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A NEW METHOD FOR COUPLING RANDOM FIELDS
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Abstract

Given a Markov chain, a stochastic flow that simultaneously con-
structs sample paths started at each possible initial value can be
constructed as a composition of random fields. Here, a method is de-
scribed for coupling flows by modifying an arbitrary field (consistent
with the Markov chain of interest) by an independence Metropolis–
Hastings iteration. The resulting stochastic flow is shown to have
many desirable coalescence properties, regardless of the form of the
original flow.

1. Introduction

In this note, we describe a novel approach to the problem of coupling random fields and,
by extension, Markov processes. The problem setting is as follows. Consider a probability
space(�, F , P), upon which is defined afamily

(
X(z) : z ∈ Z

)
of random variables

(called arandom field), Z being some index set and each variableX(z) taking values
in some common measurable space(E, E). Under measurability conditions, the marginal
distributions of the field are fully described by a kernelP : Z × E → [0, 1], in the sense
that

P

(
X(z) ∈ dy

)
= P(z, dy), z ∈ Z. (1)

Conversely, if we start with a kernelP and take definition (1) as a hypothesis, we can
construct some probability space(�, F , P) and a familyX(z) : � → E (z ∈ Z) such
that (1) holds. Such a probability is often called acoupling, at least whenZ consists of
two points only. The choices forP are limitless, and it therefore becomes interesting to ask
whether a probability space and a familyX = (

X(z) : z ∈ Z
)

can be constructed which
additionally satisfy some previously agreed condition.

(a) The case|Z| = 2. When the index setZ consists of only two (distinct) points, the
problem that we shall deal with can be phrased as follows: given two marginal distribu-
tionsP1(dy) andP2(dy) on a common spaceE, find a probability space(�, F , P) and a
realization(X1, X2) such that

P(X1 = X2) > 0, X1 ∼ P1(·), X2 ∼ P2(·). (2)

This problem can be solved [6] if and only if there exists some nontrivial measureν(·) on
E such that bothP1 > ν andP2 > ν, in which case there exists amaximalprobabilityP

satisfying (2) on a canonical probability space�. This result has been the basis for a very
successful method, originally proposed by Nummelin, for coupling Markov chains [7].

(b) The case|Z| > 2. When the indexing setZ consists of more than two distinct points,
we must replace (2) by a more suitable requirement onP. There is no universal definition
extending (2), but the following one seems natural.
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A new method for coupling random fields

Definition 1. Let Z be some index set, and consider a kernelP : Z × E → [0, 1] of
probability measures on some measurable space(E, E). We say that a family

(
X(z) : z ∈ Z

)
of random variables with values inE, defined on some probability space(�, F , P) is a
finite coupling of the field determined byP if both (1) holds and

P
(
z 7→ X(z) has a finite range inE

) = 1.

The family is adiscrete coupling of the field determined byP if (1) holds and

P
(
z 7→ X(z) has a discrete range inE

) = 1.

In our context, of course, we shall be interested in the case whereZ = E.

One aim will be to find conditions on the kernelP such that there exists a finitely
(or, respectively, discretely) coupled field. Interest in finite couplings is due to the recent
developments in the literature on perfect simulation, which was spawned by the seminal
work of Propp and Wilson [9]. The proof of existence that we offer is constructive, and is
susceptible to implementation on a computer.

The construction of Markov chains for simulation purposes is usually accomplished by
the use of a stochastic recursive representation of the Markov chain transitions [1]. This in
turn implies a succession of stochastic fields, mapping at each simulation epoch the current
statez of the chain into its subsequent valueX(z). On composition of these fields, we obtain
a stochastic flow describing the simultaneous dynamics of the chain from all possible initial
states.

It is of interest (especially in the fast-growing area of perfect simulation) to construct
this flow in such a way as to force the coalescence of chains started from all possible initial
states. Unfortunately, many natural stochastic recursive constructions do not lead to this,
and it would be desirable to exhibit a general recipe for the modification of an arbitrary
stochastic flow (consistent with this particular Markov chain dynamic) in order to guarantee
the desired coalescence property. This is the motivation behind the present paper.

Our approach will be to modify the individual component fields of an existing flow, and
to recombine these new fields into a flow that has improved coalescence properties. We
shall use a method of modification based on the independence sampler (as commonly used
in MCMC). Our first two main results, Theorems2 and5, deal with the modified fields
themselves, showing that under suitable uniform ergodicity assumptions, the fields,X(z),
can be constructed so as to have finite image with arbitrarily high probability (Theorem2)
and with probability 1 by a suitable perfect simulation construction (Theorem5).

Theorems6 and8 deal with the whole flow as constructed from the modified fields,
X(1)(z), X(2)(z), . . . , say. Theorem6 ensures the coupling of chains started at any two
arbitrary initial values. Theorem8 extends this result to an arbitrary collection of starting
values. Finally, in Proposition9, we focus on the problem of constructing perfect simula-
tion algorithms for Metropolis–Hastings chains. These algorithms are not covered by our
previous results, although their specific structure allows specialised results to be proved.
Examples include the random walk Metropolis algorithm and the Langevin algorithm.

To see our field coupling methodology in action, the reader is advised to visit the URL
given inAppendix Ato see an online illustration.

2. A Markov chain on field space

The construction of the finitely (or, respectively, discretely) coupled field will be
accomplished by applying ideas originally devised by Propp and Wilson [9] to a
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Metropolis–Hastings-type chain whose states are represented by candidate fields. The suc-
cessively produced fields in this chain will have progressively ‘smaller’ ranges until such
time as only finite range realizations of the field are produced. This will almost surely occur
after a finite number of iterations, uniformly fast in the ‘seed’ field. By the technique of
‘coupling from the past’, we generate from this chain a finitely coupled field.

We proceed to set up some notation, and then we describe the transitions of the above-
mentioned Markov chain. Let(E, E , µ) be aσ -finite measure space, and letZ be a topo-
logical space. We shall denote byF(Z; E) the space of Borel measurable functions ofZ

into E. This will be thought of as the state space for a Markov chainXn, defined below.
We also suppose given a probability kernelP(z, dy) = p(z, y)µ(dy) of Z into E,

absolutely continuous with respect toµ. The existence of the densityp(z, y) here is mainly
a matter of convenience, and can be dispensed with at the cost of small changes in the theory
below.

