(x, y) < oo. Now by the strict
positivity of the density (x, y) the setd/, = {(z, y) : M~ 1p(z, y) € (1/n,2/n)} entirely
cover the compact s&t x Z. Hence there exists a finite subcoverlig, . . ., U,, say, and
thesetsl; ={z: (z,y) € Un;} forj=1,...,kare 1-small and covet:

1
P(z,dy) = p(z, y)u(dy) = ;1%. u(dy)
=¢€;v;(dy) if z € Cj, j=1,... k. O

To illustrate the corollary, we suppose thats the transition kernel associated with the
random field orZ = E = R given by

Xo2) = 24+ 027" (2)/21 () + o (D)W, W~ N(0,1),

where we specifyr ando as follows. Letz(x) be some function such that(x) ~
exp(—a |x|?) as|x| — oo, wherea andp are strictly positive real numbers. Taking any
sequence > 0 such thay, + 8 > 2 for all s, let o satisfy

oz(x)/(— logz (x))"/# — 1as|x| - .

It is shown in [12] that the kernaP associated with the fiel&p is uniformly ergodic, and
itis left to the reader to check that the assumptions of the corollary above are verified. Th
Theorem? applies to the ‘seed’ fielto.

It is clear that the choice of proposél for the simple field coupler will influence the
acceptance rate of the algorithm. For any givene Z, we can judiciously adapt the
proposal density(-) to the target density(zo, -), but this will be useless if the density
p(z, -) varies highly as a function of. This difficulty can be addressed very simply by
implementing an auxiliary variable which can be used to tune the propoSdie next
example shows one way to do this. It will be called theéependence field coupler.

ExampLE 2. In this example, we present a version of the chdinvhich allows a range

of proposal distributions, thereby better taking into account the shapé& of). Referring
back to (4), we suppose given a family(y) of proposal distributions. Typical choices of
0,(-) would be ‘close’ top(z, -). We shall need a selection mechanism, to decide which
distributioné,, is to be used at every step of the algorithm. The simplest choice is to tak
zo distributed independently oA according to some distribution(-), perhaps assigning
higher weight to highly variable or otherwise difficult regions of the field. We call the
independence field coupldre following Markov chainX,) on3(Z; E). GivenXx,, draw
independently #+1 .=y ~ 5(.), and set

Dy ~ Oy (), if p(z, Py)Oy(Xa(2)) > & - p(z, X4 (2))0y (Py);

}:n = .
+1@) Xn(2), otherwise.

11)
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Note that we can think of the objett ™, X, (z) : z € Z) as a new random field, where
the index set is nowZ U {zg} for some isolated pointg ¢ Z, andX,(zo) := Y. With
this notation, we can fit the rulé {) in the framework (4) (this is left as an exercise for the
reader).

The auxiliary variabley ™ are 11D, and giver,, e IT (by the inductive hypothesis),
we also have

P(X41(2) € dx) = / P(X41() € dx | ¥ = y)n(dy)

= /p(z, x)u(dx)n(dy) (using (5))

= p(z, x)u(dx),

since ifY = y is given, we just have the previous simple field coup®mwith6(-) = 6, (.).
Thus, clearly,X,+1 € T if X, € I1. We can now repeat the arguments of the previous
example, yielding identical theorems for this new field coupler if we simply repléke (
with the generalization

€vi(-) < pz, ) < iy (), z,yeC, fori=1,...,N. (12)

Let us assume this done.

The constructionX1), while an improvement ove6), may suffer from another defect.
Due to the choice of auxiliary variableindependently of the current state of the figld =
(%n(z) 1z € Z), we can expect some redundancy in the proposed vahsd®, ...
whenY ™ occurs in a location sufficiently close to a previous vati€ (wherek < n),
whose associated proposk{®) was accepted. In our simulations, this appeared to matte
only when the choices @, andn were ‘bad’. Clearly, the scope for further extensions of
the field couplerX,,) is limitless.

3. Generating finitely coupled fields

The field couplers of the previous section are straightforward to implement, and comput
experiments suggest that a small number of iterations will suffice to obtain a finite rang
Here we mean, of course, that the Markov chajn must be simulated for a small but
fixed (non-random) number of iterations, starting from an uncoupled version of the fielc
However, for anyr, the realized fieldX, will only ever be finitely coupled within some
e > 0.

