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Abstract. We consider a class of deformations of Laplace-Beltrami operators on
flat and constant curvature spaces, which possess a family of commuting operators.
These are built as deformations of the symmetries of the underlying geometric space.
In flat spaces it is also possible to extend some symmetries into ladder operators. In all
cases it is possible to choose sub-classes which are super-integrable.

2000 Mathematics Subject Classification. 53C80, 81Q99.

1. Introduction. For an n−dimensional (pseudo-)Riemannian space, with local
coordinates x1, . . . , xn and metric gi j, the Laplace-Beltrami operator is defined by

Lb f =
n∑

i, j=1

1√
g

∂

∂x j

(√
ggi j ∂ f

∂xi

)
, (1)

where g is the determinant of the matrix gi j. When the space is either flat or
constant curvature, it possesses the maximal group of isometries, which is of dimension
1
2 n(n + 1). The infinitesimal generators (Killing vectors) are just first order differential
operators which commute with the Laplace-Beltrami operator (1). This is always the
case, whenever the space has isometries, but in the case of flat and constant curvature
spaces, Lb is actually the second order Casimir function of the symmetry algebra
(see [3]).

We may ask whether it is possible to deform this differential operator in such a
way that it still possesses a number of first integrals. We are therefore led to consider
the operator

L f = Lb f +
n∑

i=1

Ai ∂ f
∂xi

+ U f, (2)

where Ai and U are functions of the coordinates (the vector and scalar potentials).
This poses the general question of determining those functions for which there exist n
or more commuting differential operators Ik. Since the leading order part of Ik must
commute with Lb itself, this is not such a difficult task. The leading order part of
Ik defines a Killing tensor for the metric and, for flat and constant curvature spaces,
these are just tensor products of Killing vectors [1, 5]. In this short paper, we restrict
attention to the case n = 2, but the approach is easily applied to higher dimensions. In
the case n = 2, it is enough to find a single commuting operator for integrability, but it
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is also easy to construct super-integrable examples, possessing 2 independent operators
which commute with L, but which are not, of course, in involution.

Recently, there has been much interest in such systems. In [4] they arise in the
context of Krall-Sheffer polynomials [6]. In [2] some integrable Schrödinger operators
with magnetic fields are found by using the factorisation method of Schrödinger. In
[7] the authors carry out a “brute force” symmetry calculation to determine super-
integrable systems in quantum mechanics.

In the current paper we consider deformations of first and second order symmetry
operators, satisfying the ladder operator condition

[L, S] = kS,

where k is any constant (k = 0 in the case of a symmetry). For a number of examples,
there exist S±, corresponding to k = ±k̃, so that the quantity S+S− is a symmetry
(of either second or fourth order). This considerably reduces the complexity of the
calculation.

Since we are not going to be involved in tensorial calculations, there is no need to
use upper and lower index notation. All coordinates will carry lower indices in what
follows.

2. Flat Metrics. The Euclidean group of motions in n dimensions is the semi-
direct product of the group of n (commuting) translations and the group O(n) of
rotations. In the flat coordinates for which the metric is given by

ds2 =
n∑

i=1

dx2
i ,

the Euclidean algebra is generated by

Ti = ∂i, �i j = xi∂j − xj∂i, i < j,

satisfying

[Ti, Tj] = 0, [Ti,�j k] = δi jTk − δkiTj.

The quadratic Casimir of this algebra is just the Laplacian C2 = ∑n
i=1 T2

i = ∑n
i=1 ∂2

i ,
which is (1) for this simple metric. In this paper we restrict ourselves to the case of
n = 2.

