
European Journal of Applied Mathematics (2024), 1–83
doi:10.1017/S095679252400072X

PAPER

An MBO method for modularity optimisation based on
total variation and signless total variation
Zijun Li1, Yves van Gennip2 and Volker John3,4

1Department of Mathematics, Humboldt-Universität zu Berlin, Berlin, Germany
2Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands
3Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
4Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
Corresponding author: van Gennip Yves; Email: y.vangennip@tudelft.nl

Received: 31 January 2024; Revised: 09 August 2024; Accepted: 12 September 2024

Keywords: modularity; MBO scheme; Ginzburg–Landau functional; community detection; data clustering

2020 Mathematics Subject Classification: 62H30 (Primary); 65K10, 91C20, 91D30, 94C15 (Secondary)

Abstract
In network science, one of the significant and challenging subjects is the detection of communities. Modularity
[1] is a measure of community structure that compares connectivity in the network with the expected connectivity
in a graph sampled from a random null model. Its optimisation is a common approach to tackle the community
detection problem. We present a new method for modularity maximisation, which is based on the observation that
modularity can be expressed in terms of total variation on the graph and signless total variation on the null model.
The resulting algorithm is of Merriman–Bence–Osher (MBO) type. Different from earlier methods of this type, the
new method can easily accommodate different choices of the null model. Besides theoretical investigations of the
method, we include in this paper numerical comparisons with other community detection methods, among which
the MBO-type methods of Hu et al. [2] and Boyd et al. [3], and the Leiden algorithm [4].

1. Introduction

A network is a graph structure that depicts intricate systems as nodes and edges, where nodes rep-
resent objects and edges express their relationships. Edge weights can quantify the strength of these
relationship, with higher edge weights indicating a stronger connection. Complex real-world systems,
such as urban transportation networks, airline networks, computer communication networks, and social
networks, are characterised by their members’ relationships. It is a daunting, if not impossible, task to
understand the structure of a network through direct (visual) observation, especially when the numbers
of nodes and edges are large. It is important, therefore, to be able to accurately and efficiently detect
relevant characteristics of networks.

A typical characteristic of networks is their community structure and its detection involves parti-
tioning the set of nodes into different communities (or clusters). Intuitively a network has a community
structure if the node set can be partitioned in such a way that nodes within each resulting cluster are
more likely to be connected to each other than to nodes in other clusters. Different mathematically pre-
cise measures have been proposed in the literature to capture this intuitive notion. In this paper, we will
focus on modularity [56, 57], which, for a given partitioning of the node set, quantifies the difference
between the actual connectivity structure within each cluster and the expected connectivity structure
based on a random null model. We give the precise definition in Section 2.3.

Community detection is of great theoretical and practical value for understanding the topology and
predicting the behaviour of real-world networks and has been widely used in many fields, such as protein

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X
https://orcid.org/0000-0003-4953-8314
https://orcid.org/0000-0002-2711-4409
mailto:y.vangennip@tudelft.nl
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S095679252400072X&domain=pdf
https://doi.org/10.1017/S095679252400072X

2 Z. Li et al

function prediction [60] and criminology [38]. The formulation of modularity suggests that its maximi-
sation over all possible partitions of the node set allows one to detect communities in a given network.
Modularity optimisation, however, is an NP-hard problem [9]; thus, numerous algorithms have been
developed to approximately optimise modularity, including extremal optimisation [21], greedy algo-
rithms such as the Clauset–Newman–Moore algorithm (CNM) [19], the Louvain algorithm [6], the
Leiden algorithm [71], simulated annealing [28], spectral methods [26, 56], and a proximal gradient
method [67].

Hu et al. [33] presented a total variation (TV)-based approach for optimising network modularity
using a Merriman–Bence–Osher (MBO) type scheme. The MBO scheme, originally formulated as an
efficient way to approximate flows by mean curvature in Merriman et al. [50, 51] and co-opted as a fast
method for approximately solving graph classification problems by Merkurjev et al. [49], is an iterative
algorithm that combines short-time (linear) dynamics with thresholding. By changing the specifics of the
dynamics, different MBO-type schemes can be constructed and Boyd et al. [7] suggested an alternative
MBO scheme for modularity optimisation which, unlike the scheme of [33], is based on an underlying
convex approximation of modularity.

One significant advantage of MBO-type schemes is their flexibility to incorporate extra data or con-
straints into the scheme, for example, a fidelity-forcing term based on training data in the linear-dynamics
step as in Budd et al. [12] or a mass-conservation constraint in the thresholding step as in Budd and van
Gennip [11]. The underlying models that form the basis of MBO schemes also make rigorous analy-
sis possible, often help interpretability of the method, and amplify the impact of even small numbers
of training data. Moreover, the general form of MBO schemes – linear dynamics alternated with non-
linear thresholding steps – makes them amenable to incorporation into artificial neural networks, as in
Liu et al. [45]. In the current paper, we focus on MBO schemes that only use the available weighted
graph structure and no additional training data or mass constraints.

1.1. Contributions

Our main contribution is the development and rigorous analysis of a new MBO-type method for modu-
larity optimisation, which we name the modularity MBO (MMBO) method. From a theoretical point of
view, our method distinguishes itself from the prior MBO-type methods in [33] and [7] in that the influ-
ence of the chosen null model on the algorithm is explicit. This is due to the fact that we reformulate the
modularity objective function in terms of a total variation functional on the ‘observed’ network whose
communities we aim to detect and a signless total variation functional on the expected network under
the null model. This signless total variation was a key ingredient in the maximum cut algorithm in [39].
Modularity optimisation can thus be interpreted as balancing a minimum cut problem on the observed
network with a maximum cut problem on the expected network under the null model. This also allows
for the easy adaptation of the new method to the use of different null models in the modularity function.1

We perform an in-depth theoretical study of the (various variants of the) linear operator Lmix that
appears in the linear-dynamics step of our MMBO algorithm, guaranteeing that the algorithm is well
defined. Besides allowing six variants of the linear operator, we also formulate two different variants
of the MMBO algorithm that differ in the method they use to numerically compute the linear-dynamics
step. Finally, we test our method on networks formed by the MNIST handwritten digits data set [43],
a stochastic block model (SBM) [32] and a ‘two cows’ image [4]. We compare our method with the
modularity optimisation methods of Clauset et al. [19] (CNM), Blondel et al. [6] (Louvain), Traag et al.

1Although some of the theoretical guarantees we give in this paper require the node degrees under the null model to be equal to
those in the observed network, there are no a priori reasons known to the authors, why the new method should fail to work with
null models that do not satisfy this condition. We tested the method with one such null model (an Erdős–Rényi null model) but
chose not to include the results to curb the length of the paper.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 3

[71] (Leiden), Hu et al. [33] and Boyd et al. [7], as well as with spectral clustering [37], which was
developed for graph clustering, but not specifically for modularity optimisation. Because of our focus
on methods that do not use any training data, we do not compare with artificial-neural-network-based
methods.

The contributions of this paper are as follows:

• a reformulation of modularity in terms of (signless) total variations functions (Section 3);
• the development of a new MBO-type method for modularity optimisation, which does not require a

specific form of the null model (Section 5);
• a rigorous analysis of various aspects of the method, such as the matrices involved (Sections 3–5);
• the identification of different operators for the linear thresholding step following a careful consider-

ation of the inner products underlying the method (Sections 4–5);
• comparative computational tests, which not only show the performance of the new method in

relation to existing methods measured according to the obtained modularity scores and various
extrinsic clustering quality scores but also serve as a replication of results for the existing methods
(Section 7);

• an empirical investigation of the dependence of the methods by Hu et al., by Boyd et al., and the
new methods on the number of eigenvectors of the linear operator that are used and the number of
iterations of the algorithm (Section 7).

1.2. Paper outline

The remainder of the paper is organised as follows. In Section 2, we introduce the mathematical pre-
liminaries that we need; in particular in Section 2.3, we (re)acquaint the reader with the modularity
function.

The reformulation of modularity in terms of a total variation and signless total variation function is
key to our method. We present this reformulation in Section 3, both for the case of two communities and
multiple (i.e., more than two) communities.

On our way to formulating an MBO-type scheme for modularity optimisation, we require a relaxation
of the original problem. This we achieve via the Ginzburg–Landau (GL) diffuse-interface techniques that
we describe in Section 4.

After this, the stage is ready for the introduction of our MMBO schemes for binary community detec-
tion and multi-community detection in Section 5. The details of the numerical implementations of these
schemes are discussed in Section 6, such as the Nyström extension with QR decomposition [4, 12, 23,
58] in Section 6.4, which is employed to efficiently compute the leading eigenvalues and eigenvectors
of our operators.

In Section 7, we evaluate the performance of our method on synthetic and real-world networks, not
only in terms of modularity optimisation and run time but also according to various performance metrics
(described in Section 7.1.3) that compare the algorithms’ output with ground truth community structures
that are available for the data sets we use for our tests.

We close the main part of the paper in Section 8 with some conclusions and suggestions for future
research.

In Appendix A, we establish some properties of two multi-well potentials. The other appendices
provide theoretical results regarding the spectra of the operators we use in the linear-dynamics step of
our MMBO scheme. Appendices B and C present deferred proofs for lemmas from Sections 5 and 6,
respectively, while Appendix D investigates the consequences that Weyl’s inequality and a rank-one
matrix update theorem have for our operators.

Notation. Table 1 contains an overview of notation that is frequently used in this paper.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

4 Z. Li et al

Table 1. Summary of frequently used symbols

Notation list

Symbol Description Symbol Description
A a partition of V P null model
ci the community of which node i is a

member
PNG Newman–Girvan null model

(dC)i the (weighted) degree of node i based on
adjacency matrix C

Pt(K) set of matrices encoding a
partition of V into K subsets

DC degree matrix based on C Qγ modularity
e(k) row vector with e(k)

k = 1 and, if l �= k,
e(k)

l =−1
QC signless Laplacian based on C

E edge set QCsym signless symmetric normalised
Laplacian based on C

ε parameter of the GL functional QCrw signless random walk Laplacian
based on C

η parameter in stopping criterion τ time step in MBO scheme
fε graph Ginzburg–Landau functional TVC graph total variation based on C
f +
ε

signless graph Ginzburg–Landau
functional

TV+C graph signless total variation
based on C

G graph T VC graph total variation for
vector-valued functions based on C

γ resolution parameter T V+C graph signless total variation for
vector-valued functions based on C

I identity matrix U node-cluster association matrix
K number of (possibly empty) clusters U∗l lth column of U
� eigenvalue matrix Uj∗ jth row of U
LBoyd the linear operator in the MBO scheme

of [7]
� double-well potential

LBoyd,rw random walk normalised variant of LBoyd �mul multi-well potential
LBoyd,sym symmetrically normalised variant of

LBoyd

V node set

LHu the linear operator in the MBO scheme
of [33]

V set of node functions u : V→R

LHu,rw random walk normalised variant of LHu Vbin set of node functions
u : V→{−1,+1}

LHu,sym symmetrically normalised variant of LHu volC(S) the volume of S⊂ V based on C
Lmix one of six possible linear operators in our

MMBO scheme (see (38))
W adjacency matrix of the

to-be-partitioned graph
LC graph Laplacian based on C X eigenvectors matrix
LCsym symmetric normalised Laplacian based

on C
〈·, ·〉 Euclidean inner product

LCrw random walk Laplacian based on C 〈·, ·〉C degree-weighted inner product
based on C

m the number of the eigenvalues used for
the diffusion step

|| · ||1 Taxicab norm

N natural numbers excluding 0 || · ||2 Euclidean norm
Nt number of time steps in Euler scheme ‖ · ‖F Frobenius norm
NC(i) set of neighbours of node i based on C ‖ · ‖∞ infinity-operator norm for matrices

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 5

2. Mathematical preliminaries

In this section, we introduce basic terminology and derive a new formulation of modularity maximi-
sation in terms of the minimisation of a combination of graph total variation and graph signless total
variation.

2.1. Graphical framework

In this paper, we consider connected, edge-weighted, undirected graphs G= (V , E, ω) with a node
set V = {1, . . . , |V|}, an edge set E= {(i, j)}|V|i,j=1, and edge weight ωij between node i and node j. The
(weighted) adjacency matrix W = (ωij)

|V|
i,j=1 is a symmetric matrix whose entries ωij are zero if i= j or

(i, j) /∈ E, and positive2 otherwise. Consequently, we can consider a given adjacency matrix W (with
non-negative entries and zeros on the diagonal) as defining the edge structure of the graph. Graphs with
non-negative edge weights are known as unsigned graphs. We consider unweighted graphs as special
cases of weighted graphs for which, for all i, j ∈ V , ωij ∈ {0, 1}.

We will reserve the notation W for the adjacency matrix of the connected graph whose nodes we
wish to cluster. Along the way we also encounter graphs defined by other adjacency matrices; therefore
in our definitions of adjacency-matrix-dependent quantities, we will use the (dummy) symmetric matrix
C ∈ [0,∞)|V|×|V| with entries cij. We note that we do not require the diagonal entries cii to be zero, as is
sometimes required in other sources (i.e., we allow the graph defined by C to have self-loops).

We denote the set of neighbours of node i ∈ V with respect to the adjacency matrix C by:

NC(i) := {j ∈ V : cij > 0}.
The (weighted) degree of node i with respect to the adjacency matrix C is

(dC)i :=
∑
j∈V

cij. (1)

The diagonal degree matrix DC of C has entries (DC)ii = (dC)i. The maximum and minimum node
degrees with respect to C are

dC,max := max
i∈V

(dC)i and dC,min := min
i∈V

(dC)i,

respectively. The volume (i.e., total edge weight) of a subset S⊂ V with respect to C is defined as:

volC(S) :=
∑
i∈S

(dC)i =
∑

i∈S,j∈V

cij.

In particular, volC(V) is also called the volume of the graph with adjacency matrix C.
We define the set of real-valued node functions:

V := {u : V→R} .
Since a function u ∈ V is fully determined by its values u1, . . . , u|V| at the (finitely many) nodes, we
may equivalently interpret u as a column vector (u1, . . . , u|V|)T ∈R|V|. We will freely make use of both
the interpretation as function and as vector and do not distinguish between the two in our notation. As
a consequence, we can represent linear operators that act on functions u : V→R by |V|-by-|V| real
matrices. Also in this context, we will not distinguish between the operator and matrix interpretations
in our notation.

2We will use ‘non-negative’ to contrast with ‘positive’ regarding the inclusion of the number zero.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

6 Z. Li et al

The standard (Euclidean) inner product 〈·, ·〉 on R
|V| is defined as 〈u, v〉 := uTv. The norms || · ||1 and

|| · ||2 are the taxicab norm (i.e., 1-norm) and the Euclidean norm (i.e., 2-norm), respectively; that is, for
vectors w ∈Rn,3

‖w‖1 :=
n∑

i=1

|wn| and ‖w‖2 :=
(

n∑
i=1

w2
n

) 1
2

.

If C does not contain a row with only zeros, that is, if all row sums (dC)i are positive, we define the
C-degree-weighted inner product to be

〈u, v〉C :=
∑
i∈V

uivi(dC)i. (2)

For future reference we note that, if C and C̃ are two adjacency matrices with positive row sums, then

〈u, v〉C = 〈D−1
C̃

DCu, v〉C̃. (3)

Given an adjacency matrix C, and a function u : V→R, we define the graph total variation (TVC)
and graph signless total variation (TV+C) as:

TVC(u) := 1

2

∑
i,j∈V

cij|ui − uj| and TV+C (u) := 1

2

∑
i,j∈V

cij|ui + uj|.

A vector-valued node function u= (u(1), . . . , u(K)) : V→R
K , where u(l) is the lth component of u, can

be interpreted as a matrix U ∈R|V|×K , with elements Uil := u(l)
i . We write U∗l for the lth column of U;

thus, the column vector U∗l is the vector representation of the function u(l) : V→R. We write Uj∗ for
U’s jth row. As with the vector interpretation of real-valued node functions above, we freely use the
interpretation as function or as matrix, as suits our purpose.

For vector-valued node functions u, we generalise the definition of graph total variation and graph
signless total variation to

T VC(u) :=
K∑

l=1

TVC(u(l))= 1

2

K∑
l=1

∑
i,j∈V

cij

∣∣u(l)
i − u(l)

j

∣∣= 1

2

K∑
l=1

∑
i,j∈V

cij

∣∣Uil −Ujl

∣∣ ,

T V+C (u) :=
K∑

l=1

TV+C (u(l))= 1

2

K∑
l=1

∑
i,j∈V

cij

∣∣u(l)
i + u(l)

j

∣∣= 1

2

K∑
l=1

∑
i,j∈V

cij

∣∣Uil +Ujl

∣∣ .

For a matrix U ∈Rn×p with entries Uij, its C-Frobenius norm (with C ∈Rn×n symmetric positive
definite4) is given by:

‖U‖Fr,C := √tr(UTCU)=
√√√√ p∑

j=1

n∑
k,l=1

CklUkjUlj,

where tr denotes the trace of a square matrix. If C is the identity matrix I, this reduces to the standard
Frobenius norm ‖U‖Fr := ‖U‖Fr,I . Because the standard Frobenius norm is submultiplicative, that is,

3Or w ∈Cn, where we need it. These norms may be applied to column vectors or row vectors, as the context demands.
4We note that, if C is a symmetric positive definite matrix, ‖ · ‖Fr,C indeed defines a norm, since ‖U‖Fr,C = ‖C 1

2 U‖Fr, where
C

1
2 denotes the unique symmetric positive definite square root of C. Since the Frobenius norm ‖ · ‖Fr is a norm and C

1
2 U = 0 if

and only if U = 0, also ‖ · ‖Fr,C is a norm.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 7

for all matrices U1 ∈Rn×p and U2 ∈Rp×q, ‖U1U2‖Fr ≤ ‖U1‖Fr‖U2‖Fr, the C-Frobenius norm satisfies the
following property:

‖U1U2‖Fr,C = ‖C 1
2 U1U2‖Fr ≤ ‖C 1

2 U1‖Fr‖U2‖Fr = ‖U1‖Fr,C‖U2‖Fr. (4)

The infinity operator norm of the matrix U is given by:

‖U‖∞ := max
i∈{1,...,n}

p∑
j=1

|Uij|.

Given K ∈N, let A= {Al}Kl=1 be a multiset5 of pairwise disjoint subsets of V that partition the node
set V , that is, V =⋃K

l=1 Al and Al1 ∩ Al2 =∅ if l1 �= l2. Note that Al could be empty, so the number of
non-empty sets in A is at most K. We call two partitions (with possibly different numbers of ele-
ments) equivalent, if every element of their symmetric difference is ∅. The canonical representative
of an equivalence class of partitions is the unique partition in the equivalence class that does not contain
any copy of ∅. Each canonical representative A is in bijective correspondence to a node assignment
c : V→{1, . . . , |A|}: given a canonical representative A= {Al}Kl=1, define cj = l if and only if j ∈ Al;
conversely, given a node assignment c : V→{1, . . . , K}, define Al = {j ∈ V:cj = l} for l ∈ {1, . . . , K}.

We will refer to the sets Al in a partition as the communities defined by that partition. Also the terms
‘clusters’ or ‘classes’ may be used. We use an indicator function δ with δ(ci, cj)= 1 if nodes i and j are
in the same community and δ(ci, cj)= 0 otherwise.

2.2. Laplacians for unsigned graphs

In this section, we define graph Laplacians for unsigned graphs determined by an adjacency matrix C.
For a graph with weighted adjacency matrix C, we define the graph Laplacian matrix LC as [16]:

(LC)ij :=
⎧⎨
⎩

(dC)i − cii, if i= j,

−cij, otherwise.

We include the dependence on C explicitly in the notation, since we require graph Laplacians for various
different graphs.

The Laplacian matrix can be written as:

LC =DC −C.

If DC is invertible, the random walk graph Laplacian matrix LCrw and the symmetrically normalised
graph Laplacian matrix LCsym are given by:

LCrw := D−1
C LC = I −D−1

C C,

LCsym := D
− 1

2
C LCD

− 1
2

C = I −D
− 1

2
C CD

− 1
2

C ,

respectively. It is well known that the random walk graph Laplacian and symmetrically normalised graph
Laplacian have the same eigenvalues [74].

5A multiset is a generalisation of the concept of set to allow for multiple copies of the same element. Formally, it can
be thought of as a set of pairs (x, y), where y ∈N is used to distinguish different copies of x, for example, {a, a, b, b, b} =
{(a, 1), (a, 2), (b, 1), (b, 2), (b, 3)}. For a multiset M, the notation x ∈M means that there exists a y ∈N such that (x, y) ∈M. We
require A to be a multiset and thereby deviate from the usual definition of partition, because we wish to allow A to contain
multiple copies of the empty set (and only of the empty set, as follows from the requirement that the elements of the multiset be
pairwise disjoint subsets of V).

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

8 Z. Li et al

In the special case that C=W, we recall that G= (V , E, ω) is connected, and in particular there is
no isolated node. Thus, for all i ∈ V , (dW)i > 0 and hence the matrix DW is invertible.

Let u ∈R|V|. We compute, for i ∈ V ,

(LCu)i =
∑
j∈V

cij

(
ui − uj

)
and

(
LCrw u

)
i
= 1

(dC)i

∑
j∈V

cij(ui − uj), (5)

where we require (dC)i > 0 for the second computation. We note that any self-loops (i.e., cii > 0) do not
contribute to the images of the Laplacian LC but will contribute to the degree normalisation in LCrw .

Lemma 2.1. Let C ∈ [0,∞)|V|×|V| be a symmetric matrix. For parts (b) and (c) below, additionally
assume that DC is invertible.

(a) The graph Laplacian (matrix) LC is self-adjoint with respect to the Euclidean inner product, that
is, for all u, v ∈ V ,

〈LCu, v〉 = 〈u, LCv〉.
It is also positive semidefinite with respect to the Euclidean inner product6, that is, for all
u ∈ V ,

〈LCu, u〉 ≥ 0.

(b) The symmetrically normalised graph Laplacian (matrix) LCsym is self-adjoint and positive semidef-
inite with respect to the Euclidean inner product, that is, for all u, v ∈ V ,

〈LCsym u, v〉 = 〈u, LCsym v〉 and 〈LCsym u, u〉 ≥ 0,

respectively.
(c) The random walk graph Laplacian (matrix) LCrw is self-adjoint and positive semidefinite with

respect to the C-degree-weighted inner product, that is, for all u, v ∈ V ,

〈LCrw u, v〉C = 〈u, LCrw v〉C and 〈LCrw u, u〉C ≥ 0,

respectively.