For application to simulation problems, it is desirable to implement a procedure that wi
outputwith certaintya finitely coupled version of the field of interest. Here, we describe
how this can be accomplished in general, while in the next section, some concrete Mark
chain Monte Carlo examples will be discussed.

The difficulty encountered when trying to output a finitely coupled field using the Markov
chainX,, is that, even thouglo € IT andX,, € I for all deterministic times > 0 (recall
thatIT was defined in (3)), if we stop the chain at some random ting observing the
field (X, (z) : z € Z) and deciding that it has fully coupled, the restijtno longer belongs
to IT in general. To illustrate, consider the following naive procedure.

Faulty reasoning: Suppose thaZ = [0, 1], with p(z, y) = (z + 1)»*, 0 < y < x.
We consider the simple field coupler with proposal givendby~ p(0, -). Let T be the
first time that the field is finitely coupled. It is easy to check that at each iteration of th
field coupler, the set af values that accept the proposed move is of the fiiim] for
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some random O< z; < 1. Given a suitabld/ (0, 1) random variableW, we can set

Xo(z) = W(lﬂ)fl, so that finite coupling will occur precisely whefi = 1. Therefore
X (-) is a constant map. However this is inconsistent with the marginal mean transitic
values:fol yp(x,y) = (x +1)/(x + 2), so thatX, does not belong tal.

In general, stopping timesfor which X, (z) ~ P(z, -) are hard to find. If botlX, € IT
andX; is independent of, thent is known as atrong stationary timésee [2]).

There is another method to generate a finitely coupled field in finite time, by goin
backwards in time rather than forward. The details will occupy the rest of this sectior
Throughout, we hypothesize thats covered by a finite number of 1-smallséts . . ., Cy,
and that 12) holds. We now briefly remind the reader of the Propp and Wilson formalisn
for perfect simulatiorby Markov chains, duly adapted to our requirements.

The equations (6) and (11) can be viewed as implicitly defining a sequence of independs
random functionsG, : §(Z; E) x Q — F(Z; E) so thatX,,11(w) = G,(X,(w), w). If
function composition occurs in the first variable, then we have equivalently

Xp(w) =(GroGu_10---0G1)(Xo(w), w).

It is convenient to extend the familyG,,) for valuesn = 0, —1, -2, —3, ... so that we
may think of the chair¥,, as evolving from the distant past.
By (5), itis clear that for any € §(Z; E),

(GhoGp_10---0G)w) eI, ifuell. (13)

But the mapsG, are exchangeable, so if we wrilg, (u) = Goo G_10---0 G_,(u) for
u € I, then by (13) we automatically have

lim 9,u) € 1, if ue IIand the limit exists. (14)
n—oo

Suppose, moreover, that we can prove (as we do in Thebjehat the random time
T = inf{n : Y,(-) is constant ori1}
is almost surely finite. In that case, we have
Dn() =ProGr-10---0G_,(-) =Yr(-) on{T < n}. (15)

This fact, first noted by Propp and Wilson in a different cont&{t forms the basis for
their perfect simulation method. In our setting, it suffices now to construct a random tim
T’ > T for which we can conveniently test wheth@"' < n} has occurred. Byl{4) and
(15) we must then hav&y = 2),,(-) € I1, a perfect specimen of a finitely coupled field.
We shall do this now for the algorithni{), as 6) can be viewed as the special case when
Oy()=06()forally e Z.

Intuitively, we shall think of the fieldk,, defined by {1) as a random point pattern on
Z x E (the graph of the map+— X,,(z)). One iteration of the independence field coupler
(11) on the fieldX, consists in the deletion of a section of the point pattern, replacing it
by a new pattern. If we consider two initially distinct point pattesrendy’, then for any
¢, the patterngs, (1) and G, (1) will agree at all points that were newly added, provided
that these had been accepted by both patterns. Thus we can expect that for all sufficie
largen, all the points originally making up the pattennandu’ have disappeared from the
patternsGooG_10---0G_,(u) andGgoG_10---0G_,(u"), which will therefore agree:
@n(u) = g.)n(u/)-
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(FC-1):
Generate IID sequences €9, v0 90y D yD od) . where

O ~ur0,1, YO ~5n0), 0% ~ 0y (nl), k=0,1,23,.... (16)
(FC-2):

Let T, = min{s > 0: (@9 /0y (@) > yké(s)}
and set T'=max{T/ :k=1,...,N}.