For the construction of our Markov chain(s), we shall need an appropriate probability
space(�, F ), which we now describe. Take� = F(Z; E), and letF be theσ -algebra
generated by the function evaluationsz 7→ ω(z),ω ∈ �. Define also the set5 of probability
measures on(�, F ) which prescribe the marginals of the canonical random variable:

5 = {
P ∈ P (�) : P

(
ω : ω(z) ∈ A

) = P(z, A) for all z ∈ Z, A ∈ B(E)
}
. (3)

Note that5 is nonempty, since we can always take the product measure

P =
⊗

z

P (z, ·) ∈ 5.

However, in the interests of readability, given a random variableX : � → F(Z; E), we
shall often write ‘X∈ 5’ instead of the more cumbersome ‘the law ofX belongs to5’.

We are now ready to define our Markov chain. In general, we shall need a family
2z(x, dy) of probability kernels satisfying2z(x, ·) � P(x, ·) for eachz ∈ Z; these
will represent ‘proposals’. We suppose here also the existence of a density,2z(x, dy) =
θz(x, y)µ(dy).

To define the Markov chain(Xn), we takeX0 ∈ 5 (‘any random variableX0 whose law
belongs to 5’), and then use induction. GivenXn = (

Xn(z) : z ∈ Z
)
, let

8z ∼ θz(Xn(z), ·)µ(·), and putXn+1 = (Xn+1(z) : z ∈ Z), where

Xn+1(z) =
{

8z, if p(z, 8z)θz

(
8z,Xn(z)

)
> ξ · p

(
z,Xn(z)

)
θz

(
Xn(z), 8z

);
Xn(z), otherwise.

(4)

Here,ξ ∼ U [0, 1] independently ofXn.
If we fix z ∈ Z in the above, it is immediately seen that theprocessn 7→ Xn(z)

is a Metropolis–Hastings chain with stationary distributionP(z, ·) and proposal kernel
2z(x, dy). Since, moreover, by assumptionX0(z) ∼ p(z, ·)µ(·), one checks immediately
(or see [11]) that

P
(
Xn(z) ∈ dy

) = p(z, y)µ(dy), n > 0; that is,Xn ∈ 5. (5)

However, when viewed as a family indexed byz, the chainsX ·(z) are not independent as
z varies throughoutZ, since wereuse the same random numberξ .

In the examples below, we describe some choices of the kernel densityθz(x, y) which
guarantee that, for sufficiently large (but finite)n, the realizationz 7→ Xn(z) almost surely
has finite range. None of the choices that we list is claimed to be ‘optimal’.
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Example 1. The simplest example of such a chain is arguably obtained if we takeθz(x, y) ≡
θ(y), a function ofy alone. We call this thesimple field coupler. For this choice, the formula
(4) simplifies to

Xn+1(z) =
{

8 ∼ θ(·)µ(·), if p(z, 8)θ
(
Xn(z)

)
> ξ · p

(
z,Xn(z)

)
θ(8);

Xn(z), otherwise.
(6)

Note first that ifz 7→ Xk(z)has finite range, then every subsequent functionz 7→ Xk+`(z)

will have finite range also. Thus the set of states inF(Z; E) with finite range forms an
absorbing set for any chain defined by (6). Let us now show that this chainXn indeed
evolves towards a state with finite range. We shall explain in the next section how to generate
a finitely coupled field using a perfect simulation technique.

Recall that a subsetC ⊂ Z is called 1-small [10] for the kernelP(x, dy) on E if there
exists a probability densityν and a constantε > 0 such that

inf
x∈C

p(x, y)µ(dy) > εν(y)µ(dy). (7)

Theorem 2. Suppose thatZ can be entirely covered by a finite union of1-small sets
C1, . . . , CN , and suppose we can choose a probability densityθ in such a way that

εiνi(·) 6 inf
z∈Ci

p(z, ·) 6 sup
z∈Ci

p(z, ·) 6 γiθ(·), i = 1, . . . , N, (8)

for positive numbersε1, . . . , εN , γ1, . . . , γN . If we define a Markov chainXn on5 by the
prescription(6), then

P
(
Xn has finite range eventually

) = 1.

Proof. Clearly, from (6), ifz is fixed the process,n 7→ Xn(z) is a Metropolis–Hastings
Markov chain onE (an independence sampler, in fact), with stationary distribution
p(z, ·)µ(·). Therefore we certainly have (5), sinceX0(z) is already stationary. Now, for
everyz ∈ Z, the chainn → Xn(z) must almost certainly move eventually. This will happen
the first time from (6) at timen if and only if(

p(z, 8)θ
(
Xn(z)

))
> ξ · (

p
(
z,Xn(z)

)
θ(8)

)
. (9)

By (7) and (8), ifz ∈ Ck, the event (9) contains the event

εkνk(8) > γkξ θ(8), (10)

which will occur eventually for some pair(8, ξ) since the pairs are independent, by the
Borel–Cantelli lemma. When it occurs at timenk say,all Markov chainsXnk

(z) for z ∈ Ck

will accept thesamejump to8, reducing the range ofz 7→ Xnk
(z) onCk to a single point.

Note that after this common jump, the range overCk is likely to break into more than one
point, since the stationary distribution ofX(z) depends onz. However, this procedure will
never create more than a finite number of break points at each iteration. This analysis is
valid on each of the small setsC1, . . . , CN that coverZ, and another application of the
Borel–Cantelli lemma now shows that each of these sets must experience a common jump
within a finite timeτ = max{n1, . . . , nN }, beyond which the realizationXτ+n must always
have a finite range.

The simple field coupler does not usually generate finitely coupled random fields in a
fixed, finite number of iterations,n say, if the ‘seed’ fieldX0 is not already finitely coupled.
To state an analogy with the behaviour of ergodic Markov chains, we make the following
definition.
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Definition 3. A random fieldX = (X(z) : z ∈ Z) is calledfinitely coupled withinε > 0
if

P
(
z 7→ X(z) has finite range

)
> 1 − ε.

With this definition, we can paraphrase Theorem2 as follows. For eachε > 0, there
existsn such thatXn is finitely coupled withinε. It is not true thatXn is finitely coupled
(within ε = 0) for any n. Thus, given a realizationX0 of a seed field, we can never be
certain that the realizationXn generated by the simple field coupler has finite range. This
is important, as sampling the field at a random time may lead to a biased sample, as we
shall see in Section 3. We shall construct a finitely coupled fieldX by a perfect simulation
technique in the next section. For practical implementation of this technique, it is not even
necessary to be able to generate an initial fieldX0, since its shape over the small setCk is
completely forgotten once the event (10) occurs.