Proof. Let u, v ∈ V .
It follows from the symmetry of C and (5) that LC is self-adjoint with respect to the Euclidean inner

product:

〈u, LCv〉 =
∑
i,j∈V

cijui(vi − vj)=
∑
i,j∈V

(
cijuivi − cjiujvi

)=∑
i,j∈V

cijvi(ui − uj)= 〈LCu, v〉.

Interchanging the indices i and j in this calculation shows in a straightforward way that LC is positive
semidefinite:

〈LCu, u〉 = 1

2

(〈LCu, u〉 + 〈u, LCu〉)= 1

2

∑
i,j∈V

cij(ui − uj)
2 ≥ 0. (6)

Similarly, the symmetrically normalised graph Laplacian LCsym is self-adjoint with respect to the
Euclidean inner product, since

〈u, LCsym v〉 = 〈D− 1
2

C u, LCD
− 1

2
C v〉 = 〈LCD

− 1
2

C u, D
− 1

2
C v〉 = 〈LCsym u, v〉,

6Perhaps a more correct way to express this would be to say that the bilinear form (u, v) �→ 〈LCu, v〉 is positive semidefinite.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 9

and it is positive semidefinite with respect to the same inner product:

〈LCsym u, u〉 = 1

2

(〈LWsym u, u〉 + 〈u, LWsym u〉)= 1

2

∑
i,j∈V

cij

(
ui√
(dC)i

− uj√
(dC)j

)2

≥ 0. (7)

We recall that, for all i ∈ V , (dC)i > 0, because the diagonal matrix DC is invertible.
Finally, using (5) we compute

〈u, LCrw v〉C = 〈u, DCLCrw v〉 = 〈u, LCv〉 = 〈LCu, v〉 = 〈DCLWrw u, v〉 = 〈LCrw u, v〉C
and

〈LCrw u, u〉C = 1

2

∑
i,j∈V

cij

(
ui − uj

)2 ≥ 0. (8)

The signless graph Laplacian (matrix) QC for a graph with weighted adjacency matrix C, and its
random walk and symmetrically normalised variants QCrw and QCsym , respectively, are defined as:

QC := DC +C,

QCrw := D−1
C QC = I +D−1

C C,

QCsym := D
− 1

2
C QCD

− 1
2

C = I +D
− 1

2
C CD

− 1
2

C .

Lemma 2.2. Let C ∈ [0,∞)|V|×|V| be a symmetric matrix. For parts (b) and (c) below, additionally
assume that DC is invertible.

(a) The signless graph Laplacian (matrix) QC is self-adjoint and positive semidefinite with respect to
the Euclidean inner product, that is, for all u, v ∈ V ,

〈QCu, v〉 = 〈u, QCv〉 and 〈QCu, u〉 ≥ 0,

respectively.
(b) The symmetrically normalised signless graph Laplacian (matrix) QCsym is self-adjoint and positive

semidefinite with respect to the Euclidean inner product, that is, for all u, v ∈ V ,

〈QCsym u, v〉 = 〈u, QCsym v〉 and 〈QCsym u, u〉 ≥ 0,

respectively.
(c) The random walk signless graph Laplacian (matrix) QCrw is self-adjoint and positive semidefinite

with respect to the C-degree-weighted inner product, that is, for all u, v ∈ V ,

〈QCrw u, v〉C = 〈u, QCrw v〉C and 〈QCrw u, u〉C ≥ 0,

respectively.

Proof. The proofs are analogous to the proofs of the statements in Lemma 2.1. For future reference, we
do note that, for all u ∈ V ,

(QCu)i =
∑
j∈V

cij

(
ui + uj

)
and

(
QCrw u

)
i
= 1

(dC)i

∑
j∈V

cij(ui + uj), (9)

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

10 Z. Li et al

and

〈QCu, u〉 = 1

2

∑
i,j∈V

cij(ui + uj)
2 ≥ 0, (10)

〈QCsym u, u〉 = 1

2

∑
i,j∈V

cij

(
ui√
(dC)i

+ uj√
(dC)j

)2

≥ 0, (11)

〈QCrw u, u〉C = 1

2

∑
i,j∈V

cij

(
ui + uj

)2 ≥ 0. (12)

Remark 2.3. Differently from what we observed for the graph Laplacian LC in (5), the presence of
any self-loops in the graph with adjacency matrix C will influence the images of both signless graph
Laplacians in (9).

2.3. Review of the modularity function

‘Community structure’ is not a single well-defined concept. It attempts to capture the notion of partition-
ing a collection of individuals7 (set of nodes) into meaningful clusters (classes and communities). What
is meaningful depends on the context. Attempts to quantify ‘community structure’ tend to fall into one
of two categories: comparisons with an externally available reference clustering, which for easy refer-
ence we will call the ‘ground truth’ partition,8 and applications of mathematically defined ‘measures’9

of community structure that do not require a ground truth. The approaches and measures from these
categories are called extrinsic and intrinsic, respectively.

Extrinsic comparisons are used mostly when testing new methods on benchmark data sets for which
the ‘preferred’ community structure is known through other means, such as the MNIST data set of hand-
written digits (see Section 7.2). It may also be useful when investigating if the features that determine
the network structure can be used to detect a community structure which is defined in terms of other
features, for example, when a collaboration network of scientists is used in an attempt to construct a
clustering that agrees with the areas of expertise of the scientists.

Intrinsic approaches have the advantages that no known ground truth is needed and that the math-
ematical formulation in terms of an optimisation problem for a well-defined measure of community
structure can help in algorithm development. Once the mathematical problem has been formulated, the
problem also becomes independent of context, although it still depends on the context how useful (in a
practical, real-world sense) a given mathematical formulation is.

This work mainly falls in the second category, as we will use modularity [57, 56] as a measure of
community structure and develop a new algorithm to approach the modularity optimisation problem. We
will, however, also dip our toes into the first category, when we judge the outcomes of our algorithm not
only by their modularity scores, but also through comparisons with ground truth community structures
where these are available.

In the most general form that we encounter in this work, the definition of the modularity of a partition
A of the node set of a graph G= (V , E, ω) is

Q(A; W, P) := 1

volW(V)

∑
i,j∈V

(
ωij − pij

)
δ(ci, cj). (13)

7Although the terminology ‘communities’ and ‘individuals’ suggests a context in which the individuals are people, there is no
reason to restrict ourselves to such settings a priori.

8In some contexts, the term ‘ground truth’ appears to promise more than is justified. In this paper, we intend it to be equivalent
to the phrase ‘reference clustering,’ even if some of its other connotations are not entirely out of place for our classification, SBM,
and image segmentation examples in Section 7.

9Not in the measure-theoretic sense.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 11

The matrix P= (pij)
|V|
i,j=1 encodes the expected edge weight pij between nodes i and j under a given null

model, that is, a random graph satisfying some constraints. Since we are interested in undirected graphs
with non-negative edge weights in this work, we assume P to be symmetric and to have non-negative
entries. We note that there is no restriction for the diagonal elements of P to be zero. The null model can
be thought of as describing graph structures that one would expect to see if there were no community
structure present.

The modularity optimisation problem consists of finding argmaxAQ(A; W, P). For simplicity of
notation, where we write argmaxA or maxA, it is implicitly assumed that the maximum is taken over all
partitions A of V . We emphasise that K, that is, the number of sets in A, is not fixed: finding an optimal
K is part of the optimisation problem. Because we do not assume that the sets in A are non-empty,
solutions of the optimisation problem are necessarily non-unique, as Q(A; W, P)=Q(A∪ {∅};W, P).10

One of the commonly used null models is the Newman–Girvan (NG) model [57], which is a random
unweighted graph in which edges are assigned unbiasedly at random to pairs of distinct nodes, under
the constraint that the resulting node degrees are equal to the degrees (dW)i in the graph G. The resulting
expected edge weights are (approximately11) pNG

ij = (dW)i(dW)j

volW (V)
, which are used as entries for the matrix PNG.

Modularity with the NG null model thus can be written as:

Q(A; W, PNG)= 1

volW(V)

∑
i,j∈V

(
ωij − (dW)i(dW)j

volW(V)

)
δ(ci, cj). (14)

We note indeed that the degrees under the null model are the same as those in G: (dPNG)i =∑j∈V PNG
ij =

(dW)i. This has some very useful consequences, for example, volPNG (V)=∑i∈V (dPNG)i =∑i∈V (dW)i =
volW(V) and both LPNG

sym and QPNG
sym are self-adjoint with respect to the inner product from (2) with C=W.

With this choice of null model Q(A; W, PNG)= 0 if K = 1, that is, if the partition is A= {V}.
According to Fortunato and Barthelemy [22], there is a drawback in optimising equation (14) to

find community partitions: it is difficult to find a community partition in networks that contain many
small communities. It is argued that (in an unweighted graph) the number of communities K that pro-
duces the maximum modularity score is (approximately) equal to

√
volW (V)

2
. A partition with many small

communities tends to have more communities than this optimal value.
To solve the above problem, Arenas [2] proposed a generalised modularity based on the Reichardt

and Bornholdt method [62]:

Qγ (A; W, P) := 1

volW(V)

∑
i,j∈V

(
ωij − γ pij

)
δ(ci, cj), (15)

Qγ (A; W, PNG)= 1

volW(V)

∑
i,j∈V

(
ωij − γ

(dW)i(dW)j

volW(V)

)
δ(ci, cj), (16)

where γ > 0 is a resolution parameter [62]. The distinction between (15) and (13) is the parameter12

γ , which allows (15) to be more flexible and find more network community partitions; we note that
Q1 =Q. Nevertheless, there are still some issues with modularity optimisation even in this case.

10A more interesting question is whether (or under which conditions) the maximiser is unique among canonical representatives,
up to permutations of the labels l of the subsets Al. The authors are not aware of any attempts in the literature to address this
question.

11In fact, in the configuration model, which underlies the random graph described here, the expected number of edges between
nodes i and j is (dW)i(dW)j

volW (V)−1 [55, Section 13.2]. In the NG model, however, volW (V) is used in the denominator, rather than volW (V)−
1. Mathematically, this has the pleasant consequence that the degree of each node in the graph defined by adjacency matrix W is
the same as its degree in the graph defined by adjacency matrix PNG, as we show below. For graphs with a large volume volW (V),
the difference between the value used in the NG null model and the expectation that follows from the configuration model will be
small.

12We view γ as a separate parameter, rather than absorbing it into the matrix P, so that we can keep the interpretation of P as a
matrix of expected values. Moreover, this way the useful property DPNG =DW remains valid.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

12 Z. Li et al

Lancichinetti and Fortunato [41] make the case that for large enough γ , the partition with maximum
modularity score will split random subgraphs, which is unwanted behaviour, since random subgraphs
should not be identified as having a community structure. On the other hand, they argue that for small
enough γ , there will be communities that contain multiple subgraphs, even when the number of internal
edges in these subgraphs is large and there is only one inter-subgraph edge. Again, this is unwanted
behaviour. Moreover, they show that it is difficult and in some cases even impossible to select a value
for γ that eliminates both these biases. In brief, for smaller values of γ , we expect fewer clusters than
for larger values.

A strategy for sampling the range of possible resolutions is presented in Jeub et al. [36]. Another
approach to deal with this shortcoming is to investigate the stability of communities over multiple res-
olution scales, as in Mucha et al. [54]. Since here we are primarily interested in the ability of our new
algorithms to optimise modularity, rather than the appropriateness of the chosen resolution scale, we
will not pursue those approaches here, and the problem of how to determine a good value for γ in any
given context is a matter outside the scope of this paper.

3. Reformulation of modularity optimisation

The new method we propose in this paper is based on the observation that the modularity function can
be reformulated in terms of (signless) total variation functions.

3.1. Reformulation of modularity optimisation for binary segmentation

In this subsection, we derive a new expression for the modularity Q(A) restricted to partitions A=
{Al}Kl=1 with K = 2, transforming the maximisation problem into a minimisation problem.

Let u be a real-valued function on the node set V , with value ui on node i. We define the set of
{−1,+1}-valued node functions as:

Vbin := {u : V→{−1,+1}}.
Specially, if u ∈ Vbin, we define the sets

V1 = {i ∈ V : ui = 1} and V−1 = {i ∈ V : ui =−1}.
We consider a partition A= {A1, A2}, with A1 = V1, A2 = V−1, and corresponding node assignment c.

If ui ∈ Vbin, that is, ui ∈ {−1,+1}, then u2
i + u2

j = 2, which implies that

(uiuj + 1)=−1

2
(ui − uj)

2 + 2 and − (uiuj + 1)=−1

2
(ui + uj)

2. (17)

If i, j ∈ V1 or i, j ∈ V−1, then δ(ci, cj)= 1= 1
2
(uiuj + 1). Similarly, if ui �= uj, then δ(ci, cj)= 0=

1
2
(uiuj + 1). Hence, the modularity Q for K = 2 clusters can be rewritten as:13

Qγ (A; W, P)= 1

2volW(V)

∑
i,j∈V

(
ωij − γ pij

)
(uiuj + 1)

= 1

2volW(V)

∑
i,j∈V

ωij(uiuj + 1)− γ

2volW(V)

∑
i,j∈V

pij(uiuj + 1)

=− 1

4volW(V)

∑
i,j∈V

ωij(ui − uj)
2 + 1

volW(V)

∑
i,j∈V

ωij − γ

4volW(V)

∑
i,j∈V

pij(ui + uj)
2

=− 1

volW(V)

[
1

4

∑
i,j∈V

ωij(ui − uj)
2 + γ

4

∑
i,j∈V

pij(ui + uj)
2

]
+ 1

volW(V)

∑
i,j∈V

ωij. (18)

13As an interesting aside, we observe that we do not require any symmetry properties of W or P for this computation.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 13

For all u ∈ Vbin, one obtains

(ui − uj)
2 =
⎧⎨
⎩

0, if ui = uj,

4, if ui �= uj,
and 2|ui − uj| =

⎧⎨
⎩

0, if ui = uj,

4, if ui �= uj.

Therefore, if u ∈ Vbin, then (ui − uj)2 = 2|ui − uj|. Similarly, (ui + uj)2 = 2|ui + uj|, if u ∈ Vbin.
Since volW(V)=∑i,j∈V ωij, the third term in (18) equals one; in particular, it does not depend on u.

Thus,

Qγ (A; W, P)=− 1

volW(V)
Qbin,γ (u; W, P)+ 1,

where

Qbin,γ (u; W, P) := 1

4

∑
i,j∈V

ωij(ui − uj)
2 + γ

4

∑
i,j∈V

pij(ui + uj)
2

= 1

2

∑
i,j∈V

ωij|ui − uj| + γ

2

∑
i,j∈V

pij|ui + uj|

= TVW(u)+ γ TV+P (u). (19)

The maximisation of modularity Qγ (A; W, P) from (15) over partitions A with K = 2 is equivalent to
the minimisation of Qbin,γ (u; W, P) (19) over all functions u ∈ Vbin (with the correspondence between A
and u introduced above).

Similarly to Newman [56], we define the modularity matrix as:

Bγ := W − γ P

and denote its entries by bij. Since W and P are assumed to be symmetric, so is Bγ . We note that Bγ does
not need to have zeros on its diagonal.

If the condition DW =DP is satisfied, as is the case, we recall from Section 2.3, if P= PNG is given
by the NG null model, then

DBγ
= (1− γ)DW . (20)

In our considerations above, we have split the matrix Bγ into the matrix W with non-negative entries
and the matrix −γ P with non-positive entries, but we can also write Bγ = B+

γ
− B−

γ
, where B+

γ
and B−

γ

are |V|-by-|V| matrices with entries

(b+
γ

)ij := max{(bγ)ij, 0} and (b−
γ

)ij := −min{(bγ)ij, 0},
respectively, with (bγ)ij := ωij − γ pij the entries of Bγ . Per definition B+

γ
has non-negative entries and

−B−
γ

non-positive entries, yet in general B+
γ
�=W and B−

γ
�= γ P. Thus, this split will give another way to

rewrite Qγ analogously to (18):

Qγ (A; W, P)=− 1

2volW(V)

[
1

2

∑
i,j∈V

(b+
γ

)ij(ui − uj)
2 + 1

2

∑
i,j∈V

(b−
γ

)ij(ui + uj)
2

]
+ 1

volW(V)

∑
i,j∈V

(b+
γ

)ij

=− 1

volW(V)
Qbin,1(u; B+

γ
, B−

γ
)+ 1

volW(V)

∑
i,j∈V

(b+
γ

)ij.

Because the final term on the right-hand side does not depend on u, we see that maximisingQγ (A; W, P)
over all bipartitions A is equivalent to minimising Qbin,1(u; B+

γ
, B−

γ
) over all u ∈ Vbin.

In the remainder of this paper, we would like to be able to consider graph Laplacians based on B+
γ

and B−
γ
. To be able to define random walk and symmetrically normalised (signless) graph Laplacians

based on these matrices, we require the degree matrices DB+γ and DB−γ to be invertible. Additionally, for
the symmetrically normalised (signless) graph Laplacians, we also require these matrices to be positive

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

14 Z. Li et al

semidefinite14 so that their square roots are uniquely defined. This property is easily checked to hold,
since both matrices are diagonal with non-negative entries.

The following lemma and corollary collect some useful results about their invertibility for easy
reference.

Lemma 3.1. Let i ∈ V and γ ∈ (0,∞). Then (dB+γ)i �= 0 if and only if there exists a j ∈NW(i) such
that

γ < p−1
ij ωij, (21)

where we define p−1
ij ωij := +∞ if pij = 0.

Similarly, (dB−γ)i �= 0 if and only if there exists a j ∈NP(i) such that

γ ≥ p−1
ij ωij. (22)

Consequently, DB+γ is invertible if and only if

γ < min
i∈V

max
j∈NW (i)

p−1
ij ωij

and DB−γ is invertible if and only if

γ > max
i∈V

min
j∈NP(i)

p−1
ij ωij.

Proof. First, we assume that (dB+γ)i =∑k∈V (b+
γ

)ik = 0. Since all terms in the sum are non-negative,
this means that, for all k ∈ V , (b+

γ
)ik =max{ωik − γ pik, 0} = 0. In particular, this holds for all k ∈NW(i).

Hence, for all k ∈NW(i), ωik ≤ γ pik. Since, γ > 0 and, per definition, for all k ∈NW(i), ωik > 0, for all
such k we get pik > 0 and thus γ ≥ p−1

ik ωik. This proves the contrapositive of the first ‘if’ statement from
the lemma.

To prove the contrapositive of the corresponding ‘only if’ statement, assume that, for all k ∈NW(i),
γ ≥ p−1

ik ωik. Since γ <+∞ and, for all k ∈NW(i), ωik > 0, this implies that, for such k, pik �= 0. Hence,
for all k ∈NW(i), γ pik ≥ωik. If k ∈ V \NW(i), then ωik = 0 and thus trivially γ pik ≥ωik. This proves the
statement.

The proofs of the analogous statements for (dB−γ)i are very similar. For the ‘if’ statement, we note
that (dB−γ)i = 0 implies that, for all k ∈ V , and thus in particular for all k ∈NP(i), ωik ≥ γ pik. Since, for all
k ∈NP(i), pik �= 0, we obtain γ ≤ p−1

ik ωik as required.
For the ‘only if’ statement, we assume that, for all k ∈NP(i), γ ≤ p−1

ik ωik. Thus, for all k ∈NP(i),
γ pik ≤ωik and hence (b−

γ
)ik = 0. For all k ∈ V \NP(i), we have pik = 0 and thus (b−

γ
)ik =−min{ωij, 0} = 0.

Hence, (dB−γ)i = 0.
Because DB+γ and DB−γ are real diagonal matrices, they are invertible if and only if all their diagonal

elements are non-zero. By the first part of this lemma, we know this is true for DB+γ if and only if,
for all i ∈ V there exists a j ∈NW(i) for which (21) holds. Thus, it is sufficient if it holds for a j∗ ∈
argmaxj∈NW (i)p

−1
ij ωij. To ensure the condition holds for all i ∈ V , the minimum is taken over all such i.

Similarly, by the second part of this lemma, DB−γ is invertible if, for all i ∈ V there exists a j ∈NP(i)
for which (22) holds. By a similar argument as for DB+γ , we obtain the result.

Corollary 3.2.

1. Let the null model be such that DW =DP and assume that, for all i ∈ V , there exists a j ∈ V for
which ωij �= pij. Then there exists an open interval I containing 1, such that, for all γ ∈ I, DB+γ and
DB−γ are invertible.

2. In particular, if the stated assumptions hold and γ = 1, then DB+γ =DB−γ is invertible.

Proof. Let i ∈ V . By assumption, there exists a j ∈ V such that ωij �= pij.

14In fact, if these diagonal matrices are positive semidefinite and invertible, they are in fact positive definite.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 15

First, we assume that ωij > pij. If j ∈ V \NW(i), then ωij = 0, which contradicts pij ≥ 0. Hence, j ∈
NW(i) and thus the right-hand side of condition (21) is strictly greater than 1.

Moreover, since by assumption 0= (dW)i − (dP)i =ωij − pij +∑k∈V\{j} (ωik − pik), there must exist a
k ∈ V \ {j} such that ωik < pik. If k ∈ V \NP(i), then pik = 0, which contradicts ωik ≥ 0, hence pik > 0.
Thus, the right-hand side of condition (22) is strictly smaller than 1 (with j= k).

This proves the claim if ωij > pij. If instead ωij < pij, we repeat the proof above with the roles of j and
k interchanged.

The final statement of the corollary follows immediately from (20) combined with the first part of
this corollary for γ = 1 ∈ I.

Remark 3.3. Per our discussion in Section 2.3, we note that the assumption DW =DP is satisfied if
we use the NG null model. Rather than checking the additional requirements of Corollary 3.2 part 1
explicitly, in our numerical tests in Section 7 we ensure invertibility of DB+γ and DB−γ directly by checking
diagonals for zero entries.