(FC-3):
For fixed n, define the random map G_, from E® y®™ oMy py:
if u=@w) :ze€Z) is a field,

_ e, it p(e, @)y (u) = £ p(z, w(@)Byin (0);
(Gon(w)(2) = {u(z), otherwise.
(FC-4):

Thus X = GogoG_10---0G_7/(u) is finitely coupled and belongs to
I1. We output X.

Algorithm 1: The field coupler.

We now construct the stopping tinT€ > T. We assume that (12) holds. To generate a
finitely coupled field, Algorithml is used.

For step (FC-3), note thaG_Tk/ (1)) (z) is independent of for z € Cy, and hence so is
(@n(u))(z) forall n > 7. Consequently)7/(u) is a random field which is independent
of u. Moreover,P(T’ < o0) = 1 as follows from Theorer below.

To summarize, we have the following result.

THEOREM 5. Let Z be coverable by a finite number bfsmall set<, ..., Cy such that
(12) holds. There exists a finitely coupled fietdcorresponding to the kerng? which
almost surely can be constructed in a finite number of iterations of Algorithm

Proof. All we need to check is thaP(7T’' < oo) = 1. Now eachZ] defined in (FC-2)
is binomially distributed with strictly positive success probability, from which the claim
follows. O

At each iteration, we can test very simply whetffétas occurred or not. The number
T' — T of iterations ‘wasted’ will depend upon the overall quality of the estimdt@s (Ve
shall describe some of our findings in the next section.

Note also that the total number of values in the rang® &f bounded byl (and hence
by T’, which has geometric tails).

Algorithm 1 given above is nointerruptible. Bias is thus possible when a strategy of
abandoning particularly long unsuccessful runs is adopted (as is invariably necessary
practice). Thus, for instance, if we stop the run when a fixed numpef iterations has
been reached, and begin afresh, we are biasing the aitiuiavour of fields that require
at mostng iterations to generate. Sineg is also the maximum number of distinct values
contained in the range ef— X(z), we are effectively biasing in favour of a bounded range.
While this is a potential problem, the stopping tiffiewill often be very small unless the
estimates (12) are poor.
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Fill [3] proposed another method for the perfect simulation of a target probability density
based on rejection sampling. This has the advantadeeiof interruptible. However, the
chain(%,, Y ™) is not reversible ol (since the set of finitely coupled fields is absorbing)
and a modification of Fill's method for field coupling appears more complicated.

4. Flows and Markov chains: coupling two chains

For the remainder of this paper, we shall take- E. We are given a kernét (x, dy) on
E representing the transition function of some Markov chain. For any sequence of randc
fieldsx®, @, ... e I, we can define a correspondifigw F; ; : E — E,

Fo(x) =XYoo xW(x), s<t, x€E. (17)

Then if we setX,;(x) = Fp,(x), we have simulateously realized all Markov chainsfn
with transition functionP and deterministic initial condition. It is common in simulation
studies to take the random fields in the fad® (z) = £ (z, &), wheref is some measurable
function and(¢y) is an IID sequence. This has been called a stochastic recursive sequer
(SRS) construction [1]. It should be noted, however, that it is by no means necessary to te
the samefunction f for eachk, so long as the resulting fiefd® always belongs t@I.

We shall now briefly discuss an application of the field couplers to the problem o
coupling two such Markov chain;(x1) and X, (x2) say, both with the same transition
kernel P.

Recall first that @oupling timehere isarandom timg > Osuchthak 7 (x1) = X7 (x2).
Since both chains are built from the same flow, this also meanXthat(x1) = X7, (x2)
forall + > 0. The coupling time is callesuccessfulf P(T < co) = 1. The existence of a
successful coupling time is by no means guaranteed, and obviously depends on the ch
of flow Fy ;.

Remark.Some flows do not have successful coupling times, even for uniformly ergodi
kernelsP. As an example, consider the random walk on the unit ciséle- {¢!¥ : 6 € R},
given by the flow

Frrv1(expiix)) = expix + W), W, ~ N (0, 1).

The Markov chainX, (¢/*) is aperiodic and uniformly ergodic, with stationary distribution
given by the Lebesgue measure $h From the description of; ;1 it is also clear that
two chainsX, (exp(ix1)) and X, (exp(ix2)) evolve in parallel, and can never couple unless
x1 = x2 (mod 21).