The bounds (8) are not needed to implement the simple field coupler. If they are available,
however, we can obtain an estimate of the speed of convergence to a finitely coupled field
within ε > 0. By the proof of Theorem2, the realizationXn has finite range as soon as the
event (10) has occurred for eachk = 1, . . . , N. If we denote byTk the first hitting time of
the set{(y, x) : εkνk(y) > γkxθ(y)} by the IID series(8(n), ξ (n)), we have

P
(
Xn has finite range

)
> P

(
max(T1, . . . , TN) 6 n

)
,

and this is independent ofX0. This bound can be explicitly computed in particular cases.
If Z is only covered by a countable collection of 1-small sets, we can still run the

algorithm (6), but the realizationXn will generally not have a discrete range in a finite time.
We end our description of the properties of the simple field coupler with some comments

about the assumptions of Theorem2. Let us suppose thatZ = E, so that we may think of
the kernelP as the transition function of a Markov chain with state spaceE.

It is a fairly easy exercise (left to the reader) to show thatcoverage ofE by a finite number
of 1-small setsand irreducibility imply that the whole setE is petite, and aperiodicity then
gives the whole setE as small. This last statement implies thatP is uniformly ergodic.

It is therefore of interest to know if the converse holds. Unfortunately, this case is not so
straightforward. Indeed, ifP is uniformly ergodic, it does not follow thatE can be covered
by a finite, even countable, collection of 1-small sets.

As a counterexample, consider the random scan Gibbs sampler with uniform target on
E = [0, 1] × [0, 1]. Here, the kernelP is given explicitly by

P(x1, x2; dy1 × dy2) = 1
2

(
δx1(dy1)dy2 + δx2(dy2)dy1

)
.

Since for(x1, x2) 6= (x′
1, x

′
2) ∈ [0, 1] × [0, 1], P(x1, x2; ·) andP(x′

1, x
′
2; ·) are mutually

singular measures unlessx1 = x′
1 or x2 = x′

2, it is impossible to partitionE into even a
countablecollection of 1-small sets. However,E is still small (and henceP is uniformly
ergodic), for every part of the state space can be reached in two steps:

P 2(x1, x2; dy1 × dy2) > 1
2dy1 × dy2 = εν(dy1 × dy2).

In this counterexample,P did not have a density with respect to someσ -finite product
measure onE. However, the random scan Gibbs sampler on a discrete state space,E = Z

2

say, does have a joint densityp(x, y), and still there is only a countable covering by 1-small
sets. Note that with a strictly positive continuous density and a locally compact state space
E, there always is at least afinitecovering by 1-small sets (see Corollary4 below).
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Intuitively, what is needed for a finite covering by 1-small sets is that the chain be able to
do large jumps in the state space. We offer the following sufficient condition (which implies
that the whole state spaceZ is 1-small).

Corollary 4. Suppose thatP(x, dy)has a strictly positive continuous density with respect
to someσ -finite reference probabilityµ onZ. If Z is compact, or ifZ is only locally compact
and the limitp(∞, y) := limz→∞ p(z, y) > 0 exists and defines a probability density, then

P
(
Xn has finite range in finite time

) = 1.

Proof. If Z is locally compact, we add a point at infinity, making it compact. Thus we
can always assume thatZ is compact. ThusM ≡ supx,y p(x, y) < ∞. Now by the strict
positivity of the densityp(x, y) the setsUn = {(z, y) : M−1p(z, y) ∈ (1/n,2/n)} entirely
cover the compact setZ ×Z. Hence there exists a finite subcoveringUn1, . . . , Unk

say, and
the setsCj = {z : (z, y) ∈ Unj

} for j = 1, . . . , k are 1-small and coverZ:

P(z, dy) = p(z, y)µ(dy) > 1

n
1Unj

(y)µ(dy)

= εj νj (dy) if z ∈ Cj , j = 1, . . . , k.

To illustrate the corollary, we suppose thatP is the transition kernel associated with the
random field onZ = E = R given by

X0(z) = z + σ 2(z)π ′(z)/2π(z) + σ(z)W, W ∼ N (0, 1),

where we specifyπ and σ as follows. Letπ(x) be some function such thatπ(x) ∼
exp(−α |x|β) as|x| → ∞, whereα andβ are strictly positive real numbers. Taking any
sequenceγs > 0 such thatγs + β > 2 for all s, let σ satisfy

σ 2(x)/(− logπ(x))γs/β → 1 as |x| → ∞.

It is shown in [12] that the kernelP associated with the fieldX0 is uniformly ergodic, and
it is left to the reader to check that the assumptions of the corollary above are verified. Thus
Theorem2 applies to the ‘seed’ fieldX0.

It is clear that the choice of proposal8 for the simple field coupler will influence the
acceptance rate of the algorithm. For any givenz0 ∈ Z, we can judiciously adapt the
proposal densityθ(·) to the target densityp(z0, ·), but this will be useless if the density
p(z, ·) varies highly as a function ofz. This difficulty can be addressed very simply by
implementing an auxiliary variable which can be used to tune the proposalθ . The next
example shows one way to do this. It will be called theindependence field coupler.

Example 2. In this example, we present a version of the chain (4) which allows a range
of proposal distributions, thereby better taking into account the shape ofp(z, ·). Referring
back to (4), we suppose given a familyθz(y) of proposal distributions. Typical choices of
θz(·) would be ‘close’ top(z, ·). We shall need a selection mechanism, to decide which
distributionθz0 is to be used at every step of the algorithm. The simplest choice is to take
z0 distributed independently onZ according to some distributionη(·), perhaps assigning
higher weight to highly variable or otherwise difficult regions of the field. We call the
independence field couplerthe following Markov chain(Xn) onF(Z; E). GivenXn, draw
independentlyY (n+1) := Y ∼ η(·), and set

Xn+1(z) =
{

8Y ∼ θY (·)µ(·), if p(z, 8Y )θY

(
Xn(z)

)
> ξ · p

(
z,Xn(z)

)
θY (8Y );

Xn(z), otherwise.
(11)
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Note that we can think of the object
(
Y (n),Xn(z) : z ∈ Z

)
as a new random field, where

the index set is nowZ ∪ {z0} for some isolated pointz0 /∈ Z, andXn(z0) := Y (n). With
this notation, we can fit the rule (11) in the framework (4) (this is left as an exercise for the
reader).