3.2. Generalisation to multiple clusters

Next, we extend the approach of Section 3.1 to identify appropriate partitions of the node set into multiple
clusters. In this subsection, we consider K to be fixed (but not necessarily equal to two). Then a parti-
tion A= {Al}Kl=1 with K parts is completely described by a function u= (u(1), . . . , u(K)) : V→R

K , where
u(l)

i = 1 if and only if i ∈ Al and u(l)
i =−1 otherwise. We can also encode this information in a matrix

U ∈R|V|×K , with elements Uil := u(l)
i . We denote the set of all matrices corresponding to a partition in K

parts by:

Pt(K) := {U ∈R|V|×K : ∀i ∈ V ∀l ∈ {1, . . . , K} Uil ∈ {−1, 1} and
K∑

k=1

Uik = 2−K
}
. (23)

We may call such matrices partition matrices. The last condition in the definition of Pt(K) guarantees
that each node belongs to exactly one cluster. We recall that A may contain empty sets, thus, for all
l ∈ {1, . . . , K},∑j∈V u(l)

j ∈ [−|V|, |V|]∩Z.
Because we will require the use of (signless) total variation with respect to various different matrices,

for the moment we consider an arbitrary real-valued matrix C ∈R|V|×|V| with entries cij.
We briefly compare the current set-up with that from Section 3.1 in the case K = 2 with partition

A= {A1, A2}. In the notation of the current section, this partition is encoded by a matrix U ∈ Pt(2); in
the set-up of Section 3.1 we encode the same partition by a function v ∈ Vbin. These two encodings are
related via U∗1 = v and U∗2 =−v and thus

T VC(U)= 1

2

(∑
i,j∈V

cij|Ui1 −Uj1| +
∑
i,j∈V

cij|Ui2 −Uj2|
)

= 1

2

(∑
i,j∈V

cij|vi − vj| +
∑
i,j∈V

cij| − vi + vj|
)
= 2TVC(v) (24)

and similarly T V+C (U)= 2TV+C (v).
We return to the case of general K. For notational convenience, in the following computations we

write Ũijl := cij|Uil −Ujl| and Ûijl := cij|Uil +Ujl|. For a matrix U ∈ Pt(K), we obtain that

|Uil −Ujl| =
⎧⎨
⎩

0 if i, j ∈ Al or i, j ∈ Ac
l ,

2 if i ∈ Al, j ∈ Ac
l or i ∈ Ac

l , j ∈ Al,
(25)

|Uil +Ujl| =
⎧⎨
⎩

0 if i ∈ Al, j ∈ Ac
l or i ∈ Ac

l , j ∈ Al,

2 if i, j ∈ Al or i, j ∈ Ac
l .

(26)

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

16 Z. Li et al

(We write Ac
l for the complement V \ Ac

l .) Thus, the generalised graph total variation and graph signless
total variation of U ∈ Pt(K) on a graph with adjacency matrix C can be represented as:

T VC(U)= 1

2

K∑
l=1

⎛
⎝∑

i,j∈Al

Ũijl +
∑

i∈Al ,j∈Ac
l

Ũijl +
∑

i∈Ac
l ,j∈Al

Ũijl +
∑
i,j∈Ac

l

Ũijl

⎞
⎠

=
K∑

l=1

⎛
⎝ ∑

i∈Al ,j∈Ac
l

cij +
∑

i∈Ac
l ,j∈Al

cij

⎞
⎠

and

T V+C (U)= 1

2

K∑
l=1

⎛
⎝∑

i,j∈Al

Ûijl +
∑

i∈Al ,j∈Ac
l

Ûijl +
∑

i∈Ac
l ,j∈Al

Ûijl +
∑
i,j∈Ac

l

Ûijl

⎞
⎠

= 1

2

K∑
l=1

⎛
⎝∑

i,j∈Al

Ûijl +
∑
i,j∈Ac

l

Ûijl

⎞
⎠

=
K∑

l=1

∑
i,j∈Al

cij +
K∑

l=1

(∑
i,j∈V

cij +
∑
i,j∈Al

cij −
∑

i∈V ,j∈Al

cij −
∑

i∈Al ,j∈V

cij

)

=
K∑

l=1

∑
i,j∈Al

cij +
(

K∑
l=1

∑
i,j∈Al

cij + (K − 2)volC(V)

)

= 2
K∑

l=1

∑
i,j∈Al

cij + (K − 2)volC(V).

Using these expressions for the generalised total variation and generalised signless total variation, if A
contains K subsets, the modularity from (13) can be written as:15

Qγ (A; W, P)= 1

volW(V)

K∑
l=1

∑
i,j∈Al

ωij − γ

volW(V)

K∑
l=1

∑
i,j∈Al

pij

= 1

volW(V)

K∑
l=1

⎛
⎝ ∑

i∈Al ,j∈V

ωij −
∑

i∈Al ,j∈Ac
l

ωij

⎞
⎠− γ

volW(V)

K∑
l=1

∑
i,j∈Al

pij

15We note that neither in this computation, nor in the previous computations for T VC and T V+C in this subsection, do we require
symmetry properties of C, W or P. In particular, for the fourth equality of the following computation, we use that even without
symmetry we have

K∑
l=1

∑
i∈Al ,j∈Ac

l

ωij =
K∑

l=1

∑
i∈Ac

l ,j∈Al

ωij.

If we do use the symmetry of W, we can further reduce T VW (U)= 2
∑K

l=1
∑

i∈Al ,j∈Ac
l
ωij.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 17

= 1

volW(V)

|V|∑
i,j=1

ωij − 1

volW(V)

K∑
l=1

∑
i∈Al ,j∈AC

l

ωij − γ

volW(V)

K∑
l=1

∑
i,j∈Al

pij

= 1− 1

volW(V)

⎛
⎝1

2

K∑
l=1

∑
i∈Al ,j∈Ac

l

ωij + 1

2

K∑
l=1

∑
i∈Ac

l ,j∈Al

ωij + γ

K∑
l=1

∑
i,j∈Al

pij

⎞
⎠

= 1− 1

volW(V)

(
1

2
T VW(U)+ γ

2
T V+P (U)− γ

2
(K − 2)volP(V)

)
, (27)

where in the last line U ∈ Pt(K) corresponds to the partition A.
Thus,

Qγ (A; W, P)=− 1

volW(V)
Qmul,γ (U; W, P)+ 1+ γ (K − 2)volP(V)

2volW(V)
,

if U corresponds to A and

Qmul,γ (U; W, P) := 1

2
T VW(U)+ γ

2
T V+P (U).

Thus, the maximisation of Qγ (A; W, P) over all partitions A with fixed K is equivalent to the min-
imisation of Qmul,γ (U; W, P) over all U ∈ Pt(K). If K = 2 and U and v are related as in (24), then
Qmul,γ (U; W, P)=Qbin,γ (v; W, P).

Similar to what we did in the case of bipartitions in Section 3.1, if we split Bγ =W − γ P as Bγ =
B+

γ
− B−

γ
, we can do the analogue computation to (27) to find

Qγ (A; W, P)= 1

volW(V)

∑
i,j∈V

(
(b+

γ
)ij − (b−

γ
)ij

)
δ(ci, cj)

=− 1

volW(V)
Qmul,1(U; B+

γ
, B−

γ
)+ 2volB+γ (V)+ (K − 2)volB−γ (V)

2volW(V)
.

Hence, we can also maximise Qγ (A; W, P) over all partitions A containing K subsets by minimising
Qmul,1(U; B+

γ
, B−

γ
) over all U ∈ Pt(K). We emphasise that in Qmul,1 we choose γ = 1, since the influence

of γ is now in the matrices B+
γ

and B−
γ
, rather than in the structure of the function(al).

4. Diffuse-interface methods

Diffuse-interface methods16 [4, 5] use efficient PDE techniques to handle segmentation problems.
The GL functional associated with a graph Laplacian, whose minimisation is associated with the
minimisation of the total variation, is widely used in diffuse-interface approaches.

4.1. Binary classification with graph Ginzburg–Landau functionals

A central object in the diffuse-interface approach of [4] is the graph GL functional fε : V→R defined
by:

fε(u):= 1

4

∑
i,j∈V

ωij

(
ui − uj

)2 + 1

ε

∑
i∈V

� (ui)= 1

2
〈u, LWu〉 + 1

ε

∑
i∈V

� (ui) (by (6))

= 1

2
〈u, LWrw u〉W + 1

ε

∑
i∈V

� (ui) (by (8)), (28)

16The name hints at the origins of these methods in continuum models for phase separation.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

18 Z. Li et al

where ε > 0 is a parameter and the function �(u) is a double-well potential with two minima. For exam-
ple, a classical choice is the polynomial �(u)= 1

4
(u2 − 1)2 that has minima at u=−1 and u=+1. The

first of the two terms in (28) is called the graph Dirichlet energy.
In Van Gennip and Bertozzi [72], it is proven that if ε ↓ 0, then the sequence of functionals fε

-converges to

f0(u) :=
⎧⎨
⎩

TVW(u), if u ∈ Vbin,

+∞, otherwise.

For details about
-convergence, we refer to Dal Maso [47] and Braides [8]. Here, it suffices to note that

-convergence of fε combined with an equicoercivity condition, which is also satisfied in this case (see
[72]), implies that minimisers of fε converge to minimisers of f0 as ε ↓ 0.

Similarly, in Keetch and Van Gennip [39], the signless graph GL functional f +0 : V→R, defined as

f +
ε

(u):= 1

4

∑
i,j∈V

ωij

(
ui + uj

)2 + 1

ε

∑
i∈V

� (ui)= 1

2
〈u, QWu〉 + 1

ε

∑
i∈V

� (ui) (by (10))

= 1

2
〈u, QWrw u〉W + 1

ε

∑
i∈V

� (ui) (by (12)),

is introduced and it is proven that f +
ε

-converges to

f +0 (u) :=
⎧⎨
⎩

TV+W(u), if u ∈ Vbin,

+∞, otherwise,

as ε ↓ 0. Also in this case the equicoercivity condition that is required to conclude convergence of min-
imisers of f +

ε
to minimisers of f +0 is satisfied (see [39]). We call the first of the two terms in f +0 the signless

graph Dirichlet energy.
A straightforward adaptation of the proofs in [72, Theorems 3.1 and 3.2] and [39, Lemmas 4.3 and

4.4] shows that if we define

f ±
ε,γ (u; W, P) := 1

4

∑
i,j∈V

ωij

(
ui − uj

)2 + γ

4

∑
i,j∈V

pij

(
ui + uj

)2 + 1

ε

∑
i∈V

� (ui) ,

then f ±
ε,γ (· ; W, P)
-converges to

f ±0,γ (u; W, P) :=
⎧⎨
⎩
Qbin,γ (u; W, P), if u ∈ Vbin,

+∞, otherwise,

and the required equicoercivity conditions are again satisfied that allow us to conclude that minimisers
of f ±

ε,γ (· ; W, P) converge to minimisers of Qbin,γ (· ; W, P) from (19). We provide more details about the
proof when we consider the case with multiple clusters in Theorem 4.1.

Similarly, f ±
ε,γ (· ; B+

γ
, B−

γ
)
-converges to f ±0,γ (u; B+

γ
, B−

γ
) and the required equicoercivity conditions are

again satisfied.
For small ε, minimisers of f ±

ε,γ (· ; W, P) (or f ±ε,1(· ; B+
γ

, B−
γ

)) thus approximate (in the sense just
described17) minimisers of Qbin,γ (· ; W, P) (or Qbin,1(· ; B+

γ
, B−

γ
)), which we know to be equivalent to

maximisers of modularity Q(· ; W, P) restricted to bipartitions of V .
Finding global minimisers of the non-convex function f ±

ε
is a difficult task. Instead, we can focus on

finding local minimisers and hope that these, in practice, are also good approximations for maximisers
of Qγ . To which extent this hope proves to be justified will be investigated numerically in Section 7. For
now, we focus on the problem of finding such local minimisers.

17We do not have an error estimate on the quality of the approximation.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 19

One possible method is to compute a gradient flow of f ±
ε

(see, e.g., Van Gennip et al. [73] and Keetch
and Van Gennip [39]). For u, v ∈ V and s ∈R, using the self-adjointness of LW , LWrw , QW , and QWrw , we
compute18

d

ds
f ±
ε,γ (u+ sv; W, P)

∣∣∣∣
s=0

= 〈LWu, v〉 + γ 〈QPu, v〉 + 1

ε
〈�′ ◦ u, v〉

= 〈LWrw u, v〉W + γ 〈QPrw u, v〉W + 1

ε
〈D−1

W �′ ◦ u, v〉W .

Thus, the gradient flows of f ±
ε,γ (· ; W, P) with respect to the Euclidean inner product and the degree-

weighted inner product are
du

dt
=−LWu− γ QPu− 1

ε
�′ ◦ u and

du

dt
=−LWrw u− γ QPrw u− 1

ε
D−1

W �′ ◦ u, (29)

respectively. As is standard for gradient flows, a dependence on ‘time’ t has been introduced so that we
now may interpret u as a function u : R→ V .

In a completely analogous manner, we determine
d

ds
f ±
ε,1(u+ sv; B+

γ
, B−

γ
)

∣∣∣∣
s=0

= 〈LB+u, v〉 + 〈QB−γ u, v〉 + 1

ε
〈�′ ◦ u, v〉

and thus the gradient flow of f ±ε,1(· ; B+
γ

, B−
γ

) with respect to the Euclidean inner product is
du

dt
=−LB+u−QB−u− 1

ε
�′ ◦ u. (30)

For the gradient flow with respect to a degree-weighted inner product, the situation is more complicated.
We recall the definition of the degree-weighted inner product in (2) and explicitly will be using the
following versions:

〈u, v〉Bγ
=
∑
i∈V

uivi(dBγ
)i, 〈u, v〉B+γ =

∑
i∈V

uivi(dB+γ)i, and 〈u, v〉B−γ =
∑
i∈V

uivi(dB−γ)i. (31)

By (20), we know that, if DW =DP and γ = 1, then DB1 = 0 and therefore DB+1 =DB−1 . Thus in this case,
the B+

γ
- and B−

γ
-degree-weighted inner products are equal and the Bγ -degree-weighted inner product

is always zero.19 If additionally DB+1 =DB−1 is invertible (e.g., because the remaining assumption from
Corollary 3.2 part 2 is satisfied), then we can write

〈LB+1 u, v〉 = 〈LB+1 rw
u, v〉B+1 , 〈QB−1 u, v〉 = 〈QB−1 rw

u, v〉B+1 , and 〈�′(u), v〉 = 〈D−1
B+1

�′(u), v〉B+1 .

Hence, if γ = 1, the gradient flow with respect to the B+-degree-weighted inner product is
du

dt
=−LB+1 rw

u−QB−1 rw
u− 1

ε
D−1

B+1
�′ ◦ u. (32)

If γ �= 1 and DW =DP, then the degree matrices with respect to B+
γ

and B−
γ

are no longer the same, but
rather we have

DB−γ =DB+γ −DBγ
=DB+γ − (1− γ)DW . (33)

This means we have to make a choice to use either the B+
γ
- or B−

γ
-degree-weighted inner product, as

they are no longer identical. That choice will influence the resulting equations. We choose the former;
calculations for the alternative choice are similar.

With this choice, and still assuming that DB−γ and DB+γ are invertible, for example because the
assumptions from Corollary 3.2 part 1 hold, we still have

〈LB+γ u, v〉 = 〈LB+γ rw
u, v〉B+γ and 〈�′(u), v〉 = 〈D−1

B+γ
�′(u), v〉B+γ ,

18In a slight abuse of notation, we interpret �′(u) as the vector obtained by applying � elementwise to the vector (representation
of) u so that the matrix-vector multiplication D−1

W �′(u) is well defined.
19And thus strictly speaking is not an inner product.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

20 Z. Li et al

yet when rewriting the remaining term in d
ds

f ±ε,1(u+ sv; B+
γ

, B−
γ

)
∣∣

s=0
, the difference in B+

γ
- and B−

γ
-degree-

weighted inner products is important:

〈QB−γ u, v〉 = 〈QB−γ rw
u, v〉B−γ = 〈QB−γ rw

u, v〉B+γ − 〈QB−γ rw
u, v〉Bγ

= 〈QB−γ rw
u, v〉B+γ − 〈D−1

B+γ
DBγ

QB−γ rw
u, v〉B+γ .

To obtain the second equality above, we used the first equality in (33). For the first and third equalities,
we used (3), with C= I, C̃= B−

γ
, and C= Bγ , C̃= B+

γ
, respectively. Thus, under the assumption that

DW =DP and that DB+γ and DB−γ are invertible, the gradient flow of f ±ε,1(· ; B+
γ

, B−
γ

) with respect to the
B+

γ
-degree-weighted inner product is

du

dt
=−LB+γ rw

u−QB−γ rw
u+D−1

B+γ
DBγ

QB−γ rw
u− 1

ε
D−1

B+1
�′ ◦ u

=−LB+γ rw
u−QB−γ rw

u+ (1− γ)D−1
B+γ

DWQB−γ rw
u− 1

ε
D−1

B+1
�′ ◦ u.

Here, we used (20) again. We note that this gradient flow indeed equals the one from (32) if γ = 1.
In fact, in this paper we do not solve these Allen–Cahn-type equations directly, which could be accom-

plished, for example, by a convex–concave splitting technique as in [4] (see Luo and Bertozzi [46] for
an analysis of the scheme), but we use a related MBO scheme, which we introduce in Section 5. Before
doing that, we first consider an extension of the graph GL functional to multiple clusters.

4.2. Multiclass clustering with graph Ginzburg–Landau functionals

The previous sections dealt with partitioning of the node set V into (at most) two subsets; now we turn
our attention to the case where we allow partitions of up to and including K subsets, where K ≥ 2 is fixed.
We recall that we allow empty subsets in the partition. We base our approach on the method described
in Garcia-Cardona et al. [24] and Merkurjev et al. [48].

To generalise the GL functional f ±
ε,γ to the multiclass context, we require multiclass generalisations

of the (signless) graph Dirichlet energies and of the double-well potential. For the Dirichlet energy, we
generalise the term 1

2
〈u, LWu〉 to
1

2
〈U, LWU〉 = 1

2

K∑
k=1

〈U∗k, LWU∗k〉 = 1

4

K∑
k=1

∑
i,j∈V

ωij(Uik −Ujk)
2,

where, in a slight overload of the inner product notation, for matrices U, V ∈R|V|×K we have defined

〈U, V〉 :=
K∑

k=1

〈U∗k, V∗k〉. (34)

Similarly, we extend the W-degree-weighted inner product to matrices U, V ∈R|V|×K by:

〈U, V〉W :=
K∑

k=1

〈U∗k, V∗k〉W . (35)

Hence,
1

2
〈U, LWU〉 = 1

2
〈U, LWrw U〉W .

In a similar way, the signless graph Dirichlet energy 1
2
〈u, QWu〉 is generalised to

1

2
〈U, QPU〉 = 1

4

K∑
k=1

∑
i,j∈V

pij(Uik +Ujk)
2 = 1

2
〈U, QPrw U〉P.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 21

To generalise the double-well potential to a multiple-well potential, we recall from Section 3.2 that
a partition of V into K subsets can be described by a matrix U ∈ Pt(K). If we write Ui∗ for the ith row
of U, then Ui∗ ∈ {−1, 1}K as row vector and there exists a unique k ∈ {1, . . . , K} such that Uik = 1. We
introduce a notation for such vectors. For k ∈ {1, . . . , K}, let e(k) ∈ {−1, 1}K be the row vector that satisfies
e(k)

k = 1 and, for all l ∈ {1, . . . , K} \ {k}, e(k)
l =−1. Now we define the multiple-well potential for vectors

w ∈RK by:

�mul(w) := 1

2

(
K∏

k=1

1

4
||w− e(k)||21

)
. (36)

Given a matrix U ∈RV×|K|,
∑

i∈V �mul(Ui∗) is non-negative, and it is zero if and only if, for all
i ∈ V , there exists a k ∈ {1, . . . , K} such that Ui∗ = e(k). In other words, U �→∑

i∈V �mul(Ui∗) achieves
its global minimum exactly at each element of Pt(K) and thus generalises the double-well potential term∑

i∈V �(u), which achieves its global minimum exactly at all elements of Vbin.
This brings us to the following multiclass variant of the functional f ±

ε,γ (· ; W, P) for matrices
U ∈R|V|×K:

F±
ε,γ (U; W, P) := 1

8

K∑
k=1

∑
i,j∈V

ωij(Uik −Ujk)
2 + γ

8

K∑
k=1

∑
i,j∈V

pij(Uik +Ujk)
2 + 1

ε

∑
i∈V

�mul(Ui∗)

= 1

4
〈U, LWU〉 + γ

4
〈U, QPU〉 + 1

ε

∑
i∈V

�mul(Ui∗)

= 1

4
〈U, LWrw U〉W + γ

4
〈U, QPrw U〉P + 1

ε

∑
i∈V

�mul(Ui∗).

As in the case of binary classification, we have a
-convergence result for F±
ε

.

Theorem 4.1. Let K ∈N with K ≥ 2 and γ ∈ (0,∞). Define F±0 : R|V|×K→R∪ {+∞} by

F±0,γ (U; W, P) :=
⎧⎨
⎩
Qmul,γ (U; W, P), if U ∈ Pt(K),

+∞, otherwise.

Then F±
ε,γ (· ; W, P)
-converges20 to F±0,γ (· ; W, P) as ε ↓ 0.

Moreover, if (εn)⊂ (0,∞) is a sequence such that εn ↓ 0 as n→∞ and (Un)⊂ Pt(K) is a sequence
for which there exists a C > 0 such that, for all n ∈N,F±

εn ,γ (Un; W, P)≤C, then there exists a converging
subsequence of (Un) with limit in Pt(K).