The above example does not preclude the existence of some alternatiﬁa flowwhich
will allow a successful coupling to take place (indeed, the uniform ergodicity guarantee
this existence). Now giveany flow of the type in (7), we claim that the field couplers
can generate such a new floty ,, for which the coupling of the associated chakgx1)
and X, (x») is successful.

Indeed, suppose that for eachwe iterate the simple field couplartimes with seed

X©), obtaining a new field') € T1. We define the flow
Foi)=%{"Po-0x(2), (18)

and corresponding Markov chailfst(z) = Fo,,(z). We shall consider only fieldg,(f)
generated by the simple field coupler here, for simplicity and because the independer
field coupler can be treated in a very similar way.
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The following result shows that if the proposal dengithias heavy enough tails, then
coupling of)~(, (x1) and)?, (x2) is always successful for uniformly ergodic kern@sThis
will be used in the next section.

Note that the coupling method proposed here does not require any explicit computatic
of minorization conditions, but merely the knowledge that they exist. This is unlike the
classical coupling method based on splitting, whereby two chains both have to enter
explicitly defined small sef simultaneously, right before coupling.

The proof below also shows that#f is only positive Harris recurrent, then coupling is
successful with strictly positive probability.

THEOREM 6. LetF;; be an arbitrary flow forP, and suppose that the target dengiti, y)
and proposal density (y) satisfy p(z, y) < y(2)0(y) for some functiory (z) which is
bounded on d-small setC. If P is aperiodic and uniformly ergodic, then

P(X,(x1) = X:(x2) eventually) = 1, forall x1, x2 € E.

Proof. SinceF;; is arbitrary, we shall assume that (18) holds witk= 1. Recall that we
denote byX(x) the Markov chain started from and constructed from the original flow
Fs.1, and by)?s (x) the Markov chain started from constructed from the new floﬁm
obtained after iterating the simple field coupler. We shall analyse the law of

T(xl,xz) =min {s >0: fs(xl) = )N(S(xz)}.

SinceP is uniformly ergodic, there exist anda > 0 such thai(X,,(x) € C) > « holds
for all x € E. Denote byH (y) the first exit time of the chaind® 1, &) £ started
initially at (y, @, ¢®), from the sef(u, v, w) : p(u, v) > wyW)O©W)}. If H(y) > m,

then because the propogdl) dominatesp(z, -), we must have

p(y. @) > y (Do (o),
p(q)(l)’ q)(z)) > y(q)(l))%-(z)g(q)(z))’

(q)(m—l) q)(m)) > y(q)(m—l))s(m)e(q)(m))’

and consequentl1(y) = ®, Xo(y) = @@, ..., Xu(y) = ®™. In particular,
either X,, (x) = Xm(y) = & (whenT (x, y) < m holds), or elseX,(x) # ®© for
alls <m (whenT(x y) > m holds), and thelX x) = X;(x).

Now consider the evertt,, 11 = {ev(®" V) > maxec y (2)§ "o (@ + D)} When
this holds, because the propos&l) dominatesp(z, -), all chains that satlsfy(m(x) eC
must couple; that |sXm+1(x) @+ Consequently,

P(T(x,y) <m+1) > P(Xpu(x) € C, Xu(y) € C, H(y) > m, Bys1)
=P(Xnu(x) € C)P(®™ € C, H(y) > m)P(By+1).

Let A be a set of strictly positive stationary measure, anglet 0 be a number such that
infyeévIP’(CD(m) e C, H(y) > m) > B holds. Such a set must exist, for otherwise we would
haveF; ;11 = F; s+1 almost surely. We estimate

inf P(T(x.y) <m+1) > apP(Bys) =38 > O,
ye

and note that this is independentiofTo finish the proof, observe that if we begin with two
chainsX,(x1) and X, (x2) such thatv1 # xp, then, becaus& (x») is positive recurrent, it
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must enter the set infinitely often. Each time this occurs, regardless of the current locatior
x of the chainX, (x1), there exists atleasprobability that the two chains will couple within
m + 1 steps. The Borel-Cantelli lemma therefore gif€s (x1, x2) < o0) = 1. O

In the case where the kernel densjiyx, y) and proposab(y) are continuous, on
a locally compact state spadg a sufficient condition for the existence pfz) is that
limy_ 00 p(z, ¥)/0(y) =0 forall z.