The auxiliary variablesY (n) are IID, and givenXn ∈ 5 (by the inductive hypothesis),
we also have

P
(
Xn+1(z) ∈ dx

) =
∫

P
(
Xn+1(z) ∈ dx | Y = y

)
η(dy)

=
∫

p(z, x)µ(dx)η(dy) (using (5))

= p(z, x)µ(dx),

since ifY = y is given, we just have the previous simple field coupler (6) with θ(·) = θy(·).
Thus, clearly,Xn+1 ∈ 5 if Xn ∈ 5. We can now repeat the arguments of the previous
example, yielding identical theorems for this new field coupler if we simply replace (8)
with the generalization

εiνi(·) 6 p(z, ·) 6 γiθy(·), z, y ∈ Ci, for i = 1, . . . , N. (12)

Let us assume this done.
The construction (11), while an improvement over (6), may suffer from another defect.

Due to the choice of auxiliary variableY independently of the current state of the fieldXn =(
Xn(z) : z ∈ Z

)
, we can expect some redundancy in the proposed values8(1), 8(2), . . .

whenY (n) occurs in a location sufficiently close to a previous valueY (k) (wherek < n),
whose associated proposal8(k) was accepted. In our simulations, this appeared to matter
only when the choices ofθz andη were ‘bad’. Clearly, the scope for further extensions of
the field coupler(Xn) is limitless.

3. Generating finitely coupled fields

The field couplers of the previous section are straightforward to implement, and computer
experiments suggest that a small number of iterations will suffice to obtain a finite range.
Here we mean, of course, that the Markov chainXn must be simulated for a small but
fixed (non-random) number of iterations, starting from an uncoupled version of the field.
However, for anyn, the realized fieldXn will only ever be finitely coupled within some
ε > 0.

For application to simulation problems, it is desirable to implement a procedure that will
outputwith certaintya finitely coupled version of the field of interest. Here, we describe
how this can be accomplished in general, while in the next section, some concrete Markov
chain Monte Carlo examples will be discussed.

The difficulty encountered when trying to output a finitely coupled field using the Markov
chainXn is that, even thoughX0 ∈ 5 andXn ∈ 5 for all deterministic timesn > 0 (recall
that5 was defined in (3)), if we stop the chain at some random timeτ by observing the
field (Xn(z) : z ∈ Z) and deciding that it has fully coupled, the resultXτ no longer belongs
to 5 in general. To illustrate, consider the following naive procedure.

Faulty reasoning: Suppose thatZ = [0, 1], with p(z, y) = (z + 1)yz, 0 6 y 6 x.
We consider the simple field coupler with proposal given by8 ∼ p(0, ·). Let τ be the
first time that the field is finitely coupled. It is easy to check that at each iteration of the
field coupler, the set ofz values that accept the proposed move is of the form[0, z∗

n] for
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some random 0< z∗
n 6 1. Given a suitableU(0, 1) random variableW , we can set

X0(z) = W(1+z)−1
, so that finite coupling will occur precisely whenz∗

n = 1. Therefore
Xτ (·) is a constant map. However this is inconsistent with the marginal mean transition
values:

∫ 1
0 yp(x, y) = (x + 1)/(x + 2), so thatXτ does not belong to5.

In general, stopping timesτ for whichXτ (z) ∼ P(z, ·) are hard to find. If bothXτ ∈ 5

andXτ is independent ofτ , thenτ is known as astrong stationary time(see [2]).
There is another method to generate a finitely coupled field in finite time, by going

backwards in time rather than forward. The details will occupy the rest of this section.
Throughout, we hypothesize thatZ is covered by a finite number of 1-small setsC1, . . . , CN ,
and that (12) holds. We now briefly remind the reader of the Propp and Wilson formalism
for perfect simulationby Markov chains, duly adapted to our requirements.

The equations (6) and (11) can be viewed as implicitly defining a sequence of independent
random functionsGn : F(Z; E) × � → F(Z; E) so thatXn+1(ω) = Gn(Xn(ω), ω). If
function composition occurs in the first variable, then we have equivalently

Xn(ω) = (Gn ◦ Gn−1 ◦ · · · ◦ G1)(X0(ω), ω).

It is convenient to extend the family(Gn) for valuesn = 0, −1,−2, −3, . . . so that we
may think of the chainXn as evolving from the distant past.

By (5), it is clear that for anyu ∈ F(Z; E),

(Gn ◦ Gn−1 ◦ · · · ◦ G1)(u) ∈ 5, if u ∈ 5. (13)

But the mapsGn are exchangeable, so if we writeYn(u) = G0 ◦ G−1 ◦ · · · ◦ G−n(u) for
u ∈ 5, then by (13) we automatically have

lim
n→∞Yn(u) ∈ 5, if u ∈ 5 and the limit exists. (14)

Suppose, moreover, that we can prove (as we do in Theorem5) that the random time

T = inf
{
n : Yn(·) is constant on5

}
is almost surely finite. In that case, we have

Yn(·) = YT ◦ GT −1 ◦ · · · ◦ G−n(·) = YT (·) on {T 6 n}. (15)

This fact, first noted by Propp and Wilson in a different context [9], forms the basis for
their perfect simulation method. In our setting, it suffices now to construct a random time
T ′ > T for which we can conveniently test whether{T ′ 6 n} has occurred. By (14) and
(15) we must then haveX0 ≡ Yn(·) ∈ 5, a perfect specimen of a finitely coupled field.
We shall do this now for the algorithm (11), as (6) can be viewed as the special case when
θy(·) ≡ θ(·) for all y ∈ Z.

Intuitively, we shall think of the fieldXn defined by (11) as a random point pattern on
Z × E (the graph of the mapz 7→ Xn(z)). One iteration of the independence field coupler
(11) on the fieldXn consists in the deletion of a section of the point pattern, replacing it
by a new pattern. If we consider two initially distinct point patternsu andu′, then for any
`, the patternsG`(u) andG`(u

′) will agree at all points that were newly added, provided
that these had been accepted by both patterns. Thus we can expect that for all sufficiently
largen, all the points originally making up the patternsu andu′ have disappeared from the
patternsG0 ◦G−1 ◦ · · · ◦G−n(u) andG0 ◦G−1 ◦ · · · ◦G−n(u

′), which will therefore agree:
Yn(u) = Yn(u

′).
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(FC-1):
Generate IID sequences (ξ (0), Y (0), 8(0)), (ξ (1), Y (1), 8(1)), . . . , where

ξ (k) ∼ U [0, 1], Y(k) ∼ η(·), 8(k) ∼ θY (k) (·)µ(·), k = 0, 1,2, 3, . . . . (16)

(FC-2):
Let T ′

k = min
{
s > 0 : εkνk(8

(s))/θY (s) (8(s)) > γkξ
(s)

}
and set T ′ = max{T ′

k : k = 1, . . . , N}.
(FC-3):
For fixed n, define the random map G−n from (ξ (n), Y (n), 8(n)) by:
if u = (u(z) : z ∈ Z) is a field,(

G−n(u)
)
(z) =

{
8(n), if p

(
z, 8(n)

)
θY (n)

(
u(z)

)
> ξ(n)p

(
z, u(z)

)
θY (n)

(
8(n)

);
u(z), otherwise.