We consider the deformed operator

L = ∂2
1 + ∂2

2 + A1∂1 + A2∂2 + U, (3)

where Ai, U are functions of the coordinates, and deform the two commuting
translation operators Ti, requiring these to be ladder operators:

Si = ∂i + γi, [L, Si] = kiSi, (4)

where γi are functions, to be determined, and ki constants. Since the leading order part
of Si are symmetries of Lb, this imposes just 3 conditions (the coefficients of the first and
zeroth order terms), the first 2 of which impose a constraint on the “electromagnetic
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field tensor” B12 = ∂1A2 − ∂2A1. For i = 1 this is

∂1γ1 = 1
2 k1 + 1

2∂1A1

∂2γ1 = 1
2∂1A2

}
⇒ ∂1B12 = 0,

with a similar result for i = 2. Taking the 2 conditions together, leads to B12 = b, a
constant (possibly zero). The final condition for each i, specifies the derivatives of
U , whose integrability conditions give k2 = −k1. In summary we have, up to gauge
transformation, and putting k1 = k,

A1 = − 1
2 bx2, A2 = 1

2 bx1,

γ1 = 1
2 kx1 + 1

4 bx2, γ2 = − 1
2 kx2 − 1

4 bx1,

U = 1
16 (b2 − 4k2)

(
x2

1 + x2
2

) − 1
2 bkx1x2.

As a result of the commutation relations (4), we have, for general b,

[L, I1] = 0, where I1 = S1S2.

We also have that Si satisfy

[S1, S2] = −1
2

b.

2.1. Super-integrable case. When either b = 0 or k = 0, L is rotationally inva-
riant, meaning that [L,�12] = 0, thus rendering the system super-integrable, with one
second order and one first order commuting operator. In the case k = 0 the former
ladder operators actually commute with L, and

L = S2
1 + S2

2 + 1
2

b �12.

In the case b = 0, L has the discrete symmetry k �→ −k, so instead of two ladder
operators we have four! This is a reflection of the separability of this case. We have

S±
i = ∂i ± 1

2
kxi, satisfying [L, S±

i ] = ±kS±
i (5)

and

[S+
i , S−

j ] = −kδi j, [S+
i , S+

j ] = [S−
i , S−

j ] = 0.

For each i we have a 1-dimensional harmonic oscillator. It also follows from the
commutation relations (5) that [L, S+

i S−
j ] = 0 for any choice of i, j. In particular

L = S+
1 S−

1 + S+
2 S−

2 + k, I1 = S+
1 S−

2 , �12 = 1
k

(S+
1 S−

2 − S+
2 S−

1 ).

In this case we can gauge transform the potential function to a constant, after
which L can be transformed by a change of coordinates to a Krall-Sheffer “admissible
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operator”. We have

L f = λ f,

f = ϕ f̃

}
⇒ L̃ f̃ = λ f̃ ,

where

L̃ = ∂2
1 + ∂2

2 + ∂1ϕ ∂1 + ∂2ϕ ∂2 + ∂2
1 ϕ + (∂1ϕ)2 + ∂2

2 ϕ + (∂2ϕ)2 − 1
4

k2(x2
1 + x2

2

)
.

Choosing ϕ = 1
4 k(x2

1 + x2
2) + β1 log x1 + β2 log x2 we find

L̃ = ∂2
1 + ∂2

2 +
(

kx1 + 2β1

x1

)
∂1 +

(
kx2 + 2β2

x2

)
∂2 + (β1 + β2 + 1)k, (6)

whenever βi = 0, 1. The choices (β1, β2) = (0, 0), (1, 0), (1, 1) correspond to Krall-
Sheffer cases VII, VI, IV respectively (throughout this paper, the numbering is taken
from [4]). This is discussed further in section 4.

2.2. Second order ladder operators. We now ask whether there exist nontrivial
examples of (3) for which there exist second order ladder operators, which are extensions
of some second order symmetries of the Laplace-Beltrami operator. Such an operator
will be considered nontrivial if it is not the composition of a pair of first order ladder
operators. We consider extensions of the operators T2

i :

Si = ∂2
i +

2∑
j=1

γ j
i ∂j + γ 0

i , [L, Si] = kiSi, (7)

where γ
j

i , j = 0, 1, 2, are functions, to be determined, and ki constants. We now have
6 equations for the coefficient as a consequence of each of the ladder equations (7). This
gives us 12 equations for 9 coefficients. The coefficients of quadratic derivatives give
equations for γ 1

i and γ 2
i , the integrability conditions of which give that ∂1∂2 B12 = 0.