Theorem6 is also valid for the independence field coupler (defined in Se&;jdex-
ample2). In this case, since there is a range of proposal densitiesto choose from,
the hypothesis can be weakened as follows. There exists some fupctiom) which is
bounded on a s&t x D such thap(z, y) < y(z, w)0y(y), with C small andD of positive
n-measure.

5. Coupling many Markov chains

In this section, we are interested in the question of whether the whole collectio
X:(x) : x € E of Markov chains can be coupled in a common finite time. We already know
from Theoren®t that any two given chainX, (x1) and X, (x2) will couple successfully in a
timeT (x1, x2) < oo almostsurely, butthe possibility remainsthatﬁg‘g T (x1, x2) = 0.
Indeed, it was shown by Foss and Tweediglat there existsomelow F; , corresponding
to P such thatsup ., T (x1, x2) < oo if and only if P is uniformly ergodic. Thus we must
restrict ourselves here too to such kernlsVe would like to investigate the case tifat;
is fixed to be of the form (18) with > 1.

DEFINITION 7. Let F;; be a flow for the transition kernd? on the state spacg. We say
that Fy ; collapses in finite timé

P(x — Fs,(x) is constant for all large values of = 1.
We say thatF; ; thins at timer > s if
{Fyri1(x) i x € E}| < [{Fs,(x) : x € E}|.
As a direct consequence of the previous sections, we can state the next theorem.

THEOREM 8. Let P be uniformly ergodic with a densigy(x, y) which satisfie$8) for some
collectionCy, ... , Cy of 1-small sets covering. If F , is any random flow with one-step
transition probability P, then the flovw?o,, defined by(18) using the simple field coupler
withn > N (wherexX”) = F, , ;1) collapses in finite time.

Proof. Applying the simple field couplet > N times will ensure that the random field
3Eff) is finitely coupled within some > 0. Consequently, the Borel-Cantellilemmaimplies
that the fieldfoJ0 has finite range almost surely, for some fingeNow using Theorend
ensures that the fIO\ﬁo,,oJr, thins repeatedly until collapse. O

Variations on the above theme are possible. For example, we can generate (perfec
finitely coupled fieldsx® and use these to construE;,,. This is discussed below for
Metropolis—Hastings chains.

In principle, we can now collapse the flows of any uniformly ergodic Markov chains,
provided that the transition kern&l has a density. We give two examples.
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ExamPLE 3 (RaANDOM WALK). Let P(z,dy) = q(y — z)dy, whereg(-) is a continuous,
not necessarily symmetric density &41. A random field belonging tdl1 is easily found,
namely

X@)=z+W, whereW ~ g(y)dy.

We propose to find a finitely coupled version ®fon a compact subsef ¢ R?. We
coverZ by a finite number of closed ball; = B(z, r;) say,i = 1, ..., N, and such that
€v;i(y) = infzec; ¢(y — 2) is not identically zero. Leg be the (continuous) density of a
distribution onR¢ with heavier tails thag. We shall need to assume that) < Cg(-) for
some constant. Then we put

0.(») =6;(y) =gy —z), IfzeC;i=B(,r),

and calculate the constants= max.cc, yeres ¢(y — 2)/8(y — z;). Finally, we takeY” ~
n(-), wheren is the uniform distribution on the set of poinsi, ..., zy}. Now applying
Algorithm 1, we obtain a new fiel&(z) ~ g(y — z)dy which is almost surely finitely
coupled onz.

Note that we have not assumed tlgat) is symmetric. For symmetric and unimodal
increment distributions, an alternative field coupling methodXoexists, proposed by
Murdoch and Green [8]. Their method, called thisection coupler, uses translations and
reflections to construct a finitely coupled field, and appears to require fewer computatio
in general. However, while the number of points in the range of the resulting field is almo:
surely finite, they show that it has infinite expectation. In contrast, for the field couple
presented here, the range of the fig@lchever contains more points than the number of
iterationsT’ required to generate it, which as a random number has geometric tails.