(FC-4):
Thus X = G0◦G−1◦ · · · ◦G−T ′(u) is finitely coupled and belongs to
5. We output X.

Algorithm 1: The field coupler.

We now construct the stopping timeT ′ > T . We assume that (12) holds. To generate a
finitely coupled field, Algorithm1 is used.

For step (FC-3), note that(G−T ′
k
(u))(z) is independent ofu for z ∈ Ck, and hence so is(

Yn(u)
)
(z) for all n > T ′

k . Consequently,YT ′(u) is a random field which is independent
of u. Moreover,P(T ′ < ∞) = 1 as follows from Theorem5 below.

To summarize, we have the following result.

Theorem 5. Let Z be coverable by a finite number of1-small setsC1, . . . , CN such that
(12) holds. There exists a finitely coupled fieldX corresponding to the kernelP which
almost surely can be constructed in a finite number of iterations of Algorithm1.

Proof. All we need to check is thatP
(
T ′ < ∞) = 1. Now eachT ′

k defined in (FC-2)
is binomially distributed with strictly positive success probability, from which the claim
follows.

At each iteration, we can test very simply whetherT ′ has occurred or not. The number
T ′ −T of iterations ‘wasted’ will depend upon the overall quality of the estimates (12). We
shall describe some of our findings in the next section.

Note also that the total number of values in the range ofX is bounded byT (and hence
by T ′, which has geometric tails).

Algorithm 1 given above is notinterruptible. Bias is thus possible when a strategy of
abandoning particularly long unsuccessful runs is adopted (as is invariably necessary in
practice). Thus, for instance, if we stop the run when a fixed numbern0 of iterations has
been reached, and begin afresh, we are biasing the outputX in favour of fields that require
at mostn0 iterations to generate. Sincen0 is also the maximum number of distinct values
contained in the range ofz 7→ X(z), we are effectively biasing in favour of a bounded range.
While this is a potential problem, the stopping timeT ′ will often be very small unless the
estimates (12) are poor.

85https://doi.org/10.1112/S146115700000070X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000070X


A new method for coupling random fields

Fill [3] proposed another method for the perfect simulation of a target probability density,
based on rejection sampling. This has the advantage ofbeing interruptible. However, the
chain(Xn, Y

(n)) is not reversible on5 (since the set of finitely coupled fields is absorbing)
and a modification of Fill’s method for field coupling appears more complicated.

4. Flows and Markov chains: coupling two chains

For the remainder of this paper, we shall takeZ = E. We are given a kernelP(x, dy) on
E representing the transition function of some Markov chain. For any sequence of random
fieldsX(1),X(2), · · · ∈ 5, we can define a correspondingflowFs,t : E → E,

Fs,t (x) = X(t−1) ◦ · · · ◦ X(s)(x), s < t, x ∈ E. (17)

Then if we setXt(x) = F0,t (x), we have simulateously realized all Markov chains onE

with transition functionP and deterministic initial condition. It is common in simulation
studies to take the random fields in the formX(k)(z) = f (z, ζk), wheref is some measurable
function and(ζk) is an IID sequence. This has been called a stochastic recursive sequence
(SRS) construction [1]. It should be noted, however, that it is by no means necessary to take
thesamefunctionf for eachk, so long as the resulting fieldX(k) always belongs to5.

We shall now briefly discuss an application of the field couplers to the problem of
coupling two such Markov chains,Xt(x1) andXt(x2) say, both with the same transition
kernelP .

Recall first that acoupling timehere is a random timeT > 0 such thatXT (x1) = XT (x2).
Since both chains are built from the same flow, this also means thatXT +t (x1) = XT +t (x2)

for all t > 0. The coupling time is calledsuccessfulif P(T < ∞) = 1. The existence of a
successful coupling time is by no means guaranteed, and obviously depends on the choice
of flow Fs,t .

Remark.Some flows do not have successful coupling times, even for uniformly ergodic
kernelsP . As an example, consider the random walk on the unit circleS1 = {eiθ : θ ∈ R},
given by the flow

Ft,t+1
(
exp(ix)

) = expi(x + Wt), Wt ∼ N (0, 1).

The Markov chainXt(e
ix) is aperiodic and uniformly ergodic, with stationary distribution

given by the Lebesgue measure onS1. From the description ofFt,t+1 it is also clear that
two chainsXt

(
exp(ix1)

)
andXt

(
exp(ix2)

)
evolve in parallel, and can never couple unless

x1 = x2 (mod 2π).

The above example does not preclude the existence of some alternative flowF̃t,t+1 which
will allow a successful coupling to take place (indeed, the uniform ergodicity guarantees
this existence). Now givenany flow of the type in (17), we claim that the field couplers
can generate such a new flow̃Fs,t , for which the coupling of the associated chainsX̃t (x1)

and X̃t (x2) is successful.
Indeed, suppose that for eachs, we iterate the simple field couplern times with seed

X(s), obtaining a new fieldX(s)
n ∈ 5. We define the flow

F̃s,t (z) = X(t−1)
n ◦ · · · ◦ X(s)

n (z), (18)

and corresponding Markov chains̃Xt(z) = F̃0,t (z). We shall consider only fieldsX(s)
n

generated by the simple field coupler here, for simplicity and because the independence
field coupler can be treated in a very similar way.
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The following result shows that if the proposal densityθ has heavy enough tails, then
coupling ofX̃t (x1) andX̃t (x2) is always successful for uniformly ergodic kernelsP . This
will be used in the next section.

Note that the coupling method proposed here does not require any explicit computations
of minorization conditions, but merely the knowledge that they exist. This is unlike the
classical coupling method based on splitting, whereby two chains both have to enter an
explicitly defined small setC simultaneously, right before coupling.

The proof below also shows that ifP is only positive Harris recurrent, then coupling is
successful with strictly positive probability.