Proof. Our proof largely follows Van Gennip and Bertozzi [72] and Boyd et al. [7]. The strategy to prove

-convergence for F±

ε
is to first prove
-convergence of the functional ϕε(U) := 1

ε

∑|V|
i=1 �mul(Ui∗) to

ϕ0(U) :=
⎧⎨
⎩

0, if U ∈ Pt(K),

+∞, if U ∈R|V|×K \ Pt(K),

and then use the fact that
-convergence is preserved under addition of continuous terms (see Dal Maso
[47] or Braides [8]) such as the (signless) graph Dirichlet terms. The proof then concludes with the
observation that by (25) and (26), for all U ∈ Pt(K),

1

8

K∑
k=1

∑
i,j∈V

ωij(Uik −Ujk)
2 = 1

4

K∑
k=1

∑
i,j∈V

ωij|Uik −Ujk| = 1

2
T VW(U)

20Since all norms on finite-dimensional vector spaces are equivalent, we do not need to specify which normed topology we
consider for our
-convergence.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

22 Z. Li et al

and

1

8

K∑
k=1

∑
i,j∈V

pij(Uik +Ujk)
2 = 1

4

K∑
k=1

∑
i,j∈V

pij|Uik −Ujk| = 1

2
T V+P (U).

Per definition, to establish
-convergence of ϕε to ϕ0, we have to prove two statements:

• Lower bound. For all sequences (εn)⊂ (0,∞) that converge to zero, for all U ∈R|V|×K , and for all
sequences (Un)⊂R

|V|×K that converge to U, it holds that

ϕ0(U)≤ lim inf
n→∞

ϕεn (Un).

• Recovery sequence. For all sequences (εn)⊂ (0,∞) that converge to zero and for all U ∈R|V|×K ,
there exists a sequence (Un)⊂R

|V|×K that converges to U and such that

ϕ0(U)≥ lim sup
n→∞

ϕεn (Un).

Let (εn) be a positive sequence such that εn ↓ 0 as n→∞ and let U ∈R|V|×K .
To prove the lower bound condition, first we assume that U ∈ Pt(K). Since, for all n ∈N, ϕεn is non-

negative, we find that, for all n ∈N
ϕ0(U)= 0≤ ϕεn (Un)

and the required lim inf-inequality is satisfied.
If U ∈R|V|×K \ Pt(K), then ϕ0(U)=+∞. Moreover, there exists a i ∈ V such that, for all

k ∈ {1, . . . , K}, Ui∗ �= e(k). Since (Uεn) converges to U, it follows that there exists a radius r > 0 such
that for n large enough (Uεn)i∗ ∈RK \⋃K

k=1 B(e(k), r), where B(e(k), r) denotes the open ball with respect
to the 1-norm in R

K centred at e(k) with radius r. This in turn implies that there exists a C̃ > 0 such that,
for n large enough, �mul(Ui∗)≥ C̃. Hence,

lim inf
n→∞

1

εn

∑
i∈V

�mul(Ui∗)≥ lim inf
n→∞

C̃

εn

=+∞,

thus,

ϕ0(U)=+∞= lim inf
n→∞

ϕεn (Un).

To prove existence of a recovery sequence, we note that the lim sup-inequality is trivially true if
U ∈R|V|×K \ Pt(K); hence, we assume that U ∈ Pt(K). Let (Un) be the constant sequence with, for all
n ∈N, Un =U. Then, for all n ∈N, ϕεn (Un)= 0. Since ϕ0 is non-negative, the sequence (Un) is indeed a
recovery sequence.

Thus, ϕε
-converges to ϕ0 and, by our argument above, F±
ε

-converges to F±0 .
To prove the equicoercivity statement in the second part of the theorem, we assume that (εn)⊂ (0,∞)

is a sequence such that εn ↓ 0 as n→∞ and (Un)⊂ Pt(K) is a sequence for which there exists a
C > 0 such that, for all n ∈N, F±

εn
(Un)≤C. In particular, this implies that for all n ∈N and for all

i ∈ V ,

0≤�mul((Un)i∗)≤C. (37)

Let i ∈ V . If there exists a k ∈ {1, . . . , K} such that the sequence
(‖(Un)i∗ − e(k)‖1

)
is unbounded in

R, then there must also exist an l ∈ {1, . . . , K} such that the sequence
(‖(Un)i∗ − e(l)‖1

)
converges to

zero; otherwise, the sequence (�mul((Un)i∗)) would be unbounded. This is a contradiction; hence, the
sequence ((Un)i∗) is contained in a bounded subset of RK and thus the sequence (Un) is bounded in
R
|V|×K . By Bolzano–Weierstraß, this sequence has a converging subsequence. Denote its limit by U∞.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 23

If U∞ ∈R|V|×K \ Pt(K), then by the same argument as in the proof of the lower bound, we know that

lim inf
n→∞

1

εn

∑
i∈V

�mul(Ui∗)=+∞,

which contradicts (37). Hence, U∞ ∈ Pt(K), which completes the proof.

As discussed in Section 4.1, the
-convergence and equicoercivity results of Theorem 4.1 imply that
minimisers of F±

ε
converge to minimisers of F±0 as ε ↓ 0.

In a completely analogous way to what we did at the end of Section 4.1, we may now derive gradient
flows of F±

ε
with respect to the Euclidean or W-degree-weighted inner product for matrices. Because

we will not actually use these gradient flows to find minimisers, but use MBO schemes (see Section 5.3)
instead, we leave out the details of the derivation and only mention that formally21 we recover, for all
k ∈ {1, . . . , K}, the Allen–Cahn-type equations:

dU∗k
dt
=−LWU∗k −QPU∗k − 1

ε
(D�mul ◦U)∗k and

dU∗k
dt
=−LWrw U∗k −QPrw U∗k − 1

ε
(D−1

W D�mul ◦U)∗k,

where (D�mul ◦U)ik := ∂k�mul(Ui∗), with ∂k the partial derivative operator with respect to the kth

variable.

Remark 4.2. As in Section 4.1, we can recover similar results as above, if we consider the functionals
F±ε,1(· ; B+

γ
, B−

γ
). Their
-limit for ε ↓ 0 is F±0,1(· ; B+

γ
, B−

γ
) and their gradient flow with respect to the

Euclidean inner product is, for all k ∈ {1, . . . , L},
dU∗k

dt
=−LB+U∗k −QB−U∗k − 1

ε
(D�mul ◦U)∗k.

The gradient flow with respect to the B+
γ
-degree-weighted inner product is, for all k ∈ {1, . . . , L},

dU∗k
dt
=−LB+rw U∗k −QB−rw U∗k +D−1

B+γ
DBγ

QB−γ rw
u− 1

ε
(D−1

B+D�mul ◦U)∗k

=−LB+rw U∗k −QB−rw U∗k + (1− γ)D−1
B+γ

DWQB−γ rw
u− 1

ε
(D−1

B+D�mul ◦U)∗k.

We recall that we have used DW =DP and invertibility of DB+γ and of DB−γ (as is guaranteed if assumptions
of Corollary 3.2, part 1 are satisfied).

21Because of the 1-norms in its definition (36), �mul is not differentiable at its wells, that is, at the vertices of the simplex S(K)
from (44). Instead of Allen–Cahn-type differential equations, we may consider differential inclusions such as dU∗k

dt ∈−LW U∗k −
QPU∗k − 1

ε
(D�mul ◦U)∗k , and similarly in the second case, where now (D�mul ◦U)∗k denotes the Clarke subdifferential of �mul

at U∗k .
Since �mul is not convex, we cannot use the standard subdifferential. The Clarke subdifferential is an extension of the standard
subdifferential, which is well defined for locally Lipschitz-continuous functions. It has many of the same useful properties that
the standard subdifferential has. For example, for convex lower semicontinuous functions, the Clarke subdifferential is equal to
the standard subdifferential; the Clarke subdifferential of a function at a point where the function is Fréchet differentiable is the
singleton containing the Fréchet derivative at that point; and the Clarke subdifferential at a point at which the function has a local
minimum contains 0. For the definition of the Clarke subdifferential (also called the generalised gradient) and the proofs of these
and other properties, see, for example, Clarke [17, Chapter 2] and Clason [18, Section 8].
Since the 1-norm is locally Lipschitz continuous at every point in its domain and the product of locally Lipschitz continuous
functions is also locally Lipschitz continuous, the function �mul is locally Lipschitz on its domain. Thus, its Clarke subdifferential
is well defined.
Other ways of defining gradient flows, such as variational inequalities, may be considered as well, but it goes far beyond the scope
of the current paper to investigate these options; see Ambrosio et al. [1].
One may wonder if all these difficulties could not be avoided by replacing the 1-norms in �mul by 2-norms. Indeed, the results
from Theorem 4.1 would then still hold, with little to no changes to the proof. In Merkurjev et al. [48, Section 2.1] and Garcia-
Cardona et al. [24, Section 3.1], it is stated the 1-norms are used to avoid �mul having a (local) minimiser in the middle of the
simplex S(K). We provide details in Appendix A.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

24 Z. Li et al

We also note that the
-convergence and equicoercivity proofs in Theorem 4.1 mostly depended on
the potential term and can thus easily be reproduced with the matrices B+ and B− replacing W and P,
respectively.

Remark 4.3. So far, we have ignored the question of existence of minimisers, but it is worth considering.
The sets Vbin and Pt(K) are finite sets and hence the functionals f0,γ , f +0,γ , f ±0,γ and F±0,γ trivially have
minimisers.

On the other hand, the functionals fε,γ , f +
ε,γ and f ±

ε,γ are all continuous on V (or R
|V|), and F±

ε,γ is
continuous on R

|V|×K . All these functionals are also bounded below (by zero) and the coercivity of the
double-well or multiple-well potential terms allows us to restrict minimising sequences to a compact
subset of R|V| or R|V|×K , in a similar way to what was done in the equicoercivity proof in Theorem 4.1.
Hence, minimisers of these functionals exist.

5. MBO schemes

The MBO scheme was originally introduced by Merriman et al. [50, 51] as an algorithm for producing
flow by mean curvature. It is a simple yet powerful iterative scheme which alternates between diffu-
sion and thresholding. There is a large body of literature dealing with applications and computational
and theoretical aspects of this scheme. For brevity, we focus on the use of the scheme for modularity
optimisation.

5.1. MBO schemes for binary community detection

The MBO scheme was adapted to graphs by Merkurjev et al. [49] with the goal of (approximately) min-
imising the GL functional fε. It consists of iteratively performing short-time graph diffusion by solving
du
dt
=−Lu, followed by a hard thresholding step to mimic the drive towards the wells of � from the

non-linear reaction term in the gradient flow. Here, we take L ∈ {LW , LWrw , LWsym} to allow for different
variants of the scheme. An MBO-type scheme is also employed by Hu et al. in [33] and Boyd et al. in
[7] for modularity optimisation.

Unless specified differently, we assume that

Lmix ∈
{
LW + γ QP, LWsym + γ QPsym , LWrw + γ QPrw ,

LB+γ +QB−γ , LB+γ sym
+QB−γ sym

, LB+γ rw
+QB−γ rw

−D−1
B+γ

DBγ
QB−γ rw

}
, (38)

This assumption is motivated by the linear operators that appear in the gradient flows of Sections 4.1
and 4.2.

For later reference, we note that

I −D−1
B+γ

DBγ
= I −D−1

B+γ
(DB+γ −DB−γ)=D−1

B+γ
DB−γ

and thus for the last choice of Lmix in (38), we can also write

LB+γ rw
+QB−γ rw

−D−1
B+γ

DBγ
QB−γ rw

= LB+γ rw
+ (I −D−1

B+γ
DBγ

)QB−γ rw
= LB+γ rw

+D−1
B+γ

DB−γ QB−γ rw

= LB+γ rw
+D−1

B+γ
QB−γ . (39)

This form is often easier to work with, but it hides partly the fact that it is the random walk variant of
Lmix for the split of Bγ into a positive and negative part.

We recall from Section 2.2 that connectedness of G implies invertibility of DW and, if the null model
is such that DW =DP, also the invertibility of DP, so that the choices of Lmix that involve inverses
of those matrices are well defined. For the choices that require inverses of DB+γ or DB−γ we need the
additional assumption that these matrices are invertible, which holds, for example, in the situation of
Corollary 3.2.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 25

Adapting the idea in [49] to the equations in (29), we propose the following MBO-type scheme.

Binary Lmixmodularity MBO scheme___

• Initialise. Choose an initial condition u0 ∈ Vbin, a ‘time step’ τ > 0, and Lmix as in (38).
• Step n+ 1: linear dynamics. Solve the equation du

dt
=−Lmixu on (0, τ] with initial condition

u(0)= un.

• Step n+ 1: threshold. Define, for all i ∈ V , un+1
i :=

⎧⎨
⎩
−1, if ui(τ) < 0,

1, if ui(τ)≥ 0.

• Stop. Stop the scheme when a stopping condition or predetermined number of steps has been
achieved.

__

To indicate explicitly the dependence on the choice of Lmix, we call this the binary Lmix modularity MBO
(MMBO) scheme. We note that, besides the choices of Lmix that follow from equations (29), (30), and
(32), we also allow the variant choices22 Lmix ∈ {LWsym + γ QPsym , LB+γ sym

+QB−γ sym
}.

We briefly mention here that we will choose the value for τ in the MMBO scheme via the method pre-
sented in [7]. It is an effective strategy and requires less manual adjustment of τ than other approaches.
We give more details in Section 6.1.

5.2. Numerical schemes for binary MMBO

We employ two different numerical methods to implement the binary MMBO scheme, where the dif-
ference is found in how the methods solve the linear-dynamics step. One method uses (a truncation of)
the closed-form solution [29, 30], while the other uses an implicit finite-difference Euler scheme [14].
In both methods, we need (the leading) eigenvalues and eigenvectors of Lmix.

5.2.1. Closed-form matrix exponential solution
A closed-form solution at t= τ of the equation du

dt
=−Lmixu with initial condition u(0)= un is given

by [29]:

u(τ)= e−τLmix un.

Here, e−τLmix is the matrix exponential, which is defined by its series expansion:

e−τLmix := I +
∞∑

k=1

1

k! (− τLmix)
k.

22In [10, Theorem 4.1.2], it is shown, in a generalised setting, that LWsym u would appear in the gradient flow, if the functional
of which the flow is taken (with respect to the Euclidean inner product) has a Dirichlet-type term of the form:

1

4

∑
i,j∈V

ωij

(
(dW)

− 1
2

i ui − (dW)
− 1

2
j uj

)2

.

Similar calculations can be performed for QPsym , LB+sym
and QB−sym

. Such Dirichlet terms do not fit well in our setting, because

calculations as the ones in (17) that depend on the binary character of ui cannot be replicated for (dW)
− 1

2
i ui. Despite this, we still

consider choices of Lmix based on these symmetrically normalised operators in our numerical tests and compare their performance
with that of the other choices.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

26 Z. Li et al

If Lmix has real eigenvalues λ1 ≤ . . .≤ λ|V| with corresponding, linearly independent, eigenvectors ξi,
i ∈ {1, . . . , |V|}, then e−τLmix has eigenvalues e−τλi with the same eigenvectors. Hence,

u(τ)=
|V|∑
i=1

cie
−τλiξi, (40)

for appropriate coefficients ci ∈R.
The following lemma shows that for each of our choices, Lmix is indeed diagonalisable and thus has

|V| linearly independent eigenvectors.

Lemma 5.1. Assume Lmix satisfies (38) and DP is invertible, where this is needed for Lmix to be well
defined. Then Lmix has |V| (possibly repeated) non-negative real eigenvalues with corresponding linearly
independent normalised eigenvectors, where the normalisation is specified in each of the cases below.

Denote by X a matrix having these eigenvectors as columns (in any order) and by �, the diagonal
matrix containing the corresponding eigenvalues in the same order. Then Lmix is real diagonalisable (in
the standard Euclidean inner product structure), that is, Lmix = X�X−1.

(a) Let Lmix ∈ {LW + γ QP, LWsym + γ QPsym , LB+γ +QB−γ , LB+γ sym
+QB−γ sym

}. In the case that Lmix = LB+γ sym
+

QB−γ sym
, assume that DB+γ and DB−γ are invertible. Take for the columns of X eigenvectors of Lmix

with unit Euclidean norm. Then X is orthogonal, that is, X−1 = XT .
(b) Let Lmix = LWrw + γ QPrw . Assume that the null model is such that DP =DW . Moreover, take for the

columns of X eigenvectors of Lmix with unit norm with respect to the W-degree-weighted inner
product from (2). Then X−1 = X̃TD

1
2
W , where X̃ is the orthogonal matrix containing the Euclidean-

normalised eigenvectors of LWsym + γ QPsym as columns, in the same order as the eigenvalues
in �.

(c) Assume that DB+γ and DB−γ are invertible. Let Lmix = LB+γ rw
+QB−γ rw

−D−1
B+γ

DBγ
QB−γ rw

. Moreover, take
for the columns of X eigenvectors of Lmix with unit norm with respect to the B+

γ
-degree-weighted

inner product from (31). Then X−1 = X̃TD
1
2

B+γ
, where X̃ is the orthogonal matrix containing the

Euclidean-normalised eigenvectors of LB+γ sym
+D

− 1
2

B+γ
QB−γ D

− 1
2

B+γ
as columns, in the same order as the

eigenvalues in �.

Proof. The proof is given in Appendix B.

Remark 5.2. We note that the proof of Lemma 5.1, part (b) also establishes that LWrw + γ QPrw and
LWsym + γ QPsym have the same eigenvalues. Moreover, the proof of Lemma 5.1, part (c) establishes that
LB+rw +QB−rw −D−1

B+γ
DBγ

QB−γ rw
and LB+γ sym

+D
− 1

2

B+γ
QB−γ D

− 1
2

B+γ
have the same eigenvalues.

Remark 5.3. If γ = 1 and DW =DP in case (c) of Lemma 5.1, the situation simplifies, since then DB1 = 0
and DB+1 =DB−1 and thus

D
1
2

B+1
LmixD

− 1
2

B+1
=D

1
2

B+1

(
LB+1 rw
+QB−1 rw

)
D
− 1

2

B+1
= LB+1 sym

+QB−1 sym
.

Part (a) of Lemma 5.1 then implies that Lmix is real diagonalisable and X = D̃
− 1

2

B+1
X, where X̃ is the

matrix of Euclidean-normalised eigenvectors of LB+1 sym
+QB−1 sym

. Moreover, Lmix has non-negative eigen-
values since both LB+1 sym

and QB−1 sym
, and thus also their sum, are positive semidefinite with respect

to the Euclidean inner product by Lemma 2.1 part (b) and Lemma 2.2 part (b). We note that this
result is consistent with the result in part (c) of Lemma 5.1, since, in this case, LB+1 sym

+D
− 1

2

B+1
QB−1 D

− 1
2

B+1
=

LB+1 sym
+QB−1 sym

.

Remark 5.4. In case (b) of Lemma 5.1, we know that Lmix is self-adjoint with respect to the inner
product 〈·, ·〉W (see Section 2.2) and thus we expect the columns of X to be orthonormal with respect to

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 27

this inner product. Indeed, we compute

XTDWX = X̃TD
− 1

2
W D

1
2
WD
− 1

2
W X̃ = X̃T X̃ = I.

A similar conclusion holds in case (c) of the lemma, yet now with respect to the B+
γ
-degree-weighted

inner product from (31) as can easily be seen by replacing W by B+
γ

in the computation above. This

is not surprising, as we know from the proof of the lemma, that D
1
2

B+γ
LmixD

− 1
2

B+γ
is symmetric and thus is

self-adjoint with respect to the Euclidean inner product; hence, Lmix is self-adjoint with respect to the
B+

γ
-degree-weighted inner product, since, for all u, v ∈ V ,

〈Lmixu, v〉B+γ = 〈DB+γ Lmixu, v〉 = 〈D 1
2

B+γ
(D

1
2

B+γ
LmixD

− 1
2

B+γ
)(D

1
2

B+γ
u), v〉

= 〈D 1
2

B+γ
LmixD

− 1
2

B+γ
(D

1
2

B+γ
u), D

1
2

B+γ
v〉 = 〈D 1

2

B+γ
u, D

1
2

B+γ
LmixD

− 1
2

B+γ
(D

1
2

B+γ
v)〉 = 〈u, Lmixv〉B+γ .

For the next lemma, we recall that γ > 0.

Lemma 5.5.

(a) Let Lmix ∈
{
LW + γ QP, LWsym + γ QPsym

}
. Assume DP is invertible, where this is needed to define

Lmix. If the null model is such that the matrix P has at least one positive entry, then the eigenvalues
of Lmix are positive.

(b) Let Lmix = LWrw + γ QPrw . If the null model is such that DW =DP, then the eigenvalues of Lmix are
positive.

(c) Let Lmix ∈
{
LB+γ +QB−γ , LB+γ sym

+QB−γ sym
, LB+γ rw

+QB−γ rw
−D−1

B+γ
DBQB−γ rw

}
and assume that DB+γ and

DB−γ are invertible, in those cases where this is needed to define Lmix. Assume one of the following
conditions is satisfied:
(i) the graph with adjacency matrix B+

γ
is connected and the matrix B−

γ
has at least one positive

entry;
(ii) the graph with adjacency matrix B−

γ
is connected and the matrix B+

γ
has at least one positive

off-diagonal entry (b+
γ

)ij; moreover, there exists a path along an odd number of edges from i
to j in the graph with adjacency matrix B−

γ
; or

(iii) the matrix B−
γ

has positive diagonal entries.

Then the eigenvalues of Lmix are positive.

Proof. The proof is given in Appendix B.

Remark 5.6. The assumptions in the first two cases of Lemma 5.5 are satisfied for the NG null model.
If the graph defined by the adjacency matrix W is connected and has no self loops and P has positive

diagonal elements, as is again the case for the NG null model, then, for all i ∈ V , (b−
γ

)i = γ pii > 0. So (if
also DB+γ and DB−γ are invertible), the conditions in the third part of the lemma are satisfied.

Remark 5.7. In general, it cannot be expected that the eigenvalues of Lmix are positive without additional
assumptions on the graph. For example, if Lmix = LB+γ +QB−γ where

B=

⎛
⎜⎜⎜⎜⎝

0 1 −1 0

1 0 −1 −1

−1 −1 0 1

0 −1 1 0

⎞
⎟⎟⎟⎟⎠ ,

it can be checked that u ∈ V with u1 = u2 = 1 and u3 = u4 =−1 is an eigenfunction (eigenvector) with
eigenvalue zero.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

28 Z. Li et al

We now return to expression (40). When we are in case (a) of Lemma 5.1, the normalised eigenvectors
ξi of Lmix are orthonormal, and thus for the coefficients in (40) we compute ci = 〈ξi, un〉.

In case (b) of the lemma, we know by Remark 5.4 that Lmix has eigenvectors ξi that are orthonormal
with respect to the inner product 〈·, ·〉W , and thus ci = 〈ξi, un〉W instead.