EXAMPLE 4 (TIME-DISCRETIZED DIFFUSION). OntheintervalZ = [0, 1], considerthe Langevin
random field
! X(2) =2+ 0W+ 027 (2)/27(2), (19)

wherer (z) is a strictly positive differentiable function dh andW is a standard Gaussian
random variable. Let us write

~ 2
Pz, y) = exp(—|y — z — 0?7/ (2)/2n(2)|"/20?) (20)

for the unnormalized density 6f(z), so thatp(z, y) = cp(z, y) for some fixed constant

¢. None of our calculations requires the normalization constan&ori = 1,..., N,

we letC; = [(i — 1)/N,i/N], and we calculate; = inf.cc, (z + 0?7’ (z)/27(2)) and

bi = SUP.cc, (z + 0271’(1)/271(1)). In other words, the intervdl;, ;] must contain the
means of the distributiong(z, -) for all z € C;. For the proposab,(x, -), let us take
(independently of) the density proportional to

exg— |y —a;?/202], ify <a,
0;(y) =11, if y ela;,b;],
exp[—ly — bil? /202], if y > b;.
It is immediately seen thai(z, -) < 6;(-) for all z € C;, and this inequality is sharp. Also,
take¢; = 1 and
exp(— |y — bi? /20?),
exp(— |y — ai|? /202),

ai +b)/2,

fy<(
vi(y) = .
it y > (a; +bi)/2,
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which completes the series of estimat&)( We choos&” uniformly in {1, ..., N}, or
according to some other distribution adapted to the gradi&n) /= (z) if desired. Since

exp(1/202)(a? — b2 + 2y(b; — a)), ify <a,
vi(¥)/0; (y) = Jvi(y), if y € [a;, bil,
exp(l/20%) (b7 — a? + 2y(ai — by)), if y > b,

the probabilityv; := ]P’(Y falls in C; andv; (®)/6; (®) > é) is easy to calculate, and then
we can explicitly write down the distribution @f’, the time until termination of the field
coupling procedure FC;1. ., FC-4 (Algorithm1). This could then be optimized i, the
total size of the covering@'y, ..., Cy.

A similar analysis can be performed for any random fieldRdrof the form

d
X(2) = <bi(z) +Y oij@W;, i =1, ...,d),

j=1

whereb(z) is a vector field olR?, o is a matrix-valued field ol and(Wx, ..., Wy) is a
standardi-dimensional Gaussian random variable. Such fields arise in the recent work |
Stramer and Tweedid P], as examples of natural uniformly ergodic Metropolis—Hastings
proposals ofiR?.

Metropolis—Hastings-type chains comprise a class of Markov chains whose transitic
kernels do not possess a density (unless the state space is countable). Their general for
(see [11])

T(y)g(y, x)
T(x)g(x,y)

wherer(x) is chosen so thaP (x, E) = 1 andg(x, y)u(dy) is the transition density of
some arbitraryproposalchain. While it is possible to modify the field couplers to work on
transition kernels of this form (this requires the propd@alx, -) > P(x, ), itis usually
very impractical to evaluate the rejection probabilityt), and that renders this method
inapplicable.

Fortunately, however, it is possible to proceed otherwise, as the proposal kerr
q(x, y)u(dy) is often analytically tractable. Common examples of such kernels were give
as examples above, and the Langevin proposal field was explicitly analysed on a sim
region.

Suppose now that we have constructed a randomsi€fd ~ ¢ (z, -)u(-). We shall have
X(z) ~ P(z,-) with P given by (21) as soon as we set

Q). f7(2@)q9(Q),2) > & 7(2)q(z, Q(2)),
z, otherwise,

P(x,dy) = q(x, y){lA }u(dy) +r(x)é:(dy), (21)

X() = { (22)
whereg ~ U[0, 1]. We may view the Metropolis—Hastings accept/reject step apaator
on fields, yieldingX when applied taQ. As such, it has some useful properties.

Suppose that we generate an IID sequence of random fi¥ls Q@ ..., and then
construc&®, 2@ . by (22), using these to generate aflByy (z) = X Yo. . .0X®)(z)
for the Markov chain with transition kernél given by @1). The random (‘rejection’) sets
{z: x®(z) = z} C Z are not usually empty, at least with high probability.
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PRrOPOSITION 9. Suppose tha®, Q@ | ... arefinitely coupled proposal fields, and define
xD, x@ . as a Metropolis—Hastings proposal, 82). Then the random sets

{z: Fo:(2) = z} = {F; has finite range}

are strictly decreasing as functions oflf the state spacé is irreducible and coverable
by a finite number of-small sets, then in fagt : F;(z) = z} | @, and the flow collapses
in a finite time.