Theorem 6. LetFs,t be an arbitrary flow forP , and suppose that the target densityp(x, y)

and proposal densityθ(y) satisfyp(z, y) < γ (z)θ(y) for some functionγ (z) which is
bounded on a1-small setC. If P is aperiodic and uniformly ergodic, then

P
(
X̃t (x1) = X̃t (x2) eventually

) = 1, for all x1, x2 ∈ E.

Proof. SinceFs,t is arbitrary, we shall assume that (18) holds withn = 1. Recall that we
denote byXs(x) the Markov chain started fromx and constructed from the original flow
Fs,t , and byX̃s(x) the Markov chain started fromx constructed from the new flow̃Fs,t

obtained after iterating the simple field coupler. We shall analyse the law of

T̃ (x1, x2) = min
{
s > 0 : X̃s(x1) = X̃s(x2)

}
.

SinceP is uniformly ergodic, there existm andα > 0 such thatP(Xm(x) ∈ C) > α holds
for all x ∈ E. Denote byH(y) the first exit time of the chain(8(s−1), 8(s), ξ (s)), started
initially at (y, 8(1), ξ (1)), from the set{(u, v, w) : p(u, v) > wγ (u)θ(v)}. If H(y) > m,
then because the proposalθ(·) dominatesp(z, ·), we must have

p
(
y, 8(1)

)
> γ (y)ξ (1)θ

(
8(1)

)
,

p
(
8(1), 8(2)

)
> γ

(
8(1)

)
ξ (2)θ

(
8(2)

)
,

...

p
(
8(m−1), 8(m)

)
> γ

(
8(m−1)

)
ξ (m)θ

(
8(m)

)
,

and consequentlỹX1(y) = 8(1), X̃2(y) = 8(2), . . . , X̃m(y) = 8(m). In particular,
either X̃m(x) = X̃m(y) = 8(m) (when T̃ (x, y) 6 m holds), or elsẽXs(x) 6= 8(s) for
all s 6 m (whenT̃ (x, y) > m holds), and theñXs(x) = Xs(x).

Now consider the eventBm+1 = {εν(8(m+1)) > maxz∈C γ (z)ξ (m+1)θ(8(m+1))}. When
this holds, because the proposalθ(·) dominatesp(z, ·), all chains that satisfỹXm(x) ∈ C

must couple; that is,̃Xm+1(x) = 8(m+1). Consequently,

P
(
T̃ (x, y) 6 m + 1

)
> P

(
Xm(x) ∈ C, X̃m(y) ∈ C, H(y) > m, Bm+1

)
= P

(
Xm(x) ∈ C

)
P
(
8(m) ∈ C, H(y) > m

)
P(Bm+1).

Let A be a set of strictly positive stationary measure, and letβ > 0 be a number such that
inf y∈A P(8(m) ∈ C, H(y) > m) > β holds. Such a set must exist, for otherwise we would
haveF̃s,s+1 ≡ Fs,s+1 almost surely. We estimate

inf
y∈A

P
(
T̃ (x, y) 6 m + 1

)
> αβP(Bm+1) = δ > 0,

and note that this is independent ofx. To finish the proof, observe that if we begin with two
chainsX̃s(x1) andX̃s(x2) such thatx1 6= x2, then, becausẽXs(x2) is positive recurrent, it
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must enter the setA infinitely often. Each time this occurs, regardless of the current location
x of the chaiñXs(x1), there exists at leastδ probability that the two chains will couple within
m + 1 steps. The Borel–Cantelli lemma therefore givesP(T̃ (x1, x2) < ∞) = 1.

In the case where the kernel densityp(x, y) and proposalθ(y) are continuous, on
a locally compact state spaceE, a sufficient condition for the existence ofγ (z) is that
limy→∞ p(z, y)/θ(y) = 0 for all z.

Theorem6 is also valid for the independence field coupler (defined in Section2, Ex-
ample2). In this case, since there is a range of proposal densitiesθz(·) to choose from,
the hypothesis can be weakened as follows. There exists some functionγ (z, w) which is
bounded on a setC ×D such thatp(z, y) < γ (z, w)θw(y), with C small andD of positive
η-measure.

5. Coupling many Markov chains

In this section, we are interested in the question of whether the whole collection
Xt(x) : x ∈ E of Markov chains can be coupled in a common finite time. We already know
from Theorem6 that any two given chainsXt(x1) andXt(x2) will couple successfully in a
timeT (x1, x2) < ∞ almost surely , but the possibility remains that supx1,x2

T (x1, x2) = ∞.
Indeed, it was shown by Foss and Tweedie [4] that there existssomeflow Fs,t corresponding
to P such that supx1,x2

T (x1, x2) < ∞ if and only if P is uniformly ergodic. Thus we must
restrict ourselves here too to such kernelsP . We would like to investigate the case thatFs,t

is fixed to be of the form (18) withn > 1.

Definition 7. Let Fs,t be a flow for the transition kernelP on the state spaceE. We say
thatFs,t collapses in finite timeif

P
(
x 7→ Fs,t (x) is constant for all large values oft

) = 1.

We say thatFs,t thins at timer > s if∣∣{Fs,r+1(x) : x ∈ E}∣∣ <
∣∣{Fs,r (x) : x ∈ E}∣∣ .

As a direct consequence of the previous sections, we can state the next theorem.

Theorem 8. LetP be uniformly ergodic with a densityp(x, y) which satisfies(8) for some
collectionC1, . . . , CN of 1-small sets coveringE. If Fs,t is any random flow with one-step
transition probabilityP , then the flow̃F0,t defined by(18) using the simple field coupler
with n > N (whereX(t) = Ft,t+1) collapses in finite time.

Proof. Applying the simple field couplern > N times will ensure that the random field
X

(s)
n is finitely coupled within someε > 0. Consequently, the Borel–Cantelli lemma implies

that the fieldF̃0,t0 has finite range almost surely, for some finitet0. Now using Theorem6
ensures that the flow̃F0,t0+t thins repeatedly until collapse.

Variations on the above theme are possible. For example, we can generate (perfectly)
finitely coupled fieldsX(s) and use these to construct̃Fs,t . This is discussed below for
Metropolis–Hastings chains.

In principle, we can now collapse the flows of any uniformly ergodic Markov chains,
provided that the transition kernelP has a density. We give two examples.
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Example 3 (Random Walk). Let P(z, dy) = q(y − z)dy, whereq(·) is a continuous,
not necessarily symmetric density onR

d . A random field belonging to5 is easily found,
namely

X(z) = z + W, whereW ∼ q(y) dy.