Finally, in case (c) Remark 5.4 tells us that a similar conclusion holds, if we use the B+
γ
-degree-

weighted inner product from (31): ci = 〈ξi, un〉B+γ .
Writing (40) fully in matrix form, we thus obtain

u(τ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xe−τ�XTun, in case (a) of Lemma 5.1,

Xe−τ�XTDWun =D
− 1

2
W X̃e−τ�X̃TD

1
2
Wun, in case (b) of Lemma 5.1,

Xe−τ�XTDB+γ un =D
− 1

2

B+γ
X̃e−τ�X̃TD

1
2

B+γ
un, in case (c) of Lemma 5.1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Xe−τ�X−1un. (41)

We recall that the matrices X are not the same in each case, and neither are the matrices X̃.

5.2.2. Implicit Euler finite-difference discretisation
Next, we take a look at the implicit Euler finite-difference discretisation. We discretise the time domain
(0, τ] into Nt ∈N intervals (tk−1, tk] (k ∈ {1, . . . , Nt}) of equal length, thus tk = k

Nt
τ = kδt, where δt :=

τ

Nt
> 0. Approximating u at the points tk by u(tk)≈ uk ∈R (with u0 = u(0)), the discretisation of the

equation du
dt
=−Lmixu is given by

uk − uk−1

δt
=−Lmixu

k.

This we can rewrite as

uk = (I + δtLmix)
−1 uk−1, (42)

where I is the identity matrix of the appropriate size.
From Lemma 5.1, we recall that X is a matrix containing the normalised23 eigenvectors of Lmix as

columns and � a diagonal matrix containing the corresponding eigenvalues of Lmix (in the same order
as the eigenvectors). By the same lemma, we know that Lmix is diagonalisable as Lmix = X�X−1. Hence,
(42) can be written as

uk = [X(I + δt�)X−1
]−1

uk−1 = [X(I +N−1
t τ�)−1X−1

]k
u0.

In case (a) of Lemma 5.1, X is orthogonal and thus its inverse can be computed as X−1 = XT . In cases
(b) and (c), we have seen that X−1 = X̃TD

1
2 , for the appropriate orthogonal eigenvector matrix X̃ and

appropriate degree matrix D.
In the linear-dynamics step of the MMBO scheme, we are interested in u(τ), for which we find

u(τ)≈ uNt = [X(I +N−1
t τ�)−1X−1

]Nt un, (43)

where (in a slight abuse of superscript notation) we recall that u0 = u(0)= un, with superscript 0 indicat-
ing the initial condition for the Euler finite-difference scheme, but superscript n indicating the iteration
number of the MMBO scheme. We recognise an approximation of the closed-form solution from (41)
in (43).

23We recall that the chosen normalisation depends on the choice of Lmix; see Lemma 5.1.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 29

Similarly to what we did at the end of Section 5.2.1, uNt can be written as

uNt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
X
(

I + τ

Nt
�
)−1

XT

]Nt

un, in case (a) of Lemma 5.1,[
D
− 1

2
W X̃

(
I + τ

Nt
�
)−1

X̃TD
1
2
W

]Nt

un, in case (b) of Lemma 5.1,[
D
− 1

2
B+ X̃

(
I + τ

Nt
�
)−1

X̃TD
1
2
B+

]Nt

un, in case (c) of Lemma 5.1,

where X and X̃ are the appropriate orthogonal eigenvector matrices for each case of Lemma 5.1.

5.2.3. Truncation
The occurrence of the eigenvector matrices X and eigenvalue matrices � in the proposed solutions in (41)
and (43) allows for the use of a truncated spectrum, by which we mean that instead of X ∈R|V|×|V| and � ∈
R
|V|×|V|, we will use matrices X̂ ∈R|V|×m and � ∈Rm×m, containing only the m ∈N leading eigenvalues

and eigenvectors.
By Lemma 5.1 we know that, for each of its possible forms, Lmix has real non-negative eigenval-

ues. When we speak of the m ∈N leading eigenvalues, we mean the m smallest eigenvalues, counted
according to multiplicity. We call the corresponding eigenvectors the m leading eigenvectors.24

There are several arguments for preferring a truncated method over a full method. First, smaller
matrices require less storage space, which can be a significant bottleneck when dealing with very large
graphs. Second, if only m� |V| eigenvalues and eigenvectors need to be computed, this can reduce the
run time of the algorithm considerably. In Section 6.4, we discuss the Nyström extension method with
QR decomposition, which allows us to exploit both these benefits of truncation.

Third, in some applications it may be argued that the important information of the system under
consideration is contained in the leading eigenvalues and eigenvectors, with the larger eigenvalues and
corresponding eigenvectors containing more noise than signal. In that case, truncation may be viewed
as a data denoising method.

Whatever the reason may be for choosing a truncated method, (40) shows us that we expect the
influence of the larger eigenvalues and corresponding eigenvectors on u(τ) to be small. Unless the small
error that is committed due to truncation makes the value u(τ) change sign, it will have no impact on
the threshold step that follows the linear-dynamics step in the MMBO scheme.

5.3. Multiclass MMBO scheme

Just as the binary Lmix MMBO scheme from Section 5.1 was inspired by the Allen–Cahn-type equations
from Section 4.1, so we can base a multiclass Lmix MMBO scheme on the multiclass Allen–Cahn-type
equations from Section 4.2. We recall that K ≥ 2 is fixed.

Multiclass Lmixmodularity MBO scheme__

• Initialise. Choose an initial condition U0 ∈ Pt(K), a ‘time step’ τ > 0, and Lmix as in (38).
• Step n+ 1: linear dynamics. Solve the equation dU

dt
=−LmixU on (0, τ] with initial condition

U(0)=Un.
• Step n+ 1: threshold. Define, for all i ∈ V , Un+1

i∗ := e(k∗), where25

k∗ ∈ argmaxk∈{1,...,K} Uik(τ).

24If the mth eigenvalue has (algebraic and geometric) multiplicity strictly greater than 1, there are multiple (linearly independent)
candidates for the mth leading eigenvector. We anticipate that this pathological situation will not arise often in practice; if it does,
an arbitrary choice among the candidate eigenvectors is made.

25In cases where k∗ is not uniquely determined, we arbitrarily choose one of the maximisers.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

30 Z. Li et al

• Stop. Stop the scheme when a stopping condition or predetermined number of steps has been
achieved.

__

The linear-dynamics step is a straightforward generalisation of the analogous step in the binary algo-
rithm. The threshold step now needs to take into account that there are K ≥ 2 clusters to choose from.
We assign each node to that cluster which is represented by the highest value in the row vector U(τ)i∗.
In [20, Appendix A.3], it is proven that this procedure corresponds to first projecting the vector U(τ)i∗
onto the (K − 1)-simplex

S(K) :=
{

w ∈ [− 1, 1]K :
K∑

k=1

wk = 2−K

}
(44)

and then determining the nearest vertex (or vertices) of the simplex (i.e., nearest vector e(k)) to this
projected vector.

Remark 5.8. We recall from Section 3.2 that, if K = 2, we can relate the binary representation u ∈ Vbin to
the multiclass representation U ∈ Pt(K) via U∗1 = u and U∗2 =−u. The outcome of the linear-dynamics
step of the (binary or multiclass) MMBO scheme is in V or R

|V|×K , respectively, rather than in Vbin

or Pt(K), yet if the multiclass initial condition U0 satisfies U0
∗1 =−U0

∗2, then it follows that U∗1(τ)=
−U∗1(τ), since both vectors are solutions to the same system of linear ordinary differential equations
(ODEs). Because u is a solution to the same system of ODEs, we can still make the identification U∗1 =
u=−U∗2. This means that, for all i ∈ V , Ui1(τ)≥ 0 if and only if Ui2(τ)≤ 0, which in turn is equivalent to
ui(τ)≥ 0. Thus, Ui1(τ)≥Ui2(τ) if and only if ui(τ)≥ 0, which makes the binary and multiclass threshold
steps equivalent (up to non-uniqueness issues when Ui1(τ)=Ui2(τ)).

5.4. Numerical schemes for multiclass MMBO

We briefly discuss the generalisations of the numerical schemes that we encountered in Section 5.2 to
the multiclass case. An in-depth look at the resulting algorithms follows in Section 6.

5.4.1. Closed-form matrix exponential solution
If the relevant (for the case at hand) assumptions from Lemma 5.1 are satisfied, then the closed-form
solution of the multiclass-linear-dynamics step is a straightforward generalisation of the solution in the
binary case, since each column of U satisfies the same linear system of ODEs and there is no coupling
between the dynamics of different columns. Thus, U(τ)= e−τLmix Un and from there the same arguments
as in Section 5.2.1 lead to

U(τ)= Xe−τ�X−1Un, (45)

where we recall that the meaning of X depends on which of the three cases of Lemma 5.1 Lmix satisfies.

5.4.2. Implicit Euler finite-difference discretisation
For the same reasons as mentioned in Section 5.4.1, the Euler finite-difference scheme from Section 5.2.2
also straightforwardly generalises from the binary to the multiclass setting, assuming that the relevant
assumptions of Lemma 5.1 are satisfied. Hence, we find, from (43), that

U(τ)≈ [X(I +N−1
t τ�)−1X−1

]Nt Un, (46)

where we recall that Nt ∈N is the number of steps in the finite-difference discretisation of the interval
[0, τ].

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 31

6. The modularity MBO algorithms

In Section 5, we established multiclass MMBO schemes for clustering into K ≥ 2 clusters and explored
numerical methods for the computation of such schemes. Based on the work done in Section 5, in this
section we present the algorithms we use in detail. The results of applying these algorithms to various
data sets are presented in Section 7.

We present the algorithm based on the closed-form solution of Section 5.4.1 in Section 6.2 and the
algorithm based on the Euler finite-difference scheme of Section 5.4.2 in Section 6.3.

From Section 5.2.3, we recall that it can be beneficial to use only the m leading eigenvalues and eigen-
vectors of Lmix, rather than its full spectrum. In Section 6.4, we present the Nyström extension method
with QR decomposition, which provides an efficient way to approximate these leading eigenvalues and
eigenvectors.

As usual we assume that Lmix is as in (38) and that the corresponding assumptions from Lemma 5.1
are satisfied. Additionally, we assume that Lmix has positive eigenvalues, which in particular guarantees
that the smallest eigenvalue of Lmix is positive. Lemma 5.5 gives sufficient conditions for this assumption
to be satisfied.

For notational convenience, we write

(F, H) ∈ {(W, P), (B+
γ

, B−
γ

)}. (47)

The choice of Lmix determines the choice of the pair (F, H) to be what is needed for the construction
of Lmix.

Besides Lmix and the corresponding choice of matrices F and H, the parameters that are required as
input for our algorithms are the following:

• The maximum number of non-empty clusters K ≥ 2.
• The resolution parameter γ > 0 that determines, via (15), which modularity function we are attempt-

ing to maximise. It also determines the time step τ in the MMBO scheme, via the method from [7],
which we explain in more detail in Section 6.1 below.

• The number m ∈ {1, . . . , |V|} of leading eigenvalues and corresponding eigenvectors that we use.
• η ∈ (0,∞) which determines the stopping criterion; we choose either a partition-based stopping

criterion, under which the algorithm terminates if

max
i∈V
||Un+1

i∗ −Un
i∗||22

max
i∈V
||Un+1

i∗ ||22
< η, (48)

as in [24], or a modularity-based stopping criterion under which the iteration terminates if∣∣Qmul,γ (Un+1; W, P)−Qmul,γ (Un; W, P)
∣∣< η. (49)

• Only for Algorithm 2 that uses the Euler finite-difference scheme for the linear-dynamics step: Nt ∈N
is the number of steps in the finite-difference discretisation of [0, τ].

We recall that, given a choice of Lmix, � is the diagonal matrix containing the eigenvalues of Lmix

on its diagonal and X is a matrix containing corresponding eigenvectors of Lmix as columns in the order
corresponding to that of the eigenvalues in �. The required normalisation of these eigenvectors differs
as presented in cases (a)–(c) of Lemma 5.1. In cases (b) and (c), Lemma 5.1 provides expressions that
allow computation of X in terms of a matrix X̃ with Euclidean-normalised columns.

6.1. Choice of the time step

To avoid having to manually fine-tune the value of the time step τ in our algorithms, we follow the
method proposed by Boyd et al. [7, Section 4.5].

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

32 Z. Li et al

Two main considerations are of importance in the choice of τ . If the value is chosen too small, then the
linear-dynamics step of the MBO scheme will change the initial condition very little and the threshold
step will return the initial condition again. In other words, the initial condition will be stationary under
the MBO scheme. If the value of τ is chosen too large, then (because all eigenvalues of Lmix are positive)
the result of one application of the linear-dynamics step will be a function which is close to zero on
all nodes of the graph. Only the structure contained in the mode(s) with the smallest eigenvalue(s) is
retained, which is typically not sufficient to find optimal communities. Moreover, to have a threshold step
which is robust to noise, we prefer the values on the nodes to be clearly separated and not all clustered
together near zero. Thus, we need to choose a value of τ which is neither too small nor too large. The
details of what is ‘too small’ and ‘too large’ depend on the structure of the graph and the choice of
initial condition. In [7], a specific choice of τ is suggested for the particular MBO-type scheme that is
employed in that paper. Adapting a method from Van Gennip et al. [73], upper (τupp) and lower (τlow)
bounds are established26 by [7] and their geometric mean √τlowτupp is used as the value of τ . For the
lower bound, τlow is computed for K = 2 (even in cases where K �= 2). An explicit numerical value for
general K is harder to obtain and [7] expects (without proof) that the case K = 2 presents the worst-case
scenario. In the next lemma, we adapt the method from [7] to our MBO scheme and give upper and
lower bounds on τ (which are not expected to be sharp but are efficiently computable).

Lemma 6.1. Let U0 ∈ Pt(K), τ > 0, and let Lmix be as in (38). Assume U solves dU
dt
=−LmixU on (0, τ]

with initial condition U(0)=U0. Write U1 for the outcome after one iteration of the multiclass Lmix

modularity MBO scheme starting from U0.27

(a) Then

‖U(τ)−U0‖∞ ≤K
(
eτ‖Lmix‖∞ − 1

)
.

We have the following (non-sharp28) upper bounds on ‖Lmix‖∞:
(i) If Lmix = LW + γ QP, then ‖Lmix‖∞ ≤ Lmax := 2(dW,max + γ dP,max).
(ii) If Lmix = LWsym + γ QPsym , then ‖Lmix‖∞ ≤ Lmax := 1+ γ + (dW,min)−

1
2 (dW,max)

1
2 +

γ (dP,min)−
1
2 (dP,max)

1
2 .

(iii) If LWrw + γ QPrw , then ‖Lmix‖∞ ≤ Lmax := 2(1+ γ).
(iv) If LB+γ +QB−γ , then ‖Lmix‖∞ ≤ Lmax := 2(dB+γ ,max + dB−γ ,max).
(v) If Lmix = LB+γ sym

+QB−γ sym
, then ‖Lmix‖∞ ≤ Lmax := 2+ (dB+γ ,min)−

1
2 (dB+γ ,max)

1
2 +

(dB−γ ,min)−
1
2 (dB−γ ,max)

1
2 .

(vi) If Lmix = LB+γ rw
+QB−γ rw

−D−1
B+γ

DBγ
QB−γ rw

, then ‖Lmix‖∞ ≤ Lmax := 2(1+ d−1
B+γ ,mindB−γ ,max).

(b) If K = 2 and

τ < τlow := (Lmax)−1 ln (2),

then U1 =U0.
(c) Assume that the assumptions of Lemma 5.1 are satisfied. If λ1 is the minimal eigenvalue of Lmix,

then

‖U(τ)‖Fr,C ≤ e−τλ1‖U0‖Fr,

where the matrix C ∈R|V|×|V| satisfies:
(i) if Lmix ∈ {LW + γ QP, LWsym + γ QPsym , LB+γ +QB−γ , LB+γ sym

+QB−γ sym
}, then C= I;

(ii) if Lmix = LWrw + γ QPrw , then C=DW; and
(iii) if Lmix = LB+γ rw

+QB−γ rw
−D−1

B+γ
DBγ

QB−γ rw
, then C=DB+γ .

26These bounds are not believed to be sharp.
27That is, after ‘step 1: linear dynamics’ and ‘step 1: threshold’.
28The bounds can be improved by using an estimate earlier in the chain of estimates that appear in the proof.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 33

Algorithm 1. The MMBO scheme using the closed-form solution of the linear-dynamics step

Require: K ≥ 2, m ∈ {1, . . . , |V|}, γ > 0, F, H ∈ [0,∞)|V|×|V| as in (47),
stopping criterion (48) or (49) with η > 0

Initialise:
DF, DH ← F, H � Compute DF and DH (and, if needed, D−1

F , D
− 1

2
F , D−1

H , and D
− 1

2
H)

Lmix← F, H (DF, DH , γ) � Compute Lmix from (38); some cases do not need DF, DH , γ

�, X← Lmix, m � Eigendecomposition of Lmix; columns of X normalised as in Lemma 5.1;
use only leading m eigenvalues and eigenvectors

λ1←� � Select the minimal eigenvalue
U0 = (− 1)|V|×K

for i= 1→K do
u0

iK = 1 � Randomly select K nodes and assign each one to a different cluster
end for
for j= 1→ (|V| −K) do

l= random.sample(K, 1)
u0

jl = 1 � Assign each node randomly to a community in initial condition
end for
dmax←D � Select the maximal degree of D
τlow← (Lmax)−1 ln (2) � Compute τlow as in Lemma 6.1 part (b)
τupp← λ−1

1 ln
(

K
1
2 c
− 1

2
minθ

−1‖U0‖Fr

)
� Compute τlow as in Lemma 6.1 part (d)

τ←√τlowτupp

Mexp← exp (− τ�)
n← 0
while Stopping criterion not satisfied and n≤ 10000 do

Linear dynamics:
Un+ 1

2 ← XMexpX−1Un � Compute (45)
Thresholding:
(Ui)

n+1 = ej with j ∈ argmax
l=1,...,K

{
(uil)n+ 1

2

}
n= n+ 1

end while

(d) Assume the assumptions of Lemma 5.1 to be satisfied and λ1 �= 0. Let θ > 0 and define cmin :=
mini∈V Cii with C as in part (c) of this lemma. If

τ > τupp := λ−1
1 ln

(
K

1
2 c
− 1

2
minθ

−1‖U0‖Fr

)
,

then ‖U(τ)‖∞ < θ .

Proof. We give the proof in Appendix C.

We follow [7] in choosing τ =√τlowτupp.

6.2. MMBO scheme using the closed-form solution of the linear-dynamics step

We recall from Section 5.4.1 that, to employ the closed-form solution of the linear-dynamics step to
compute the multiclass Lmix MMBO scheme, we need to compute the expression in (45). The resulting
algorithm is summarised in Algorithm 1. The command random.sample(K, N) returns a list of length
N, with uniformly random sampling from 1 to K of N distinct elements (N ≤K).

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

34 Z. Li et al

Algorithm 2. The MMBO scheme using the Euler finite-difference discretisation

Require: K ≥ 2, m ∈ {1, . . . , |V|}, γ > 0, F, H ∈ [0,∞)|V|×|V| as in (47), Nt ∈N,
stopping criterion (48) or (49) with η > 0

Initialise:
DF, DH ← F, H � Compute DF and DH (and, if needed, D−1

F , D
− 1

2
F , D−1

H , and D
− 1

2
H)

Lmix← F, H (DF, DH , γ) � Compute Lmix from (38); some cases do not need DF, DH , γ

�, X← Lmix, m � Eigendecomposition of Lmix; columns of X normalised as in Lemma 5.1;
use only leading m eigenvalues and eigenvectors

λ1←� � Select the minimal eigenvalue
U0 = (− 1)|V|×K

for i= 1→K do
u0

iK = 1 � Randomly select K nodes and assign each one to a different cluster
end for
for i= 1→ (|V| −K) do

l= random.sample(K, 1)
u0

il = 1 � Assign each node randomly to a community in initial condition
end for
dmax←D � Select the maximal degree of D
τlow← (Lmax)−1 ln (2) � Compute τlow as in Lemma 6.1 part (b)
τupp← λ−1

1 ln
(

K
1
2 c
− 1

2
minθ

−1‖U0‖Fr

)
� Compute τlow as in Lemma 6.1 part (d)

τ←√τlowτupp

n← 0
while Stopping criterion not satisfied and n≤ 10000 do

Linear dynamics:
for s= 1→Nt do

Un+ 1
2 ←

[
X
(

I + τ

Nt
�
)−1

X−1

]Nt

Un � Compute diffusion via (46)

s= s+ 1
end for
Thresholding:
(Ui)

n+1 = ej with j ∈ argmax
l=1,...,K

{
(uil)n+ 1

2

}
n= n+ 1

end while

6.3. Alternative variant of the MMBO scheme

From Section 5.4.2, we recall that for the MMBO scheme with the Euler finite-difference scheme, we
have to solve equation (46).

We use the same thresholding step and stopping conditions for this alternative variant as we do for the
MMBO scheme in Algorithm 1. The MMBO scheme using the Euler finite-difference discretisation is
summarised in Algorithm 2. The main difference between Algorithm 1 and Algorithm 2 is the diffusion
step, as seen in (45) and (46).

6.4. Nyström extension with QR decomposition

Both Algorithm 1 and Algorithm 2 contain steps that require us to compute the m leading eigenvalues
and corresponding eigenvectors of Lmix. In the examples we consider in Section 7, the sizes of the graphs
go up to tens of thousands of nodes, making it time-consuming to perform operations on the matrix.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 35

The Nyström approximation [58], which generates a low-rank approximation of the original matrix
from a subset of its columns, is an effective way to tackle this issue. The choice of sampling method could
affect the Nyström approximation performance, since different samples provide different approximations
of the original adjacency matrix W.

Before applying the Nyström method to our particular choices for the matrix Lmix, we first give a brief
explanation of the method for a general, symmetric matrix C ∈R|V|×|V|.

We sample k distinct points29 uniformly at random from |V| points and partition the matrix C as

C=
(

C11 CT
21

C21 C22

)
, (50)

where C11 ∈Rk×k, C21 ∈R(|V|−k)×k, and C22 ∈R(|V|−k)×(|V|−k). We have relabelled the points such that our k
sampled points are the first k points. We note that C11 and C22 are symmetric.