Up to gauge transformation we may therefore write A1 = a′
1(x2), A2 = a′

2(x1), after
which

γ 1
1 = 1

2
k1x1 + c1x2, γ 2

1 = a′
2(x1) − c1x1 γ 1

2 = a′
1(x2) − c2x2 γ 2

2 = 1
2

k2x2 + c2x1.

It is unnecessary to give a full classification here, so we simplify the formulae by
setting c1 = c2 = 0, k2 = −k1 = −k. The coefficients of the first order derivatives give
equations for γ 0

i , whose integrability conditions give a formula for Ux1x2 . This leads to

U(x1, x2) = U1(x1) + U2(x2) − 1
2

(a1(x2) a′′
2(x1) + a2(x1) a′′

1(x1))

+ 1
4

k(x1a′
1(x2) + x2a′

2(x1) + x1x2a′′
2(x1)),

and

x2a′′′
1 (x2) + 4a′′

1(x2) + x1a′′′
2 (x1) + 4a′′

2(x1) = 0.
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This equation is separable and leads (after removing some inessential constants) to

a1(x2) = m1

x2
2

, a2(x1) = m2

x2
1

with B12 = 6
(

m2

x4
1

− m1

x4
2

)

After this, we find γ 0
i and fix U1(x1) and U2(x2) and find that m2 = m1 = m. The final

result is as follows:

L = ∂2
1 + ∂2

2 − 2m
x3

2

∂1 − 2m
x3

1

∂2 −
(
x2

1 + x2
2

)
16x4

1x4
2

(
48m2 + 8kmx1x2

(
x2

1 − x2
2

) + k2x4
1x4

2

)

S1 = ∂2
1 + 1

2
kx1∂1 − 2m

x3
1

∂2 + 1
16

(
k2x2

1 + 4k
(

1 + 2mx2

x3
1

)
− 48m2

x4
1x2

2

)
(8)

S2 = ∂2
2 − 1

2
kx2∂2 − 2m

x3
2

∂1 + 1
16

(
k2x2

2 − 4k
(

1 + 2mx1

x3
2

)
− 48m2

x2
1x4

2

)

When m = 0 these operators are just the squares of (5) and L reduces to our
previous example of a pair of harmonic oscillators. When m �= 0, this is a new integrable
example and the operators Si cannot be reduced. When k = 0, then each of the
operators Si actually commute with L, so the system is super-integrable, with second
order integrals. When k �= 0, the fourth order operator S1S2 is an integral.

3. Constant Curvature Metrics. In the case of constant curvature metrics we
directly construct second order commuting operators. The non-zero curvature is an
obstruction to the existence of first order ladder operators. If we were to treat constant
curvature metrics in general, then it would be better to choose some canonical form,
such as the “Riemannian” form, which explicitly shows it as conformally flat, with
infinitesimal rotations as Killing vectors (see [1, 8]). However, in this paper we just
look at one example and in the form which arises in the context of Krall-Sheffer
operators in [4] (case II).

The inverse metric takes the form

gi j =
(

x2 xy
xy y2 − y

)
,

so the corresponding Laplace-Beltrami operator is

Lb = x2∂2
x + 2xy∂x∂y + (y2 − y)∂2

y + 3
2

(x∂x + y∂y) − 1
2
∂y.

In these coordinates, the symmetry algebra is

S1 = x∂x, S2 = √
xy ∂y, S3 = 2

√
xy ∂x +

√
y
x

(y − 1) ∂y,

satisfying

[S1, S2] = 1
2

S2, [S1, S3] = −1
2

S3, [S2, S3] = S1,
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with Lb the Casimir:

Lb = 1
2

(
S2S3 + S3S2 + 2S2

1

)
.

We consider the deformed operator

L = Lb + A1∂x + A2∂y + U, (9)

where Ai, U are functions of the coordinates. For brevity, we restrict attention to the
case when Ai = 0. We first consider operators L which commute with

I1 = S2
1 + γ1(x, y).