Proof. Since
2:Fo,=2={z: 3% =z} n---n{z: 2V =2},

the sets are clearly decreasing. Moreover, for eaehE, the Markov chairft® (z) must
move eventually, and this occurs simultaneously forzalithin a small set in at most
geometrically distributed time. Sindgis coverable by a finite number of such sets, we get
{z : Fi(z) = z} = @ infinite time. After that, the map; (-) has only a finite range, and thus
by Theorent we get collapse eventually. O

The result in Propositior® is useful for coupling procedures due to the identity
{z : Fi(z) = z}° = {F; has finite range}. This set must be monitored if we wish to de-
tect whetherFp,(-) has collapsed.

Note that if we donot assume thaf)® is finitely coupled (only to withire say), the
monotonicity of the set& : Fo,(z) = z} is preserved, but the s€t&; has finite rangeére
no longer their complements. Thus they can grow and shrink in complicated ways, whic
can make them untrackable for practical purposes.

6. Towards perfect simulation with Metropolis—Hastings chains

We have seen in the last section thaPitiefined by 21) is uniformly ergodic, then we
cannumericallyconstruct a finite-time coupling of all Markov chaiis(x) with transition
kernel P and deterministic initial conditioXg(x) = x € E. The exact dynamics of
the coupling are no longer tractable, since in fact they are random. Instead, we gain
automatic method of coupling chains, which does not depend on our ability to find cleve
ways to couple the flowanalytically.

For uniformly ergodic Metropolis—Hastings chains, we describe in Algorithhow
to simulate a given target distribution perfectly, using the field couplers described in th
paper. A large class of uniformly ergodic Metropolis—Hastings chains compatible witl
this method can be found in [12]. We do not discuss ways of implementing Algoéthm
efficiently, although it is clearly possible to exploit various recurrence relations.

Nothing more needs to be said of steps (PMH-1) and (PMH-2). For step (PMH-3), iti
necessary to perform some analysis, determining a lower bound

T()q(y,2) .
f2 S bi(y), =1,....N, 2
L TGy 2O N @3)

so that we can perform the test (24) conveniently. This can typically be done by findin
boundsr (y)/q(z, y) = bj(y) andr(z)/q(y, z) < b (y), takingb; (y) = b;(y)/b (y).

The step (PMH-4) can be performed efficiently if we construct tables of the correspor
denceL; = X10---0X,(C)).
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(PMH-1):

Choose a covering of E by small sets C1,...,Cy and

calculate the estimates (12).

(PMH-2):

Using the steps (FC-1, ...,FC-4), generate finitely

coupled fields QM k=-1,-2,...). For every Qy, keep

track of the (finite) range of possible values over each Cj,
j=1,...,N.

(PMH-3):

Construct  x® from Q® using formula  (22) (with & =¢&®),
and for each  Cj, given the range of values
Q®(Cj) =1{q1,...,9m) say, test whether

w(g-)q(qr,z) > éj(k)n(z)q(z, qr) for all zeCj, r=1,...,m. (24)

Let B; denote the union of all sets C; for which the
test (24) fails. Clearly, {z:XW () =z} C By
(PMH-4):

Let k& <O be given. Check that
By N Bgy1N---NBp=40.

If this holds, then there will typically be k < ¢ < 0 such
that BiNBr1N---NBy =@. For each k<n<¢, let  {q1,....q-} = Qu(E)
denote the (finite) range of O™, Compute the set

H, = {x(l)o...ox(n—t—l)(qi) ci = 1»~-~,¢]r}-

If Hp=Hp1=---=Hy={p}, say, then the value of pis a
perfect draw from . Stop. Otherwise, try (PMH-4 ) with
an earlier value of k.