Because C11 is a real and symmetric matrix, we can perform an eigenvalue decomposition to
obtain C11 =U�kUT , where30 �k := diag(λ1, . . . , λk) ∈Rk×k is a diagonal matrix with the k eigenvalues
(counted according to multiplicity) λi of C11 on its diagonal and U ∈Rk×k is an orthogonal matrix which
has the corresponding eigenvectors of C11 as columns (in the order corresponding to the order of the
eigenvalues in �k).

We write C†
11 for the Moore–Penrose pseudoinverse31 of C11. If C11 is invertible, then the pseu-

doinverse is equal to the inverse of C11. If C11 is not invertible, then the relationships C†
11C11C†

11 =C†
11

and C11C†
11C11 =C11 still hold. The pseudoinverse can be computed as C†

11 =U�
†
kU

T , where �
†
k is the

pseudoinverse. Specifically, this means that �
†
k is a diagonal matrix whose diagonal elements are the

reciprocals of the diagonal elements of �k when those are non-zero, and zero when those are zero.
We would like to use the columns of U to approximate k eigenvectors of C. Eigenvectors of C are

in R
|V|, whereas the columns of U are in R

k; the main idea of the Nyström extension is to approximate
the ‘missing’ |V| − k entries by C21U�

†
k . This approximation is inspired by a quadrature rule; for more

details, we refer to Fowlkes et al. [23] and Bertozzi and Flenner [4]. Thus,

UC :=
(

U

C21U�
†
k

)
∈R|V|×k

is an approximation of k eigenvectors of C, which in turn gives us an approximation of the full
matrix C:

C̄ := UC�kU
T
C =

(
U

C21U�
†
k

)
�k

(
U

C21U�
†
k

)T

=
⎛
⎝ U�kUT U�k�

†
kU

TCT
21

C21U�
†
k�KUT C21U�

†
k�k�

†
kU

TCT
21

⎞
⎠=

(
C11 C11C†

11CT
21

C21C†
11C11 C21C†

11CT
21

)

=
(

C11

C21

)
C†

11

(
C11 CT

21

)
. (51)

Comparing (50) and (51), we obtain that C22 is approximated as

C22 ≈C21C†
11CT

21.

29We emphasise that, despite what the notation might suggest, in the context of this section about the Nyström extension, k does
not need to be related to clusters.

30If v ∈Rk is a vector, diag(v) ∈Rk×k is a diagonal matrix with diagonal entries (diag(v))ii = vi.
31Which can be computed, for example, by using the singular value decomposition of C11.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

36 Z. Li et al

We note that in many sources, the off-diagonal blocks are often given as C21 and CT
21, rather than

C21C†
11C11 and C11C

†
11CT

21, respectively. If C11 is invertible, these are equivalent, but in general they need
not be.32 In our numerical tests in Section 7, the matrices that are used for C11 are always invertible.

Now we wish to find the eigenvalue decomposition of C̄.33 We follow the QR decomposition method
introduced in Budd et al. [12], which uses the thin QR decomposition [27, Theorems 5.2.2 and 5.2.3]:(

C11

C21

)
= Q̃R,

where34 Q̃ ∈R|V|×k has orthonormal columns (i.e., Q̃TQ̃= I) and R ∈Rk×k is an upper triangular matrix

with positive diagonal entries. This decomposition is possible if
(

C11

C21

)
has full column rank, that is,

if its column rank is k. We note that this is guaranteed to be the case35 if C11 is invertible, and thus in
particular in our numerical studies in Section 7.

By (51), we see that C̄=QRC†
11(QR)T . The matrix RC†

11RT is real and symmetric and thus admits an
eigendecomposition:

RC†
11RT =ϒ�ϒT ,

with ϒ ∈Rk×k orthogonal and � ∈Rk×k diagonal. Then

C̄= Q̃RC†
11RTQ̃T = Q̃ϒ�ϒTQ̃T = Q̃ϒ�(Q̃ϒ)T . (52)

Since (Q̃ϒ)TQ̃ϒ = I, we have that Q̃ϒ ∈R|V|×k has orthonormal columns. Thus, we can view the k
diagonal entries of � as approximate eigenvalues of C̄ (and thus of C) with the columns of Q̃ϒ the
corresponding approximate eigenvectors.

Remark 6.2. The method explained above can be used to estimate k eigenvalues and corresponding
eigenvectors of the matrix C based on sampling the submatrices C11 and C21. In our applications, we
require eigenvalues and eigenvectors of the matrix DC +C or of a normalised matrix D

− 1
2

C CD−
1
2 or

D−1
C C, where DC = diag(dC) is the diagonal degree matrix based on C with diagonal entries (dC)i as in

(1). Because we cannot compute DC exactly if we do not have access to all entries of C, we first have to
compute an approximation to DC. We set D̄C := diag(d̄C) with

d̄C := C̄1|V| = C̄

(
1k

1|V|−k

)
=
(

C111k +C11C†
11CT

211|V|−k

C21C†
11C111k +C21C†

11CT
211|V|−k

)
,

where 1k ∈Rk is the k-dimensional column vector whose entries are all 1 (see [24]).36

32The operator I −C†
11C11 is the projection operator onto the kernel of C11. Since C21C†

11C11 =C21 −C21(I −C†
11C11), if the

kernel of C11 is a subset of the kernel of C21, then C21C†
11C11 =C21. Under the same assumption, we also have C11C†

11CT
21 =

CT
21 − (I −C11C†

11)CT
21 =

[
C21(I −C†

11C11)
]T =CT

21.
33By this we mean that we wish to find a matrix O ∈R|V|×k with orthonormal columns and a diagonal matrix � ∈Rk×k such

that C̄=O�OT . By construction in (51), the rank of C̄ is at most k, hence a full eigendecomposition can be obtained from O and
� by extending O to a |V|-by-|V| orthogonal matrix (e.g., via the Gram–Schmidt process) and padding � with zeroes to form a
diagonal |V|-by-|V|matrix. We note that C̄=UC�kUT

C does not give such an eigenvalue decomposition, as UC does typically not
have orthonormal columns: UT

CUC = I +�
†
kUT CT

21C21U�
†
k .

34We write Q̃ instead of Q to distinguish this matrix from the various other Qs that are used in this paper.
35If the column rank is not full, in theory one could remove columns from

(
C11

C21

)
until it does have full column rank. In practice,

however, if one has to remove many columns to achieve this, a resampling of the k columns might be a better idea, if possible.
36Recalling footnote 32, we find that if 1k is orthogonal to the kernel of C11 (or equivalently, if 1k is in the column space of C11),

then C21C†
11C111k =C211k. Similarly, since I −C11C†

11 is the projection operator onto the kernel of CT
11 =C11, if CT

211|V|−k is
orthogonal to the kernel of C11, then C11C†

11CT
211|V|−k =CT

211|V|−k.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 37

Now we approximate DC +C by D̄C + C̄ and D−1
C C by D̄†

CC̄. If D̄C has non-zero diagonal elements,
then D̄†

C = D̄−1
C . Moreover, we approximate D

− 1
2

C CD−
1
2 by (D̄†

C)
1
2 C̄(D̄†

C)
1
2 , where we require D̄†

C (and thus
also D̄C) to have non-negative diagonal elements, for the square root to be well defined.

In general, there is no guarantee that D̄C has non-zero or non-negative diagonal elements, but all
matrices of type D̄C that we use in our numerical tests in Section 7 do. The following observation may be
of use establishing these properties in specific situations. If we denote by dC1:k := C111k +CT

211|V|−k ∈Rk,
the column vector containing the first k entries of the actual degree vector dC ∈R|V|, then

d̄C =
(

C11C†
11dC1:k

C21C†
11dC1:k

)
.

If C is the adjacency matrix of a graph with positive degrees for all nodes (e.g., a connected graph), then
all entries of d̄C will be positive if the matrices C11C

†
11 and C21C†

11 both preserve entrywise positivity of
vectors. If C11 is invertible, this is clearly the case for C11C†

11. In fact, in that case the first k entries of d̄C

are exactly equal to the first k entries of the actual degree vector dC.
To obtain approximate eigenvalues and eigenvectors of DC +C, D

− 1
2

C CD−
1
2 , or D−1

C C, we can now
apply the decomposition from (52) to DC +C, (D̄†

C)
1
2 C̄(D̄†

C)
1
2 or D̄†

CC̄, respectively, instead of to C̄.

Now we apply the decomposition in (52) (using the approximate normalisations from Remark 6.2
where needed) to the six different cases for the matrix Lmix that we will encounter. In each of the cases
below, the matrices Q̃, ϒ and � are different, corresponding via (52) to the specific matrix C̄ for which
the decomposition is computed.

• Lmix =LW + γ QP. We use (51) to find approximations W̄ and P̄ of W and P, respectively, and approx-
imate degree matrices D̄W and D̄P as in Remark 6.2. Then we apply (52) to D̄W + W̄ + γ (D̄P + P̄) to
find

Lmix ≈ D̄W + W̄ + γ (D̄P + P̄)= Q̃ϒ�(Q̃ϒ)T .

Thus, � has the approximate eigenvalues on its diagonal and the approximate eigenvectors are the
columns of Q̃ϒ .

• Lmix =LB+γ +QB−γ . We proceed as in the previous case, with B+
γ

instead of W and B−
γ

instead of γ P.
Then

Lmix ≈ D̄B+γ + B̄+
γ
+ D̄B−γ + B̄−

γ
= Q̃ϒ�(Q̃ϒ)T .

The diagonal of � gives the approximate eigenvalues with the approximate eigenvectors being the
columns of Q̃ϒ .

• Lmix =LWsym + γ QPsym . Again we use (51) to find approximations W̄ and P̄ of W and P, respectively,

and approximate D̄W and D̄P as in Remark 6.2. Then we approximate D
− 1

2
W WD

− 1
2

W − γ D
− 1

2
P PD

− 1
2

P by
(D̄†

W)
1
2 W̄(D̄†

W)
1
2 − γ (D̄†

P)
1
2 P̄(D̄†

P)
1
2 and use (52) to obtain

Lmix = (1+ γ)I − (D− 1
2

W WD
− 1

2
W − γ D

− 1
2

P PD
− 1

2
P

)
≈ (1+ γ)I −

(
(D̄†

W)
1
2 W̄(D̄†

W)
1
2 − γ (D̄†

P)
1
2 P̄(D̄†

P)
1
2

)
= (1+ γ)I − Q̃ϒ�(Q̃ϒ)T

= Q̃ϒ
[
(1+ γ)I −�

]
(Q̃ϒ)T .

We use the diagonal elements of (1+ γ)I −� as approximate eigenvalues of Lmix and the columns
of Q̃ϒ as corresponding approximate eigenvectors.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

38 Z. Li et al

• Lmix =LB+γ sym
+QB−γ sym

. In this case, we proceed as in the previous one, with B+
γ

instead of W and B−
γ

instead of γ P. Then

Lmix = 2I − (D− 1
2

B+γ
B+

γ
D
− 1

2

B+γ
−D

− 1
2

B−γ
B−

γ
D
− 1

2

B−γ

)
≈ 2I −

(
(D̄†

B+γ
)

1
2 B̄+

γ
(D̄†

B+γ
)

1
2 − (D̄†

B−γ
)

1
2 B̄−

γ
(D̄†

B−γ
)

1
2

)
= 2I − Q̃ϒ�(Q̃ϒ)T

= Q̃ϒ
[
2I −�

]
(Q̃ϒ)T .

Hence, we obtain the approximate eigenvalues from 2I −� with the columns of Q̃ϒ being the
approximate eigenvectors.

• Lmix =LWrw + γ QPrw . We compute approximations W̄ and P̄ of W and P, respectively, via (51) and
approximate D̄W and D̄P as in Remark 6.2. Then we compute the decomposition from (52) for D̄†

WW̄ −
γ D̄†

PP̄ to find

Lmix = (1+ γ)I −D−1
W W +D−1

P P≈ (1+ γ)I − (D̄†
WW̄ − γ D̄†

PP̄
)

= (1+ γ)I − Q̃ϒ�(Q̃ϒ)T = Q̃ϒ
[
(1+ γ)I −�

]
(Q̃ϒ)T .

We get the approximate eigenvalues from (1+ γ)I −� with the columns of Q̃ϒ as approximate
eigenvectors.

• Lmix =LB+γ rw
+QB−γ rw

−D−1
B+γ DBγ

QB−γ rw
. According to Lemma 5.1 (c), Lmix and LB+γ sym

+D
− 1

2

B+γ
QB−γ D

− 1
2

B+γ
have the same eigenvalues (see also Remark 5.2) and if v is an eigenvector of the latter matrix, then
D
− 1

2

B+γ
v is an eigenvector of Lmix.

We use (51) to compute approximations B̄+
γ

and B̄−
γ

of B+
γ

and B−
γ
, respectively. Then Remark 6.2

allows us to find approximations D̄B+γ and D̄B−γ of the degree matrices DB+γ and DB−γ , respectively.
Hence,

LB+γ sym
+D

− 1
2

B+γ
QB−γ D

− 1
2

B+γ
= I −D

− 1
2

B+γ
B+

γ
D
− 1

2

B+γ
+D

− 1
2

B+γ
QB−γ D

− 1
2

B+γ

= I −D
− 1

2

B+γ

(
B+

γ
−QB−γ

)
D
− 1

2

B+γ

= I −D
− 1

2

B+γ

(
B+

γ
− B−

γ
−DB−γ +DB+γ −DB+γ

)
D
− 1

2

B+γ

= 2I −D
− 1

2

B+γ

(
B+

γ
− B−

γ
−DB−γ +DB+γ

)
D
− 1

2

B+γ

≈ 2I − (D̄†
B+γ

)
1
2
(
B̄+

γ
− B̄−

γ
− D̄B−γ + D̄B−γ

)
(D̄†

B+γ
)

1
2

= 2I − Q̃ϒ�(Q̃ϒ)T = Q̃ϒ
[
2I −�

]
(Q̃ϒ)T ,

where we used (52) on (D̄†
B+γ

)
1
2
(
B̄+

γ
− B̄−

γ
− D̄B−γ + D̄B−γ

)
(D̄†

B+γ
)

1
2 to obtain the decomposition.

Thus, the approximate eigenvalues of Lmix are obtained from 2I −�, while the columns of (D̄†
B+γ

)
1
2 Q̃ϒ

give the approximate eigenvectors.

In each case, by choosing k≥m we can use the m leading approximate eigenvalues computed by
the Nyström method (and their corresponding approximate eigenvectors) as approximations for the m
leading eigenvalues of Lmix (and corresponding eigenvectors).

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 39

7. Numerical studies

This section presents the results of numerical studies for a variety of examples. All algorithms are imple-
mented in Python 3.8. For each example, we selected one value of the parameter γ and then we tested
our MMBO algorithms for the six cases of Lmix in (38). Because we observed that Lmix = LW + γ QP and
Lmix = LB+γ +QB−γ always gave the worst modularity scores, the results for these two cases are not pre-
sented for the sake of brevity. To save space, in our tables we indicate the remaining four choices of Lmix

by the main matrices on which they depend: ‘LWsym , QPsym ’, ‘LWrw , QPrw ’, ‘LB+sym , QB−sym ’ and ‘LB+rw , QB−rw ’.
Our MMBO schemes are compared to the modularity MBO algorithm from Hu et al. [33], Boyd

et al.’s pseudospectral balanced TV method [7], the CNM approach as given in Clauset et al. [19],
the Louvain method from Blondel et al. [6], the Leiden algorithm introduced by Traag et al. [71] and
spectral clustering as in Shi and Malik [37].37 The functions for the CNM method, the Louvain method,
the Leiden algorithm and spectral clustering can be called directly in the Python libraries NetworkX38

[68], leidenalg [70] and scikit-learn [59]. We assess the results not only based on their modularity
scores and computing times, but also according to the other metrics that we present in Section 7.1.3.
Our simulations were performed on a MacBook Air (13-inch, 2017), with a 1.8 GHz Dual-Core Intel
Core i5 processor and 8 GB 1600MHz DDR3 memory.

7.1. Related algorithms, null model and additional evaluation metrics
7.1.1. Related algorithms
The method from Hu et al. [33] is based on the observation that maximising modularityQγ (A; W, PNG)39

over all partitions A with K (possibly empty) parts is equivalent to minimising

QHu
γ

(U) := T VW(U)− γ

K∑
k=1

∑
i∈V

(dW)i

(
Uik −Uik

)2 = T VW(U)− γ 〈U −U, U −U〉W (53)

over all U ∈ Pt0(K), where, in analogy to (23), we define

Pt0(K) :=
{

U ∈R|V|×K : ∀i ∈ V ∀l ∈ {1, . . . , K} Uil ∈ {0, 1} and
K∑

k=1

Uik = 1

}
.

In addition, we define for all U ∈R|V|×K the mean U ∈R|V|×K by

Uik := 1

volW(V)

∑
j∈V

(dW)jUjk,

and we recall the inner product 〈·, ·〉W from (35). As per Section 6.4, 1|V| is the column vector in R
|V|

which has each entry equal to 1. To unclutter the notation, in this subsection, we simplify this notation
to 1. Then dW =DW1 is the column vector with entries (dW)i and

U = 1

volW(V)
1dT

WU.

Similarly to what we have presented in the current paper, this observation in [33] has led Hu et al.
to an MBO-type algorithm for modularity optimisation. Since the functional QHu

γ
in (53) is non-convex

37We note that we do not compare with the recent proximal gradient method from Sun and Chang [67], primarily because that
method focuses on partitioning into two communities only.

38In an earlier draft, we used python-louvain [3] to implement Louvain’s method (see Section 7.1.1), but we found it to be
slower than NetworkX, despite yielding similar results in terms of modularity score and other evaluation metrics (see Section
7.1.3). Therefore, we include only results obtained by using NetworkX in our tables and figures. We thank one of the anonymous
reviewers for suggesting that we seek a faster implementation.

39Thus, with the NG null model, as in (16).

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

40 Z. Li et al

as argued in [7, Footnote 2],40 a convex splitting approach is needed to solve the linear-dynamics step
of the MBO-type scheme. The operator used in this step (in the place where our algorithm uses Lmix) is
given by41

LHuU := LWU − 2γ DW(U −U) so that LHu = LW + 2γ

volW(V)
dWdT

W − 2γ DW ,

where the second expression follows since DWU = 1
volW (V)

DW1dT
WU = 1

volW (V)
dWdT

WU.
For the actual computation of the linear-dynamics step, a projection onto the m leading eigenvectors

of the graph Laplacian is used.
As can be seen from LHu, in [33] the unnormalised graph Laplacian LW is used in the algorithm. This

form of LHu is obtained by using the inner product from (34) in the derivation of the gradient flow of
(53) (see footnote 41). If the inner product from (35) is used instead, we obtain the operator

LHu,rwU := LW,rwU − 2γ (U −U) so that LHu,rw = LW,rw + 2γ

volW(V)
1dT

W − 2γ I.

For the symmetrically normalised variant, we use42

LHu,sym := LW,sym + 2γ

volW(V)
d

1
2
W(d

1
2
W)T − 2γ I,

where d
1
2
W =D

1
2
W1 denotes the column vector with entries (dW)

1
2
i .

We also present tests for Hu et al.’s method with these normalised operators, because, as in the
MMBO algorithms above, we obtained better modularity scores (and better scores on most if not all
other measures that we introduce in Section 7.1.3) using those operators.

In [33], an Euler finite-difference scheme is used for Hu et al.’s method which requires a choice of
time step along the same lines as our δt := N−1

t τ in Sections 5.2.2 and 5.4.2. We do not select this time
step by using the method from Section 6.1 to select a value of τ , since the operators LHu, LHu,sym and
LHu,rw are not positive definite which poses problems for τupp in part (d) of Lemma 6.1.

Instead, we tested three different values for δt43 Our first choice is δt= 1, following the choice in
[33]. While this works for the unnormalised operator LHu, it is unsuitable for the normalised operators
LHu,sym and LHu,rw, as we empirically observe that they can have eigenvalues close to −1 in some cases
(see Figures 1a, 5a and 5b). This causes I + δt� in (43) and (46) to be (close to) singular, where � is
the diagonal matrix containing eigenvalues of LHu, LHu, sym or LHu,rw.

Our second choice is δt= 1/Nt, which looked like a good choice in preliminary simulations; at least
it gave better results than δt= 1.

Our third choice is δt= χHu/λHu, where λHu is the greatest eigenvalue for the unnormalised operator
LHu (i.e., the smallest in absolute value if the eigenvalues are negative) and χHu is the greatest eigenvalue
for either LHu, LHu,rw or LHu,sym. In the case of the unnormalised operator LHu, λHu = χHu and we are back
to the choice from [33]: δt= 1. For the two normalised operators, in this choice the time step is scaled

40More accurately, the functional is still non-convex, even if the non-convex domain Pt0(K) is relaxed to be the convex domain
R
|V|×K . Depending on the value of γ , this non-convexity can still persist if T VW (U) is replaced by the graph Dirichlet energy.

Since this replacement gives the functional that generates, via arguments analogous to those in Sections 4 and 5, to the linear
dynamics step of the corresponding MBO scheme, non-convexity of this functional suggests the use of a convex splitting scheme
to solve the linearly dynamics step.

41The derivation is similar to the way that we, for example, derived a gradient flow in (29) and then a corresponding MBO scheme
in Section 5.1. The identities U =U and 〈U, V〉W = 〈U, V〉W , for all matrices U, V ∈R|V|×K , and their corollary 〈U −U, V〉W = 0,
are useful in this and following computations.

42As per footnote 32, a symmetrically normalised variant LHu,sym cannot be obtained from (53) in the same way that we derived

LHu and LHu,rw. Instead, inspired by footnote 22, we replace each instance of U in (53) by D
− 1

2
W U and then follow the usual recipe

with the inner product from (34). We emphasise that D
− 1

2
W U should be used in the second term of (53), not D

− 1
2

W U. To understand

the second term in LHu,sym, we observe that D
1
2
W D
− 1

2
W U = 1

volW (V) D
1
2
W 11T DW D

− 1
2

W U = 1
volW (V) d

1
2
W (d

1
2
W)T U.

43Or τn or dt in the notation of [33].