We propose to find a finitely coupled version ofX̃ on a compact subsetZ ⊂ R
d . We

coverZ by a finite number of closed ballsCi = B(z, ri) say,i = 1, . . . , N, and such that
εiνi(y) = inf z∈Ci

q(y − z) is not identically zero. Letg be the (continuous) density of a
distribution onR

d with heavier tails thanq. We shall need to assume thatq(·) 6 Cg(·) for
some constantC. Then we put

θz(y) ≡ θi(y) := g(y − zi), if z ∈ Ci = B(zi, ri),

and calculate the constantsγi = maxz∈Ci,y∈Rd q(y − z)/g(y − zi). Finally, we takeY ∼
η(·), whereη is the uniform distribution on the set of points{z1, . . . , zN }. Now applying
Algorithm 1, we obtain a new field̃X(z) ∼ q(y − z)dy which is almost surely finitely
coupled onZ.

Note that we have not assumed thatq(·) is symmetric. For symmetric and unimodal
increment distributions, an alternative field coupling method forX exists, proposed by
Murdoch and Green [8]. Their method, called thebisection coupler, uses translations and
reflections to construct a finitely coupled field, and appears to require fewer computations
in general. However, while the number of points in the range of the resulting field is almost
surely finite, they show that it has infinite expectation. In contrast, for the field coupler
presented here, the range of the fieldX̃ never contains more points than the number of
iterationsT ′ required to generate it, which as a random number has geometric tails.

Example 4 (Time-discretized diffusion). On the intervalZ = [0, 1], consider the Langevin
random field

X(z) = z + σW + σ 2π ′(z)/2π(z), (19)

whereπ(z) is a strictly positive differentiable function onZ andW is a standard Gaussian
random variable. Let us write

p̃(z, y) = exp
(−∣∣y − z − σ 2π ′(z)/2π(z)

∣∣2/2σ 2) (20)

for the unnormalized density ofX(z), so thatp̃(z, y) = cp(z, y) for some fixed constant
c. None of our calculations requires the normalization constant,c. For i = 1, . . . , N,
we let Ci = [(i − 1)/N, i/N], and we calculateai = inf z∈Ci

(
z + σ 2π ′(z)/2π(z)

)
and

bi = supz∈Ci

(
z + σ 2π ′(z)/2π(z)

)
. In other words, the interval[ai, bi] must contain the

means of the distributionsp(z, ·) for all z ∈ Ci . For the proposal2z(x, ·), let us take
(independently ofx) the density proportional to

θi(y) =


exp

[− |y − ai |2 /2σ 2
]
, if y 6 ai,

1, if y ∈ [ai, bi],
exp

[− |y − bi |2 /2σ 2
]
, if y > bi.

It is immediately seen that̃p(z, ·) 6 θi(·) for all z ∈ Ci , and this inequality is sharp. Also,
takeεi = 1 and

νi(y) =
{

exp
(− |y − bi |2 /2σ 2

)
, if y 6 (ai + bi)/2,

exp
(− |y − ai |2 /2σ 2

)
, if y > (ai + bi)/2,
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which completes the series of estimates (12). We chooseY uniformly in {1, . . . , N}, or
according to some other distribution adapted to the gradientπ ′(z)/π(z) if desired. Since

νi(y)/θi(y) =


exp(1/2σ 2)

(
a2
i − b2

i + 2y(bi − ai)
)
, if y 6 ai,

νi(y), if y ∈ [ai, bi],
exp(1/2σ 2)

(
b2
i − a2

i + 2y(ai − bi)
)
, if y > bi,

the probabilityvi := P
(
Y falls in Ci andνi(8)/θi(8) > ξ

)
is easy to calculate, and then

we can explicitly write down the distribution ofT ′, the time until termination of the field
coupling procedure FC-1, . . . , FC-4 (Algorithm1). This could then be optimized inN , the
total size of the coveringC1, . . . , CN .

A similar analysis can be performed for any random field onR
d of the form

X(z) =
(

bi (z) +
d∑

j=1

σ ij (z)Wj , i = 1, . . . , d

)
,

whereb(z) is a vector field onRd , σ is a matrix-valued field onRd and(W1, . . . , Wd) is a
standardd-dimensional Gaussian random variable. Such fields arise in the recent work by
Stramer and Tweedie [12], as examples of natural uniformly ergodic Metropolis–Hastings
proposals onRd .

Metropolis–Hastings-type chains comprise a class of Markov chains whose transition
kernels do not possess a density (unless the state space is countable). Their general form is
(see [11])

P(x, dy) = q(x, y)

{
1 ∧ π(y)q(y, x)

π(x)q(x, y)

}
µ(dy) + r(x)δx(dy), (21)

wherer(x) is chosen so thatP(x, E) = 1 andq(x, y)µ(dy) is the transition density of
some arbitraryproposalchain. While it is possible to modify the field couplers to work on
transition kernels of this form (this requires the proposal2z(x, ·) � P(x, ·)), it is usually
very impractical to evaluate the rejection probabilityr(x), and that renders this method
inapplicable.

Fortunately, however, it is possible to proceed otherwise, as the proposal kernel
q(x, y)µ(dy) is often analytically tractable. Common examples of such kernels were given
as examples above, and the Langevin proposal field was explicitly analysed on a simple
region.

Suppose now that we have constructed a random fieldQ(z) ∼ q(z, ·)µ(·). We shall have
X(z) ∼ P(z, ·) with P given by (21) as soon as we set

X(z) =
{
Q(z), if π

(
Q(z)

)
q
(
Q(z), z

)
> ξ · π(z)q

(
z,Q(z)

)
,

z, otherwise,
(22)

whereξ ∼ U [0, 1]. We may view the Metropolis–Hastings accept/reject step as anoperator
on fields, yieldingX when applied toQ. As such, it has some useful properties.

Suppose that we generate an IID sequence of random fieldsQ(1), Q(2), . . . , and then
constructX(1),X(2), . . . by (22), using these to generate a flowFs,t (z) = X(t−1)◦· · ·◦X(s)(z)

for the Markov chain with transition kernelP given by (21). The random (‘rejection’) sets
{z : X(k)(z) = z} ⊂ Z are not usually empty, at least with high probability.
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Proposition 9. Suppose thatQ(1),Q(2), . . . are finitely coupled proposal fields, and define
X(1), X(2), . . . as a Metropolis–Hastings proposal, by(22). Then the random sets

{z : F0,t (z) = z} = {Ft has finite range}c
are strictly decreasing as functions oft . If the state spaceE is irreducible and coverable
by a finite number of1-small sets, then in fact{z : Ft(z) = z} ↓ ∅, and the flow collapses
in a finite time.