The first condition is on U , as a result of an integrability condition on γ1:

γ1x = 1
2

(1 − y)Ux, γ1y = 1
2

xUx ⇒ ∂x(xUx + (y − 1)Uy + U) = 0.

This leads to

γ1 = 1
2

((1 − y)U + γ10(y)),

with

xUx + (y − 1)Uy + U = γ ′
10(y),

where γ10(y) is an arbitrary function. The general solution of this equation is

U(x, y) = U1
( y − 1

x

)
x

+ U2(y)
y

, (10)

where the substitution U2 = y
y − 1γ10 is used to simplify some later calculations. This

is the most general potential for which (9) (with Ai = 0) is integrable. Those who
are familiar with separable systems in classical mechanics will recognise the feature of
U(x, y) depending upon 2 arbitrary functions of 1 variable. These variables are, indeed,
the separation variables for this system. Defining x1 = y − 1

x , x2 = y, gives

L = −2
x2 − 1

(
x2

1∂
2
1 + x1∂1 − 1

2
x1U1(x1)

)
+ 2x2

x2 − 1
∂2

2 + (3x2 − 1)∂2 + U2(x2)
x2

,

(11)
I1 = x2

1∂
2
1 + x1∂1 − 1

2
x1U1(x1).

Demanding that there exists another first integral for L, places further constraints
on Ui, which then fixes these arbitrary functions.

3.1. An additional integral which extends S2
2. We next ask that the operator L

commutes with

I2 = S2
2 + γ2(x, y).
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The integrability condition for γ2 is

U ′′
1 (z) + x3U ′′

2 (y) = 0, where z = y − 1
x

,

giving

U1(z) = c0z + c1

z
+ c2, U2(y) = −c1

y − 1
, γ2 = −c0

y
x

− c1
x
y
.

We thus have the super-integrable system with

L = Lb + c0

(
y − 1

x2

)
+ c1

y
+ c2

x
,

I1 = x2∂2
x + x∂x − c2

(
y − 1

x

)
− c0

(
y − 1

x

)2

, (12)

I2 = xy∂2
y + 1

2
x∂y − c0y

x
− c1x

y
.

3.2. An alternative additional integral which extends S2
3. We next ask that the

operator L commutes with

I3 = S2
3 + γ3(x, y),

instead of I2. The integrability condition on γ3 is

U ′′
1 (z) + 6

z
U ′

1(z) + 6
z2

U1(z) + x3U ′′
2 (y) = 0, where z = y − 1

x
,

giving

U1(z) = − c0

z
+ c1

z2
+ c2

z3
, U2(y) = c0

y − 1
+ d0, and γ3 = (c0 − d0)

(y − 1)2

xy
− c2xy

(y−1)2
.

We thus have the super-integrable system with

L = Lb + c1x
(y − 1)2

+ c2x2

(y − 1)3
+ d0 − c0

y
,

I1 = x2∂2
x + x∂x − c1

(
x

y − 1

)
− c2

(
x

y − 1

)2

,

(13)

I3 = 4xy∂2
x + 4y(y − 1)∂x∂y + y(y − 1)2

x
∂2

y + (3y − 1)∂x + (y − 1)2

2x
∂y

+ (c0 − d0)
(y − 1)2

xy
− c2xy

(y − 1)2
.

4. Eigenfunctions. In this section we discuss the eigenfunctions of some of the
examples seen in sections 2 and 3. We are particularly interested in the role played by
the ladder operators and symmetries and the role of super-integrability.
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ϕ0,0

ϕ1,0 ϕ0,1

ϕ2,0 ϕ1,1 ϕ0,2

ϕ3,0 ϕ2,1 ϕ1,2 ϕ0,3

ϕ4,0 ϕ3,1 ϕ2,2 ϕ1,3 ϕ0,4

��� ���

��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

S+
1 S+

2

Figure 1. The triangular lattice. Underlining refers to polynomial eigenfunctions for
the case βi = 1