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 41

according to the ratio of eigenvalues to avoid the singular operator problem we noted earlier. Based
on our numerical experiments, this third choice for δt consistently outperforms the other two in terms
of modularity score, computation time and other evaluation metrics (see Section 7.1.3). Therefore, we
present only the results obtained via this third choice in all the tables and figures below that involve any
of the variants of Hu et al.’s method.

The method also requires the maximal44 number of non-empty clusters K as input. In [33], the algo-
rithm is run for multiple values of K and the optimal output is selected, whereas we will run the algorithm
at specifically selected values of K so that all algorithms we test can be compared at the same value(s)
of K.

As shorthand, we may call this method Hu’s method.
Similar to the method from [33], also the method by Boyd et al. [7] is based on finding a functional

whose minimisation over Pt0(K) is equivalent to the maximisation of Qγ (A; W, PNG) over all partitions
A with K (possibly empty) parts:

QBoyd
γ

(U) := T VW(U)+ γ

volW(V)

K∑
k=1

(∑
j∈V

(dW)jUjk

)2

= T VW(U)+ γ 〈U, U〉W . (54)

Different from [33], this functional is convex.45 Based on this equivalence, also in [7] an MBO-type
algorithm is proposed, analogous to what we did in Sections 4 and 5. The matrix which is used in the
linear-dynamics step (in the place where we use Lmix) is

LBoyd := LW + 2γ

volW(V)
dWdT

W .

This is obtained from QBoyd
γ

in (54) in the standard way, using the inner product in (34) for the gradient
flow. Indeed, taking into account the corollary given at the end of footnote 41, we find that46

QBoyd
γ

(U)−QHu
γ

(U)= γ 〈U, U〉W = γ 〈DWU, U〉 (55)

and thus LBoyd = LHu + 2γ DW .
Similarly, if we use the inner product from (35) to obtain LBoyd,rw, then

LBoyd,rw := LHu,rw + 2γ I = LW,rw + 2γ

volW(V)
1dT

W .

Following a recipe similar to that in footnote 42, we replace U in (55) by D
− 1

2
W and thus in particular

〈U, U〉W by

〈D− 1
2

W U, D
− 1

2
W U〉W = 〈D

1
2
WU, D

− 1
2

W U〉 = 〈U, U〉.
Computing its gradient according to the inner product in (34), we find

LBoyd,sym := LHu,sym + 2γ I = LW,sym + 2γ

volW(V)
d

1
2
W(d

1
2
W)T .

We use the pseudospectral balanced TV MBO scheme from [7], which uses a similar (truncated)
eigendecomposition of the operator in the computation of the linear-dynamics step as our Algorithm 1.

As we did for Hu’s method, however, and for the same reasons, we present tests for Boyd et al.’s
method using normalised variants of LBoyd.

44Also in this method empty clusters are allowed in the output, as will also be the case in Boyd et al.’s method which we describe
later in this section.

45Similar to footnote 40, a more accurate statement is that the functional becomes convex if the non-convex domain Pt0(K) is
replaced by the convex domain R

|V|×K .
46If U ∈ Pt0(K) encodes the partition A= {Al}Kl=1, that is, Uil = 1 if and only if i ∈ Al and Uil = 0 otherwise, then 〈U, U〉W =∑K
k=1
∑

i∈V (dW)iU2
ik =

∑K
k=1
∑

i∈Ak
(dW)i =∑K

k=1 volW (Ak)= volW (V). Thus, for the purpose of maximisation over Pt0(K), the
difference between QHu

γ and QBoyd
γ is a constant, and therefore irrelevant, term. Considering these functionals on all of R|V|×K ,

however, this term is no longer constant and leads to the observed convexity of QBoyd
γ on R

|V|×K (see footnote 45).

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

42 Z. Li et al

As discussed in Section 6.1, [7] proposes a selection method for τ . We use that method for determin-
ing τ in Boyd et al.’s method. Specifically, we use the value suggested by [7, Propositions 4.1 and 4.2],
which are analogous to our Lemma 6.1. The method requires that the maximum number of non-empty
clusters K is known in advance.

To shorten the name, we may call this method Boyd’s method.
The CNM method from Clauset et al. [19], Louvain method from Blondel et al. [6] and Leiden algo-

rithm from Traag et al. [71] are all greedy methods, which iteratively update communities in a way that
maximises the immediate increase in modularity. All methods differ in the types of updates they per-
form. In all methods, initially each node in the network is considered as a separate community and then
nodes may be moved to different communities to increase modularity in a local movement phase. The
CNM method sequentially computes for each community (according to some ordering of the commu-
nities) and each of its neighbours the change in modularity if those two communities would merge. If
any increase in modularity is possible, one of the mergers that produces the maximum increase is per-
formed. This continues iteratively until no merger of neighbouring communities increases modularity.
The Louvain method sequentially computes for each node (according to some ordering of the nodes)
and for each of its neighbours the change in modularity if the node were to be removed from its current
community and assigned to its neighbour’s community. If any increase in modularity is possible, one
of the assignments that produces the maximum increase is performed. This continues iteratively until
no more increase in modularity is possible in this way. Then the first phase of the algorithm ends and,
for the CNM and Louvain algorithms, the second phase, an aggregation phase starts, in which a new
graph is built that contains a node for each community obtained in the first previous phase. The edge
weight between two nodes in the new graph is obtained by adding together all weights of the edges that
connect the corresponding communities in the original network. To this new graph, the procedure of the
first phase is again applied. The two phases are iterated in this way until no more change in modularity
is obtained.

The Louvain algorithm can lead to poorly connected communities [71]. The Leiden algorithm
improves upon the Louvain algorithm through an additional refinement phase that takes place between
the local movement and aggregation phases. It ensures that every community is internally connected.
Each iteration of the Leiden algorithm includes three phases: local movement of nodes, refinement
of communities to ensure internal connectivity and aggregation of the network. This results in more
accurate and stable community detection.

The local movement phase of the Leiden algorithm is similar to that of the Louvain algorithm, yet
more efficient as it only (re)visits those nodes whose neighbours’ community assignments have changed
as a result of an earlier local move, rather than all nodes. This contributes to the Leiden algorithm gener-
ally being faster, particularly for large networks. In the refinement phase communities from the unrefined
partition that has been formed in the local movement phase can split further into subsets that are better
connected internally. For each community from the unrefined partition, a refined partition is initialised
by assigning each node to its own community. Then singleton communities are merged with other com-
munities according to a connectivity-based probability distribution. Importantly, these mergers only
happen within each community from the unrefined partition so that the communities that were found in
the local movement phase can split, but not merge. In the aggregation phase of the Leiden algorithm,
the aggregated graph is based on the refined partition, yet the partition of this new graph, with which the
local movement phase of the next iteration is initiated, is based on the unrefined partition that resulted
from the previous local movement phase, rather than the refined partition. This means that in the Leiden
algorithm, contrary to the Louvain algorithm, not all communities of the initial partition at the start of
each new local movement phase need to be singletons (except in the first iteration of the algorithm). For
a detailed description of the Leiden algorithm, we refer to [71, Supplementary Information].

The stopping criterion for the CNM, Louvain and Leiden methods is based on the change in mod-
ularity score, or rather, the lack of increase in this score among all community update options that are
available to the algorithm in question. This is different from the stopping condition (48), which depends

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 43

on the Euclidean change in subsequent partition matrices found by the algorithm, rather than their mod-
ularity scores. The nature of the CNM, Louvain and Leiden methods makes it difficult to introduce
a stopping condition like (48). This is an important reason why we also consider the modularity-
based stopping criterion in (49). Another motivation is the observation that often the modularity score
improves only slowly after the first few iterations of the algorithms, as we will see in some more detail
later. Because of this difference in stopping conditions, we present the results for the CNM, Louvain and
Leiden methods in different tables than the results for the MMBO schemes, Hu’s method and Boyd’s
method.

Furthermore, the CNM, Louvain and Leiden methods do not require the (maximum) number of clus-
ters K as input, in contrast to Hu’s, Boyd’s and our methods; rather, K is one of the outputs of these
methods, implicitly given by the final clustering when the stopping condition has been reached in the
CNM, Louvain and Leiden methods. By construction, these methods do not output empty clusters.

Spectral clustering proposed by Shi and Malik [37] is a clustering approach based on spectral graph
theory (see also von Luxburg [74]). It was not developed for optimising modularity specifically, but
we use it in our tests to compare how our method compares to it in the various performance measures
that we consider. The basic idea is to embed the data, represented as nodes in a graph, into Euclidean
space based on the K leading eigenvectors resulting from the eigendecomposition of the random walk
Laplacian Lrw. Clusters are then found by using a clustering algorithm that can be applied to points in
Euclidean space. We use the commonly used K-means algorithm, as part of the SpectralClustering
function in the Python scikit-learn library [59]. The maximum47 number of non-empty clusters K
needs to be specified in advance.

7.1.2. Null model for modularity optimisation
Hu’s method, Boyd’s method, the CNM method, the Louvain method and the Leiden algorithm all are
based on modularity with the NG null model.48

Therefore, in our examples, we also employ the NG null model in our MMBO algorithms. We refer
to Section 2.3 for more details. In particular, we wish to optimise Q(A; W, PNG) from (16). This is the
quantity reported in the tables in this section as ‘NG modularity’.

7.1.3. Additional evaluation metrics
The main goal of our numerical tests is to find out how well our method performs on the modularity
maximisation task. As a secondary goal, we also want to compare the clusters (communities) that we
obtain with ground truth communities in cases where such ground truth is available. For this comparison,
we employ a number of different evaluation metrics:49 purity [63], inverse purity, the adjusted rand
index (ARI) [25] and normalised mutual information (NMI) [40, 42]. For clarity’s sake, we will call
the communities that are obtained by the algorithm clusters and the communities that are present in the
ground truth classes.

Let C and C ′ be partitions of V , where C := {C1, . . . , CK} is the set of K clusters to be evaluated and
C ′ := {C′1, . . . , C′K′ } is the set of K ′ classes of the ground truth. We assume here that all clusters and all
classes are non-empty.

Purity is an evaluation metric that quantifies the proportion of nodes in a cluster that are members of
the same majority class and is defined as

Purity(C, C ′) := 1

|V|
K∑

k=1

max
1≤l≤K

′

∣∣∣Ck

⋂
Cl
′
∣∣∣ .

47The K-means algorithm can return empty clusters.
48Since spectral clustering is not designed to be a modularity optimisation method, it does not rely on a choice of null model.
49Or evaluation measures, where we do not necessarily intend either ‘metric’ or ‘measure’ to be read in their strict mathematical

meaning.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

44 Z. Li et al

Purity achieves its maximum value of 1 if C = C ′, but this maximiser is not unique: if C consists of |V|
singleton clusters, this maximum value is also obtained. A high purity can thus be achieved artificially
by having many clusters, since this metric does not penalise cluster size.

We note that purity is not symmetric in C and C ′. By interchanging both arguments, we obtain inverse
purity:

InvPurity(C, C ′) := Purity(C ′, C)= 1

|V|
K
′∑

l=1

max
1≤k≤K

∣∣∣Ck

⋂
Cl
′
∣∣∣ .

Inverse purity is biased in favour of large clusters. In particular, the maximum value 1 is not only obtained
if C = C ′, but also if all nodes are grouped together into a single cluster.

Purity and inverse purity both quantify the number of correctly clustered nodes, under some definition
of ‘correct’. The next metrics we list quantify numbers of correctly clustered pairs of nodes.

We classify a pair of distinct nodes i, j ∈ V as true positive if they belong to the same cluster in C and
the same class in C ′, that is, if there are k and k′, such that i, j ∈Ck ∩C′

k
′ . We denote the total number

of true positives by TP. Similarly, a pair of distinct nodes i, j forms a true negative, if both nodes are in
distinct clusters and distinct classes, that is, if there are distinct k and l and distinct k′ and l′ such that
i ∈Ck ∩C′

k
′ and j ∈Cl ∩C′

l
′ . The total number of true negatives is TN. The pair i, j forms a false positive,

if there are k and distinct k′ and l′, such that i ∈Ck ∩C′
k
′ and j ∈Ck ∩C′

l
′ , and it forms a false negative if

there are k′ and distinct k and l such that i ∈Ck ∩C′
k
′ and j ∈Cl ∩C′

k
′ . The total numbers of false positives

and false negatives are denoted by FP and FN, respectively. These quantities are computed as follows:

TP :=
K∑

k=1

K
′∑

l=1

(|Ck

⋂
Cl
′|

2

)
, FP :=

K∑
k=1

(|Ck|
2

)
− TP,

FN :=
K
′∑

l=1

(|Cl
′|

2

)
− TP, TN :=

(|V|
2

)
− TP− FP− FN.

The Rand index (RI) [61] is the proportion of correctly clustered node pairs:

RI := TP+ TN
TP+ FP+ FN+ TN

=
(|V|

2

)−1

(TP+ TN).

One of the drawbacks of RI is that it it does not consider the possibility of a coincidental agreement
between the two partitions. The number and sizes of the clusters in each partition, as well as the total
number of nodes, impact on the number of agreements of two partitions that can be expected to occur
by chance. To mitigate this problem, the ARI is proposed in Hubert and Arabie [35] to be

ARI := RI−E(RI)
max RI−E(RI)

, (56)

where the expected Rand index E(RI) is computed based on the assumption that the contingency table
with entries |Ck ∩Cl

′| is drawn from a generalised hypergeometric distribution50 and we know that
max RI= 1. Hence ARI is well defined, unless E(RI)= 1.51 Various equivalent expressions for the ARI

50This translates to C and C′ being random partitions conditioned on K, K′ and all cluster and class sizes |Ck| and |Cl
′| being

fixed at their actual observed values. Under this assumption, it can be computed that E(RI)= 1+ 2
(|V|

2

)−2
(TP+ FN)(TP+ FP)−(|V|

2

)−1
(2TP+ FP+ FN). See [35].

51From the third expression in (57) below, it can be seen that the denominator equals zero if and only if TP= FN= FP= 0
or FN= TN= FP= 0. The former case occurs if and only if TN= (|V|2

)
, thus if and only if K =K′ = 1, whereas the latter case

occurs if and only if TP= (|V|2

)
, thus if and only if K =K′ = |V|. See also [15].

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 45

can be calculated:52

ARI=
(|V|

2

)
TP− (TP+ FN)(TP+ FP)

1
2

(|V|
2

)
(2TP+ FP+ FN)− (TP+ FN)(TP+ FP)

=
(|V|

2

)
(TP+ TN)− [(TP+ FP)(TP+ FN)+ (FN+ TN)(FP+ TN)](|V|

2

)2 − [(TP+ FP)(TP+ FN)+ (FN+ TN)(FP+ TN)]

= 2
TP · TN− FN · FP

(TP+ FN)(FN+ TN)+ (TP+ FP)(FP+ TN)
. (57)

From (56), we see that the maximum value of the ARI is 1, which is obtained if RI=max RI= 153 In
Chacón and Rastrojo [15], the minimum possible value of the ARI is proven to be − 1

2
.54

The entropy of the clustering C is defined55 to be56

H(C) := −
K∑

k=1

|Ck|
|V| log2

(|Ck|
|V|
)

.

If we view the cluster assignment in C of a given node as a random variable with possible outcomes k ∈
{1, . . . , K} with uniform probability |Ck |

|V| , then H(C) is the entropy associated with this random variable.
The joint entropy of C and C ′ is

joint H(C, C ′) := −
K∑

k=1

K
′∑

l=1

|Ck

⋂
C′ l|

|V| log2

(|Ck

⋂
Cl
′|

|V|
)

.

If we let our intuition be that (joint) entropy is a measure for the uncertainty associated with the cluster
assignment of a node, then mutual information (MI) evaluates the reduction in this uncertainty that we
obtain by considering C and C ′ jointly, rather than separately, that is,

MI(C, C ′) := H(C)+H(C ′)− joint H(C, C ′)=
K∑

k=1

K
′∑

l=1

|Ck

⋂
Cl
′|

|V| log2

(|V||Ck

⋂
Cl
′|

|Ck||Cl
′|

)
.

52The first expression below follows directly from [35, Formula (5)], the second one appears in Steinley [66, Formula (9)] and
Chacón and Rastrojo [15], and the third expression appears in the the ARI function of the Python scikit-learn library [59]
that we have used.

53If not simultaneously E(RI)= 1.
54In some sources in the literature, such as [53] one finds the (correct) claim that ARI has values in [− 1, 1]. Indeed, it is not

difficult to show that ARI <−1 leads to the contradiction (TP+ FP+ FN)TN+ TP(FP+ FN+ TN)+ (FP− FN)2 + 2TP · TN <

0. Some sources, such as [65] even claim that the value −1 can be achieved, which contradicts the result in [15]. In an attempt
to corroborate that the value −1 is in fact achievable, one could be tempted to choose TP= TN= 0 and maximise the resulting
expression, which leads to FP= FN. However, we will show now that is not possible to construct C and C′ that satisfy both
TP= TN= 0 and FP= FN.
It follows from footnote 51, that ARI is undefined if |V| = 1. Assume |V| ≥ 2. If the ground truth has |V| classes, then TN= 0
forces C not to contain any singletons. Thus, there is a cluster in C containing at least two elements, hence FP≥ 1. However,
since |C′| = |V|, FN= 0 < FP. If the ground truth has only one class, then TP= 0 forces C to have |V| singleton clusters, in which
case FN= (|V|2

)
> 0= FP. Thus, the ground truth must have at least two and at most |V| − 1 classes, which rules out |V| = 2.

Hence, assume |V| ≥ 3. By the pigeonhole principle, the ground truth must contain a class containing at least two elements, say
Cab
′ = {a, b}. Since the ground truth has at least two classes, there is another class Cc

′ containing at least one element c ∈Cc
′

distinct from a and b. Since TP= 0, C has to contain two disjoint clusters Ca, Cb with a ∈Ca and b ∈Cb. Because TN= 0, c ∈Ca

and c ∈Cb. This is a contradiction.
55The convention is that the kth term is zero if |Ck| = 0.
56For definiteness, and to honour its origins in information theory in Shannon [64], we have chosen base 2 for the logarithm, but

in the normalised mutual information of (58), which is the quantity we are ultimately interested in, any overall constant factors
that would appear in H and MI under a different choice of base would cancel out.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

46 Z. Li et al

Table 2. MNIST: parameter settings for the Nyström
extension and edge weights in (59) (left) and param-
eter setting of the MMBO scheme (right)

Parameter Value Parameter Value
k 500 Nt 5
σ 100 η 10−5

γ 1

By subadditivity of the joint entropy, MI is always non-negative. Moreover, it is zero if and only if
the cluster assignments associated with C and C ′ are independent random variables. Out of the many
variants and generalisations of mutual information, we choose to use the following normalised mutual
information:

NMI(C, C ′) := 2MI(C, C ′)
H(C)+H(C ′) . (58)

7.2. MNIST

The MNIST database is a widely used data set in computer vision and machine learning [43]. It com-
prises 70, 000 black-and-white images of handwritten digits ranging from 0 to 9, each image consisting
of 28× 28 pixels. The data set consists of pairs of handwritten digit images together with ground truth
digit assignments. We aim to group images of different digits into distinct communities. We construct
a graph in which each node represents an image, thus |V| = 70, 000, and the weighted edges are based
on feature vector similarity. To create these feature vectors associated with each image, we project the
images (which are associated with vectors in R

28×28 containing their pixel’s greyscale values) onto 50
principal components as determined by a principal component analysis (PCA). For each node i (corre-
sponding to an image), we thus obtain a feature vector xi ∈R50 containing the coordinates with respect
to the first 50 principal components. We define the weight between distinct nodes i and j as

ωij := exp

(
−||xi − xj||22

σ

)
, (59)

where σ by the user. In this example, we choose σ = 100. The choice of σ impacts the number of
clusters K found by the Louvain method. Since we use that value to set the maximal number of clusters
in the MMBO methods as well as in the methods from Hu et al. and Boyd et al., this in turn affects the
size of the matrices in those methods, such as U0 in Algorithms 1 and 2, which itself impacts the run
times. Tests with σ = 50, which are not shown in the tables and figures in this paper, did show fewer
clusters and lower (absolute) run times for all methods. If we compare the results in Tables 3 and 4,
with the results in Table 5, the difference in run times between the MMBO methods and the Louvain
method is substantial. In our tests with σ = 50, this difference was much less pronounced, in some cases
even absent. This suggests that the Louvain method is more sensitive to changes in σ than the MMBO
methods.

Defining the weights by (59) implies ωij = 1 if and only if nodes i and j are identical. Additionally,
we choose the same Nt as Hu et al. in [33] to compare the results of MMBO with those from [33], that
is, Nt = 5.57 See Table 2 for the parameters used in the methods.