Algorithm 2: Perfect Metropolis—Hastings

ExampPLE 5 (LANGEVIN ALGORITHM). We consider again the Langevin random fiel®)

on Z = [0, 1], this time considering it as a proposal field for the Metropolis—Hastings
algorithm with target distributiosr. Hence, up to normalization, we hay€y, z) = p(y, z),

the latter being defined by20). To implement Algorithn2, we need only to compute
the boundsZ3). Recall that we took; = [(i —1)/N,i/N].Let f(z) = z+021'(z) /27 (2)
denote the mean of the densityz, -). We havef (z) € [a;, b;] for all z € C;; consequently,

(/4 ), =n () expllz — fFI /202),
7 (y), if ( —1)/N < f(y) <i/N,
Z () mi‘nlexp(|j/N — fMI?/20?), otherwise;
Jj=ii—

7(2)/q(y, 2) = n(2)explly — f(2)|? /20?)
< supm () exp((ly — ail? v |y — bi|?)/252).

zeC;
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Note that it does not matter whether we know the normalizing constataf not,
since we are now taking the ratio of these two quantities tage?. In particular, these
calculations can be done on any conveniently chosen multipte 8ktting

wi(y) = o)
’ SURc(, 7(2)’
we find that
7y exp(— 1y —ail® v |y — bi[?)), if ( —1)/N< f(y)<i/N,

bi(y) = 1 7 (y) exp(minj=; i—11j/N — f(y)I* /202
— |y —ai| vV Iy—bi|?), otherwise.
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Appendix A. On-line demonstration

A Java applet that illustrates the field coupler in action in various simple examples cc
be viewed at:
http://www.lbreyer.com/fcoupler.html.

References

1. A. A.Borovkov andS. G. Foss, ‘Stochastically recursive sequences and their gener-
alizations’,Siberian Adv. Math2 (1992) 16-81.78,86

2. P Diaconis andJ. A. FiLL, ‘Strong stationary times via a new form of dualit®nn.
Probab.18 (1990) 1483-152284

3. 1. A FiLL, ‘An interruptible algorithm for perfect sampling via Markov chainshn.
Appl. Probab8 (1998) 131-162.86

4. S.FossandR.L. TWEEDIE, ‘Perfect simulation and backward couplinGomm. Statist.
Stochastic Modeléspecial issue in honor of Marcel F. Neuts) 14 (1998) 187—-Z33.

5. P. J. GreeN and D. J. MurpocH ‘Exact sampling for Bayesian inference: to-
wards general-purpose algorithmBayesian statistics IYed. J. Bernardo, J. Berger,
A. P. Dawid and A. F. M. Smith, Oxford University Press, 1999) 301-321.

6. T.LiNDpvALL, Lectures in the coupling methd¢dohn Wiley & Sons, New York, 1992).
77

7. S. P. MEYN andR. L. TweebIE, Markov chains and stochastic stabilitgpringer,
London, 1993).77

8. D. J. MurpocH andP. J. GReEN,'‘Exact sampling from a continuous state space’,
Scand. J. Statis25 (1998) 483-502.89

9. J. Proprp andD. B. WiLsoN, ‘Exact sampling with coupled Markov chains and appli-
cations to statistical mechanicRandom Structures Algorithn®(1996) 223-252.
78,78,84

10. G. O. RoBerTs andJ. S. RosENTHAL, ‘Quantitative bounds for convergence rates of
continuous time Markov processeElectron. J. Probabl (1996). 80

https://doi.org/10.1112/5146115700000070X Published online by Cangridge University Press


http://www.lbreyer.com/fcoupler.html
https://doi.org/10.1112/S146115700000070X

A new method for coupling random fields

11. G. O. RoBerts andA. E. M. SmiTH, ‘Bayesian computation via the Gibbs sampler
and related Markov chain Monte Carlo methodsRoy. Statist. Soc. Ser35 (1993)
3-23. 79,90

12. O. StraMER andR. L. TWEEDIE, ‘Self-targeting candidates for Metropolis—Hastings
algorithms’,Methodology and Computing in Applied Probability1999) 307-328.
82,90,91

L. A. Breyer laird@Ibreyer.com
G. O. Roberts g.o.roberts@lancaster.ac.uk

Department of Mathematics and Statistics
Lancaster University
Lancaster LA1 4YF

https://doi.org/10.1112/5146115700000070X Published online by CaBridge University Press


mailto:laird@lbreyer.com
mailto:g.o.roberts@lancaster.ac.uk
https://doi.org/10.1112/S146115700000070X

	Introduction
	A Markov chain on field space
	Generating finitely coupled fields
	Flows and Markov chains: coupling two chains
	Coupling many Markov chains
	Towards perfect simulation with Metropolis-Hastings chains
	On-line demonstration