4.1. Flat metrics. The easiest (non-trivial) case is when b = 0 and k �= 0. For
k = 1, the gauge transformed operator (6) (adjusting the additive constant term and
removing the “tilde”) and gauged ladder operators are

L = ∂2
1 + ∂2

2 +
(

x1 + 2β1

x1

)
∂1 +

(
x2 + 2β2

x2

)
∂2 + β1 + β2,

S±
i = ∂i + xi + ε±

i βi

xi
, with L = S+

1 S−
1 + S+

2 S−
2 ,

where ε+
i = 1, ε−

i = 0 and βi = 0, 1. As previously stated, (β1, β2) = (0, 0), (1, 0), (1, 1)
correspond to Krall-Sheffer cases VII, VI, IV respectively. We start with the “ground
state”, corresponding to S−

i ϕ0,0 = 0 and hence Lϕ0,0 = 0. We then build a triangular
array of eigenfunctions (see Figure 1), defined by

ϕ0,0 = x−β1
1 x−β2

2 , ϕm,n = (S+
1 )m(S+

2 )nϕ0,0.

This is a well defined array, since [S+
1 , S+

2 ] = 0. It follows from the commutation
relations (with k = 1) that ϕm,n has eigenvalue λm,n = m + n. The precise form of these
eigenfunctions depends upon the choice of βi. However, we have the following general
structure:

ϕm,0 = x−β2
2 (S+

1 )mx−β1
1

ϕ0,n = x−β1
1 (S+

2 )nx−β2
2

ϕm,n = ((S+
1 )mx−β1

1 )((S+
2 )nx−β2

2 )


 ⇒ ϕm,n = ϕm,0ϕ0,n

ϕ0,0
.

Some of these eigenfunctions are polynomial. When β1 = β2 = 1, then ϕ1,1 = 1 and
ϕm,1 and ϕ1,n are respectively independent of x2 and x1 and therefore ϕm,n = ϕm,1ϕ1,n,
for m, n ≥ 1. When m is odd, ϕm,1 is a polynomial in x2

1. Similarly, when n is odd, ϕ1,n

is a polynomial in x2
2. This is indicated in Figure 1. by underlining. This suggests the

change of coordinates x = x2
1, y = x2

2, after which

L = 2x∂2
x + 2y∂2

y + (x + 3)∂x + (y + 3)∂y,

I1 = 2x∂2
x + (x + 3)∂x,

I2 = xy(∂x − ∂y)2 + (y − x)(∂x − ∂y).
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In these coordinates, S±
i have algebraic coefficients, but their squares have polynomial

coefficients:

(S+
1 )2 = 4x∂2

x + 2(2x + 3)∂x + x + 3, (S−
1 )2 = 4x∂2

x + 6∂x,

and similarly for S±
2 , so it is evident that the eigenfunctions of the indicated sub-lattice

are themselves polynomial in x and y.

4.2. Constant curvature metrics. We now consider the super-integrable case (12)
and perform the gauge transformation L �→ L̃ = e−ϕL eϕ (and similarly for I1, I2),
with

ϕ = α
y − 1

2x
+ 1

2
(β + γ − 1) log x − 1

4
(2γ + 1) log y,

where the constants are related to ci through

c0 = 1
4
α2, c1 = 1

4
γ 2 + 1

2
γ + 3

16
, c2 = 1

2
α(2 − β − γ ),

which leads to (after removing some additive constants and the “tilde”)

L = x2∂2
x + 2xy∂x∂y + (y2 − y)∂2

y + (βx + α)∂x + (βy + γ )∂y

I1 = x2∂2
x + ((β + γ )x + α(1 − y))∂x, (14)

I2 = xy∂2
y + (αy − γ x)∂y,

which is just case II of the Krall-Sheffer system given in [4]. Since the operators
I1, I2 commute with L, they correspond to degeneracy of the eigenvalues of L by
just shunting eigenfunctions around (whilst not changing the eigenvalue). We can
mirror the construction of highest weight representations of Lie algebras by seeking
eigenfunctions of L which are in the kernel of I1 and then using I2 to build a sequence
of eigenfunctions with the same eigenvalue. The kernel of I1 (in the form (14)) consists
of functions of y only. We seek a sequence of polynomial eigenfunctions P0n(y) =
yn + “lower order terms”, which must therefore be eigenfunctions of the reduced
operator Lr:

LrP0n = λnP0n, Lr = y(y − 1)∂2
y + (βy + γ )∂y, λn = n(n + β − 1),

where the eigenvalue has been determined by comparing coefficients of yn. It is
straightforward to calculate these, the first few of which are

P01 = y + γ

β
, P02 = y2 + 2

γ − 1
β + 2

y + (γ − 1)γ
(β + 2)(β + 1)

,

P03 = y3 + 3
γ − 2
β + 4

y2 + 3
(γ − 2)(γ − 1)
(β + 4)(β + 3)

y + (γ − 2)(γ − 1)γ
(β + 4)(β + 3)(β + 2)

.

The sequence can be generated by the 3 point recursion relation:

P0 n+1 = (y + an)P0 n + bnP0 n−1,
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1 → P0 1 → P0 2 → P0 3 →
↓ ↓ ↓

P1 0 P1, 1 P1 2

↓ ↓
P2, 0 P2 1

↓
P3, 0

Figure 2. The lattice of polynomial eigenfunctions for the constant curvature
system (14)

where

an = (n + 1)(γ − n)
β + 2n

− n(γ − n + 1)
β + 2n − 2

,

bn = − n(γ − n + 1)
2(β + 2n − 2)

(
(n + 1)

γ − n
β + 2n − 1

− 2n
γ − n + 1
β + 2n − 2

+ (n − 1)
γ − n + 2
β + 2n − 3

)
.

We now define the sequence of companion polynomials Pm n−m = cnm xmyn−m +
“lower order terms”, where cnm are constant factors, determined by the recursion

Pm+1 n−m−1 = I2(Pm n−m) − (n − m)αPm n−m, I2(Pn 0) = 0.

The final equation follows from the fact that Pn 0 is a function of x only. We just present
a few of these:

P10 = −γ

(
x + α

β

)
,

P11 = −2(γ − 1)
(

xy + 1
β + 2

(γ x + αy) + αγ

(β + 2)(β + 1)

)
,

P20 = 2(γ − 1)γ
(

x2 + 2
αx

β + 2
+ α2

(β + 2)(β + 1)

)
.

The array of polynomial eigenfunctions is depicted in Figure 2.

5. Conclusions. In this paper it has been shown how to use the geometric
symmetries of the Laplace-Beltrami operator of flat and constant curvature spaces
to construct ladder operators and higher order symmetries of some extensions (2)
of these operators. Here, we just presented 2 dimensional examples, for which the
existence of just one independent commuting operator is enough to imply integrability
(when considered as the Schrödinger operator of some quantum system). For each
case considered, we presented sub-classes for which there existed an additional first
integral (referred to as super-integrability). The existence of a commuting second order
operator leads to the usual separable (by change of coordinates) systems. This can be
seen explicitly in (11). However, we also presented a case (8) for which the commuting
operator is fourth order, possessing second order ladder operators. The formula (10)
shows that the existence of just one commuting operator can lead to a potential
depending upon arbitrary functions. Demanding the existence of an additional
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commuting operator (super-integrability) restricts these functions to depending upon
a few arbitrary constants (see (12) and (13)).

The imposition of super-integrability is so powerful that it enables us to construct
eigenfunctions by elementary means. The existence of so many symmetries means
that the eigenvalues are highly degenerate. As already noted in [4] the Krall-Sheffer
operators fall into this category. In these cases some of the properties of “admissibility”
of the operator follow directly from the super-integrability.

Whilst this paper has only been concerned with 2 dimensional systems the ideas
were initially discussed in the context of general dimension, since it is an easy matter
to repeat many of these calculations in this general context. It is also not necessary
to restrict to constant curvature, since the only requirement is for a high degree of
symmetry. Some of these ideas will be explored in further papers.
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