Proof. Since

{z : F0,t (z) = z} = {
z : X(0)(z) = z

} ∩ · · · ∩ {
z : X(t−1)(z) = z

}
,

the sets are clearly decreasing. Moreover, for eachz ∈ E, the Markov chainX(k)(z) must
move eventually, and this occurs simultaneously for allz within a small set in at most
geometrically distributed time. SinceE is coverable by a finite number of such sets, we get
{z : Ft(z) = z} = ∅ in finite time. After that, the mapFt(·) has only a finite range, and thus
by Theorem6 we get collapse eventually.

The result in Proposition9 is useful for coupling procedures due to the identity
{z : Ft(z) = z}c = {Ft has finite range}. This set must be monitored if we wish to de-
tect whetherF0,t (·) has collapsed.

Note that if we donot assume thatQ(k) is finitely coupled (only to withinε say), the
monotonicity of the sets{z : F0,t (z) = z} is preserved, but the sets{Ft has finite range}are
no longer their complements. Thus they can grow and shrink in complicated ways, which
can make them untrackable for practical purposes.

6. Towards perfect simulation with Metropolis–Hastings chains

We have seen in the last section that ifP defined by (21) is uniformly ergodic, then we
cannumericallyconstruct a finite-time coupling of all Markov chainsXt(x) with transition
kernel P and deterministic initial conditionX0(x) = x ∈ E. The exact dynamics of
the coupling are no longer tractable, since in fact they are random. Instead, we gain an
automatic method of coupling chains, which does not depend on our ability to find clever
ways to couple the flowsanalytically.

For uniformly ergodic Metropolis–Hastings chains, we describe in Algorithm2 how
to simulate a given target distribution perfectly, using the field couplers described in this
paper. A large class of uniformly ergodic Metropolis–Hastings chains compatible with
this method can be found in [12]. We do not discuss ways of implementing Algorithm2
efficiently, although it is clearly possible to exploit various recurrence relations.

Nothing more needs to be said of steps (PMH-1) and (PMH-2). For step (PMH-3), it is
necessary to perform some analysis, determining a lower bound

inf
z∈Ci

π(y)q(y, z)

π(z)q(z, y)
> bi(y), i = 1, . . . , N, (23)

so that we can perform the test (24) conveniently. This can typically be done by finding
boundsπ(y)/q(z, y) > b′

i (y) andπ(z)/q(y, z) 6 b′′
i (y), takingbi(y) = b′

i (y)/b′′
i (y).

The step (PMH-4) can be performed efficiently if we construct tables of the correspon-
dencesCj 7→ X1 ◦ · · · ◦ Xn(Cj ).

91https://doi.org/10.1112/S146115700000070X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000070X


A new method for coupling random fields

(PMH-1):
Choose a covering of E by small sets C1, . . . , CN and
calculate the estimates (12).

(PMH-2):
Using the steps (FC-1, . . . ,FC-4 ), generate finitely
coupled fields (Q(k) : k = −1,−2, . . . ). For every Qk, keep
track of the (finite) range of possible values over each Cj ,
j = 1, . . . , N.

(PMH-3):
Construct X(k) from Q(k) using formula (22) (with ξ = ξ (k)),
and for each Cj , given the range of values
Q(k)(Cj ) = {q1, . . . , qm} say, test whether

π(qr)q(qr , z) > ξ(k)π(z)q(z, qr) for all z ∈ Cj , r = 1, . . . , m. (24)

Let Bk denote the union of all sets Cj for which the
test (24) fails. Clearly, {z : X(k)(z) = z} ⊂ Bk.

(PMH-4):
Let k < 0 be given. Check that

Bk ∩ Bk+1 ∩ · · · ∩ B1 = ∅.

If this holds, then there will typically be k < ` < 0 such
that Bk∩Bk+1∩· · ·∩B` = ∅. For each k 6 n 6 `, let {q1, . . . , qr} = Qn(E)

denote the (finite) range of Q(n). Compute the set

Hn = {
X(1) ◦ · · · ◦ X(n+1)(qi) : i = 1, . . . , qr

}
.

If Hk = Hk+1 = · · · = H` = {p}, say, then the value of p is a
perfect draw from π . Stop. Otherwise, try (PMH-4 ) with
an earlier value of k.

Algorithm 2: Perfect Metropolis–Hastings

Example 5 (Langevin algorithm). We consider again the Langevin random field (19)
on Z = [0, 1], this time considering it as a proposal field for the Metropolis–Hastings
algorithm with target distributionπ . Hence, up to normalization, we haveq(y, z) = p̃(y, z),
the latter being defined by (20). To implement Algorithm2, we need only to compute
the bounds (23). Recall that we tookCi = [(i−1)/N, i/N]. Letf (z) = z+σ 2π ′(z)/2π(z)

denote the mean of the densityq(z, ·). We havef (z) ∈ [ai, bi] for all z ∈ Ci ; consequently,

π(y)/q(z, y), = π(y) exp
(|z − f (y)|2 /2σ 2),

>

π(y), if (i − 1)/N 6 f (y) 6 i/N,

π(y) min
j=i,i−1

exp
(|j/N − f (y)|2 /2σ 2), otherwise;

π(z)/q(y, z) = π(z) exp
(|y − f (z)|2 /2σ 2)

6 sup
z∈Ci

π(z) exp
(
(|y − ai |2 ∨ |y − bi |2)/2σ 2).
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Note that it does not matter whether we know the normalizing constant ofπ or not,
since we are now taking the ratio of these two quantities to getbi(y). In particular, these
calculations can be done on any conveniently chosen multiple ofπ . Setting

π̂i(y) = π(y)

supz∈Ci
π(z)

,

we find that

bi(y) =


π̂i(y) exp

(− |y − ai |2 ∨ |y − bi |2
))

, if (i − 1)/N 6 f (y) 6 i/N,

π̂i(y) exp
(
minj=i,i−1 |j/N − f (y)|2 /2σ 2

− |y − ai | ∨ |y − bi |2
)
, otherwise.
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Appendix A. On-line demonstration

A Java applet that illustrates the field coupler in action in various simple examples can
be viewed at:

http://www.lbreyer.com/fcoupler.html.
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