57In the notation of [33]: η= 5.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 47

Table 3. MNIST: average time per run for computing eigenvalues and eigenvectors, the average time
per run for all MBO iterations, and the average number of MBO iterations per run for the MMBO
schemes, Hu et al.’s method, and Boyd et al.’s method when using m= 130 and K = 764 and the
partition-based stopping criterion from (48). The number of iterations is rounded to the nearest integer.
The best average result in each column is shown in boldface

Avg. time for eigenvalues Avg. time for MBO Avg. # of
Method and eigenvectors (s) iterations (s) iterations

MMBO Algorithm 1 LWsym , QPsym 14.4 (± 2.9) 64.3 (± 11.8) 134 (± 36)
LWrw , QPrw 13.7 (± 2.0) 63.2 (± 10.3) 127 (± 38)
LB+sym , QB−sym 15.1 (± 4.4) 19.4 (± 3.8) 55 (± 21)
LB+rw , QB−rw 15.6 (± 4.8) 67.2 (± 7.0) 91 (± 25)

MMBO Algorithm 2 LWsym , QPsym 14.4 (± 2.9) 178.2 (± 18.5) 152 (± 36)
LWrw , QPrw 13.7 (± 2.0) 153.6 (± 20.2) 127 (± 30)
LB+sym , QB−sym 15.1 (± 4.4) 144.2 (± 14.2) 119 (± 18)
LB+rw , QB−rw 15.6 (± 4.8) 164.7 (± 15.4) 140 (± 23)

Hu et al. LWsym 12.7 (± 1.6) 186.2 (± 26.4) 138 (± 27)
LWrw 13.5 (± 1.2) 179.6 (± 20.3) 130 (± 16)

Boyd et al. LWsym 12.6 (± 1.6) 199.4 (± 20.5) 206 (± 25)
LWrw 13.5 (± 1.2) 197.7 (± 21.7) 187 (± 34)

Table 4. MNIST: average time per run for computing eigenvalues and eigenvectors, the average time
per run for all MBO iterations, and the average number of MBO iterations per run for the MMBO
scheme, Hu et al.’s method, and Boyd et al.’s method when using m= 130 and K = 764 and the
modularity-based stopping condition from (49). The number of iterations is rounded to the nearest
integer. The best average result in each column is shown in boldface

Avg. time for eigenvalues Avg. time for MBO Avg. # of
Method and eigenvectors (s) iterations (s) iterations

MMBO Algorithm 1 LWsym , QPsym 14.4 (± 2.9) 11.2 (± 2.9) 32 (± 4)
LWrw , QPrw 13.7 (± 2.0) 12.6 (± 3.2) 36 (± 6)
LB+sym , QB−sym 15.1 (± 4.4) 9.3 (± 2.5) 17 (± 4)
LB+rw , QB−rw 15.6 (± 4.8) 10.2 (± 2.0) 28 (± 4)

MMBO Algorithm 2 LWsym , QPsym 14.4 (± 2.9) 24.8 (± 4.1) 36 (± 5)
LWrw , QPrw 13.7 (± 2.0) 28.9 (± 5.4) 34 (± 7)
LB+sym , QB−sym 15.1 (± 4.4) 18.6 (± 4.7) 25 (± 7)
LB+rw , QB−rw 15.6 (± 4.8) 17.4 (± 5.1) 32 (± 6)

Hu et al. LWsym 8.1 (± 1.2) 30.4 (± 12.8) 27 (± 10)
LWrw 8.5 (± 1.3) 71.9 (± 13.5) 29 (± 8)

Boyd et al. LWsym 9.7 (± 1.2) 34.9 (± 10.2) 43 (± 19)
LWrw 9.8 (± 1.3) 60.7 (± 20.8) 39 (± 21)

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

48
Z.Lietal

Table 5. MNIST: average performance of algorithms regarding modularity scores, various classification metrics, and average computation time
per run under NG null model. The best average results in each column are shown in boldface (we exclude the ground truth numbers). For the
number of non-empty clusters we consider the one closest to the ground truth to be ‘best’ in this context

NG Inv. Time Non-empty
Method modularity ARI Purity purity NMI Time (s) clusters
Louvain 0.58 (± 0.01) 0.69 (± 0.01) 0.78 (± 0.01) 0.88 (± 0.0) 0.79 (± 0.01) 1146.3 (± 131.9) 764 (± 23)
CNM 0.30 (± 0.0) 0.19 (± 0.0) 0.33 (± 0.0) 0.93 (± 0.0) 0.45 (± 0.0) 8196.4 (± 13.3) 808 (± 0)
Leiden 0.55 (± 0.01) 0.67 (± 0.07) 0.75 (± 0.06) 0.88 (± 0.06) 0.79 (± 0.03) 11.2 (± 0.6) 659 (± 2)
Ground truth 0.31 1.0 1.0 1.0 1.0 – 10

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

European
JournalofApplied

M
athem

atics
49

Table 6. MNIST: average performance of different algorithms regarding modularity scores, various classification metrics, and total computation
time under NG null model when using m= 130 and K = 764 and the partition-based stopping criterion (48). The best average result in each column
is shown in boldface. For the number of non-empty clusters we consider the one closest to the ground truth number 10 to be ‘best’ in this context

Method NG Inv. Time Non-empty
Method modularity ARI Purity purity NMI (s) clusters

MMBO Algorithm 1 LWsym , QPsym 0.55 (± 0.02) 0.44 (± 0.07) 0.77 (± 0.04) 0.52 (± 0.07) 0.63 (± 0.04) 80.3 (± 14.8) 20 (± 2)
LWrw , QPrw 0.55 (± 0.02) 0.45 (± 0.09) 0.77 (± 0.05) 0.53 (± 0.08) 0.63 (± 0.04) 76.3 (± 13.5) 20 (± 3)
LB+sym , QB−sym 0.28 (± 0.06) 0.29 (± 0.02) 0.40 (± 0.03) 0.78 (± 0.02) 0.44 (± 0.02) 34.7 (± 8.0) 5 (± 1)
LB+rw , QB−rw 0.53 (± 0.06) 0.45 (± 0.10) 0.74 (± 0.07) 0.56 (± 0.06) 0.61 (± 0.04) 84.3 (± 10.9) 26 (± 5)

MMBO Algorithm 2 LWsym , QPsym 0.56 (± 0.02) 0.42 (± 0.04) 0.77 (± 0.04) 0.49 (± 0.05) 0.63 (± 0.02) 191.7 (± 21.9) 22 (± 2)
LWrw , QPrw 0.55 (± 0.02) 0.44 (± 0.07) 0.78 (± 0.03) 0.51 (± 0.07) 0.63 (± 0.03) 167.2 (± 23.0) 21 (± 2)
LB+sym , QB−sym 0.55 (± 0.03) 0.45 (± 0.06) 0.75 (± 0.05) 0.53 (± 0.05) 0.63 (± 0.03) 157.9 (± 18.8) 18 (± 2)
LB+rw , QB−rw 0.54 (± 0.02) 0.47 (± 0.09) 0.78 (± 0.04) 0.54 (± 0.10) 0.64 (± 0.04) 177.5 (± 20.3) 19 (± 3)

Hu et al. LWsym 0.54 (± 0.03) 0.43 (± 0.05) 0.79 (± 0.06) 0.49 (± 0.04) 0.63 (± 0.03) 198.4 (± 26.8) 22 (± 2)
LWrw 0.54 (± 0.02) 0.42 (± 0.06) 0.79 (± 0.08) 0.48 (± 0.03) 0.63 (± 0.03) 190.8 (± 23.8) 22 (± 2)

Boyd et al. LWsym 0.51 (± 0.05) 0.60 (± 0.14) 0.80 (± 0.15) 0.76 (± 0.12) 0.75 (± 0.06) 201.4 (± 22.5) 17 (± 8)
LWrw 0.52 (± 0.03) 0.52 (± 0.14) 0.72 (± 0.11) 0.75 (± 0.10) 0.71 (± 0.04) 200.5 (± 21.2) 14 (± 5)

Spectral clustering 0.51 (± 0.01) 0.43 (± 0.05) 0.75 (± 0.03) 0.81 (± 0.04) 0.69 (± 0.06) 186.4 (± 16.9) 764 (± 0)

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

50 Z. Li et al

The values that we present in Tables 3–7 are averages computed over twenty runs for each algorithm,
followed by the maximum deviation (in absolute value58) from each average in parentheses. It is worth
noting that the initial condition U0, which involves randomly assigning each node to a community (with
each community containing at least one node) as outlined in Algorithms 1 and 2, is likely to differ
with each run. However, this variation in initial conditions does not impact greatly the modularity score
achieved by the algorithms.

Both the Louvain method and the Leiden algorithm achieve similar modularity; see Table 5. Although
the running time of the Leiden algorithm is much faster than that of the Louvain method, the primary
goal of this paper is to maximise modularity. Since the Louvain method achieves the highest modularity,
we select the optimal K found by the Louvain method. The highest modularity obtained by the Louvain
method is achieved around59 K = 764. We also tested the MBO-based methods with K = 659, inspired
by the results of the Leiden algorithm in Table 5. We obtained a lower modularity than for K = 764
in this way and also the values of the other classification metrics were lower. Therefore, we have not
included those results in this paper, although the running time was also reduced.

For a fair comparison of the different methods’ resulting modularity values, we wish to use the same
upper bound K on the number of clusters for each method. We recall that for the Louvain method K is an
output of the algorithm (with K being the exact number of non-empty clusters, not just an upper bound),
whereas for the methods of Hu et al. and Boyd et al., as well as for our MMBO method, K has to be
given as input (and is only an upper bound on the number of non-empty clusters, since the methods may
output empty clusters). Thus, we first use the Louvain approach to determine an appropriate value for
K. Then we run the methods of Hu et al. and Boyd et al. and our MMBO method with the same value
for K, namely K = 764.

Figure 1 displays the spectra of the first 180 eigenvalues for the different choices of Lmix under the
NG null model as well as LHu,sym, LHu,rw, LBoyd,sym and LBoyd,rw. In each of the panels in Figure 1, the
two plotted curves overlap since the eigenvalues of the corresponding pairs of operators are identical,
that is, the eigenvalues of LHu,sym and LHu,rw are identical, as are the eigenvalues of LBoyd,sym and LBoyd,rw,
the eigenvalues of LWsym + γ QPsym and LWrw + γ QPrw , and also the eigenvalues of LB+γ ,sym +QB−γ ,sym and
LB+γ ,rw +QB−γ ,rw .

Using the MMBO scheme from Algorithm 1 as an illustration, Figure 2 demonstrates that the highest
modularity is achieved if m, the number of leading eigenvalues that is used for the eigendecomposition
of Lmix, is chosen at 130. Therefore, we pick m= 130.

First, we study the computing times of the two main parts of the algorithms. Then, we discuss the
performance in terms of the modularity scores and other evaluation metrics, and its dependency on the
choice of null model and the stopping criterion. Finally, the effect of using some a priori known node
assignments will be explored.

There are two main parts to the execution time of the MMBO schemes, Hu et al.’s method and Boyd
et al.’s method: the computation of the eigenvalues and eigenvectors of Lmix for MMBO or of the method-
specific matrices for Hu and Boyd’s methods, and the iteration of the linear-dynamics and thresholding
steps. In order to speed up the computation of the eigenvalues and eigenvectors, we use the Nyström
extension with QR decomposition as explained in Section 6.4. Table 3 presents the computing times if
the partition-based stopping criterion from (48) is used. In Table 4, we show the computing times if the
modularity-based stopping criterion from (49) is used instead. The use of the second stopping criterion
is motivated by the observation that often the modularity score improves only slowly after the first few
iterations. In Figure 3, for example, the modularity score changes little after the first 35 iterations, but
the algorithm continues because we do not set any stopping criterion. This behaviour is similar to the

58To be explicit, the top-left entry 14.4(± 2.9) in Table 3, for example, indicates that the average time over 20 runs is 14.4
seconds and the time, or times, that deviate most from this average in all of the 20 runs are equal to 14.4− 2.9 seconds or to
14.4+ 2.9 seconds.

59We implement the Louvain method using the NetworkX package for Python [68]. On the website [68], it is noted that the
order in which nodes are considered can influence the final output, and in the algorithm, this order is determined by a random
shuffle.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European
JournalofApplied

M
athem

atics
51

Table 7. MNIST: average performance of algorithms regarding modularity scores, various classification metrics, and total computation time under
NG null model with (‘10%’) and without (‘no’) 10% mild semi-supervision when using the modularity-based stopping condition (49). In both the
unsupervised and mildly semi-supervised case, m= 130 and K = 764 are used. With mild semi-supervised clustering, m= 130 and K = 764 is used.
The best average results with and without mild semi-supervision in each column are shown in boldface. For the number of non-empty clusters we
consider the one closest to the ground truth number 10 to be ‘best’ in this context

NG Inv. Time Non-empty
Method GT modularity ARI Purity purity NMI (s) clusters

MMBO LWsym , QPsym no 0.55 (± 0.02) 0.43 (± 0.06) 0.77 (± 0.04) 0.47 (± 0.03) 0.62 (± 0.03) 23.0 (± 5.2) 21 (± 3)
Algorithm 1 10% 0.31 (± 0.01) 0.81 (± 0.02) 0.90 (± 0.01) 0.90 (± 0.01) 0.79 (± 0.01) 12.4 (± 4.1) 10 (± 0)

LWrw , QPrw no 0.55 (± 0.02) 0.42 (± 0.04) 0.76 (± 0.04) 0.49 (± 0.04) 0.62 (± 0.01) 24.5 (± 8.2) 21 (± 3)
10% 0.31 (± 0.01) 0.80 (± 0.02) 0.90 (± 0.01) 0.90 (± 0.01) 0.79 (± 0.01) 13.6 (± 3.5) 10 (± 0)

LB+sym , QB−sym no 0.49 (± 0.07) 0.33 (± 0.06) 0.65 (± 0.11) 0.52 (± 0.13) 0.52 (± 0.03) 19.8 (± 4.5) 30 (± 10)
10% 0.26 (± 0.01) 0.44 (± 0.01) 0.61 (± 0.01) 0.80 (± 0.01) 0.58 (± 0.01) 14.7 (± 3.6) 10 (± 0)

LB+rw , QB−rw no 0.50 (± 0.08) 0.38 (± 0.03) 0.68 (± 0.03) 0.50 (± 0.13) 0.54 (± 0.03) 19.2 (± 3.5) 24 (± 7)
10% 0.31 (± 0.01) 0.65 (± 0.07) 0.79 (± 0.07) 0.84 (± 0.04) 0.71 (± 0.03) 15.9 (± 4.4) 10 (± 0)

MMBO LWsym , QPsym no 0.56 (± 0.02) 0.43 (± 0.04) 0.78 (± 0.05) 0.48 (± 0.04) 0.63 (± 0.02) 36.8 (± 6.4) 22 (± 6)
Algorithm 2 10% 0.31 (± 0.01) 0.80 (± 0.01) 0.90 (± 0.01) 0.90 (± 0.01) 0.79 (± 0.01) 12.5 (± 3.2) 10 (± 0)

LWrw , QPrw no 0.55 (± 0.02) 0.43 (± 0.05) 0.78 (± 0.06) 0.50 (± 0.07) 0.63 (± 0.02) 43.6 (± 12.9) 26 (± 3)
10% 0.31 (± 0.01) 0.80 (± 0.01) 0.90 (± 0.01) 0.90 (± 0.01) 0.79 (± 0.01) 14.5 (± 4.2) 10 (± 0)

LB+sym , QB−sym no 0.54 (± 0.04) 0.48 (± 0.06) 0.76 (± 0.04) 0.58 (± 0.04) 0.64 (± 0.03) 41.7 (± 7.8) 27 (± 7)
10% 0.31 (± 0.01) 0.79 (± 0.01) 0.89 (± 0.01) 0.90 (± 0.01) 0.78 (± 0.01) 21.7 (± 2.6) 10 (± 0)

LB+rw , QB−rw no 0.53 (± 0.03) 0.45 (± 0.05) 0.76 (± 0.05) 0.54 (± 0.05) 0.63 (± 0.03) 38.1 (± 8.5) 28 (± 5)
10% 0.31 (± 0.01) 0.79 (± 0.02) 0.89 (± 0.01) 0.89 (± 0.01) 0.78 (± 0.01) 19.3 (± 4.5) 10 (± 0)

Hu et al. LWsym no 0.54 (± 0.02) 0.43 (± 0.03) 0.79 (± 0.04) 0.49 (± 0.05) 0.63 (± 0.02) 43.2 (± 15.5) 23 (± 3)
10% 0.31 (± 0.02) 0.81 (± 0.01) 0.91 (± 0.01) 0.91 (± 0.01) 0.80 (± 0.01) 20.8 (± 6.3) 10 (± 0)

LWrw no 0.54 (± 0.02) 0.41 (± 0.07) 0.78 (± 0.04) 0.47 (± 0.05) 0.63 (± 0.04) 47.3 (± 12.5) 24 (± 5)
10% 0.31 (± 0.01) 0.81 (± 0.02) 0.91 (± 0.01) 0.91 (± 0.01) 0.80 (± 0.01) 22.6 (± 6.5) 10 (± 0)

Boyd et al. LWsym no 0.52 (± 0.10) 0.45 (± 0.19) 0.72 (± 0.20) 0.69 (± 0.15) 0.68 (± 0.15) 51.3 (± 23.7) 17 (± 9)
10% 0.32 (± 0.01) 0.91 (± 0.01) 0.96 (± 0.01) 0.96 (± 0.01) 0.89 (± 0.01) 17.5 (± 2.5) 10 (± 0)

LWrw no 0.52 (± 0.04) 0.51 (± 0.23) 0.72 (± 0.20) 0.76 (± 0.09) 0.71 (± 0.12) 47.5 (± 28.2) 15 (± 5)
10% 0.32 (± 0.01) 0.90 (± 0.01) 0.96 (± 0.01) 0.96 (± 0.01) 0.89 (± 0.01) 20.7 (± 2.9) 10 (± 0)

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

52 Z. Li et al

Figure 1. MNIST: comparison of the spectra of different operators with γ = 1 under the NG null model.
In each of the plots, one of the two curves is hidden behind the other one.

results shown in section 4.2.2. of [33]. Therefore, choosing a value for η in the partition-based criterion
(48) larger than = 10−5 (which is the value used to produce the results in Table 3) could lead to similar
modularity scores but fewer iterations.

The three rightmost columns show (from left to right) the average time (over the 20 runs) that the
computation of the eigenvalues and eigenvectors takes, the average total time it takes to perform all
the iterations in the respective MBO scheme and the average number of iterations of the MBO scheme
that are required. All times presented in these tables (and those that follow later in the paper) are given
in seconds. It can be seen from Tables 3 and 4 that for all methods, except MMBO Algorithm 1 with
the modularity-based stopping criterion, the time for computing the eigenvalues and eigenvectors is
smaller than the time for performing the iterations, yet still contributes non-trivially to the run time. The
number of iteration steps is considerably smaller if the modularity-based stopping criterion is used than
if the partition-based stopping criterion is used. Within each table, thus with fixed stopping condition,
the necessary average number of iterations is similar for all methods. By far the shortest average time
per iteration (which can be obtained by dividing the average time for the MBO iterations by the average
number of iterations) among the methods considered in Tables 3 and 4 is needed for MMBO Algorithm 1.

Results obtained with the different methods under the NG null model are presented in Tables 5, 6
and 7. The modularity scores (with the NG null model) and the various metrics from Section 7.1.3 are
given, where the values are averages over 20 runs, followed by the maximum deviation from the average
in parentheses. The total average run time (including both the time needed for computing the eigenvalues

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 53

Figure 2. MNIST: relationship between the number of eigenvalues used and modularity. The MMBO
Algorithm 1 uses the modularity-based stopping condition (49) and γ = 1.

Figure 3. MNIST: Modularity score versus number of iterations, obtained with γ = 1 without stopping
criterion.

and eigenvectors as well as the MBO iterations) of each algorithm (and its maximum deviation) is given
in seconds in the second-rightmost column. The rightmost column lists the average number of non-
empty clusters (and its maximum deviation) that is returned by each method. As in Tables 3 and 4, the
initial condition U0 may change with each run. However, similar to the previous results, such changes in
the initial conditions do not significantly influence the modularity scores or scores of other classification
metrics obtained by the algorithm.

Many of the methods obtain modularity scores that are larger than 0.52, with the Louvain method
giving the highest value (0.58). Comparing the results presented in Tables 6 and 7, it can be seen that the
stopping criterion might have a certain (small) impact on the modularity score. Sometimes, even higher

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

54 Z. Li et al

modularity scores are obtained with the modularity-based stopping criterion than with the partition-
based stopping criterion, which indicates that in these cases the modularity score decreases during
the further iterations if the partition-based stopping criterion is utilised; this behaviour is illustrated
in Figure 3. It is noteworthy that the best MMBO scheme generally provides higher modularity scores
than the methods of Boyd et al. The fastest method is MMBO Algorithm 1. In particular, both MMBO
Algorithm 1 and Algorithm 2 are significantly faster than the Louvain algorithm, with a smaller loss
in modularity (average). In line with what we observed earlier, also this algorithm is even faster if the
modularity-based stopping criterion is used (Table 7) than if the partition-based stopping criterion is
used (Table 6). The high modularity score obtained by the Louvain method, however, leads to the con-
clusion that the value γ = 1 which we used here is not optimal if the goal were to have high modularity
scores correspond to partitions that are close to the ground truth. Because that is only of secondary
concern in this paper, we will not vary the value of γ in this example. It is also worth noting that,
although the modularity obtained by the Leiden algorithm is not as high as that reached by the Louvain
method, the former method achieves significantly better results in some of the other quantities of interest.
Additionally, its run time is shorter (much shorter in some cases) than that of all other methods.

Finally for this example, we study the impact of a very mild form of semi-supervision on the modular-
ity scores and the other quantities of interest. To this end, we uniformly chose 70, 000× 10%= 7, 000
nodes at random and assigned them true community assignments obtained from the available ground
truth (GT). We only do this in the initial condition of the algorithm. It is possible to incorporate stronger
fidelity to this partial ground truth in the MBO schemes by introducing an extra fidelity-forcing term
into the linear-dynamics step, along the lines of what was done in Budd et al. [12]. Since our primary
focus in this paper is modularity optimisation and fidelity to a ground truth is only of secondary concern,
we have not pursued that option here, but it can be an interesting direction for future research.

The obtained results are depicted in Table 7. It can be observed that, on the one hand, the modularity
scores of the MBO-based methods are noticeably lower. This suggests that the initial condition U0 of
the algorithm influences the outcome. But, on the other hand, the other classification metrics increase
significantly for all approaches when using 10% of ground truth. In addition, using supervision leads
to a notable reduction of computing times (number of iterations) under the modularity-based stopping
criterion.

7.3. Stochastic block model

The SBM [32] evolved from the study of social networks. The SBM is a model to create random graphs
in which the node set is split into separate groups, also known as blocks, that determine the edge connec-
tivity structure. The SBM is constructed by generating an undirected edge between each pair of nodes
independently. The probability of an edge linking two nodes is solely determined by the blocks to which
the nodes belong.

We start the unweighted SBM graph construction with a node set V that is partitioned into several
equally-sized subsets called blocks. In a general undirected SBM setting (without self-loops), undirected
edges are constructed between each pair of distinct nodes independently with a probability that depends
only on the block memberships of both nodes. We restrict ourselves to a specific setting in which the
probability for each (non-self-loop) intra-block connection, psame, is the same, and the probability for
each inter-block connection, pdiff, is the same. We want pdiff to be smaller than psame and study two types
of SBMs: strong and weak community structures. To obtain a strong community structure, we set psame =
0.95, and pdiff = 0.01. In contrast, in the weak community structure, the probabilities are psame = 0.3 and
pdiff = 0.1. Table 8 summarises the parameters we use to construct realisations of the SBM. Examples
of adjacency matrices of realisations of the strong and weak community structure at K = 10 are shown
in Figure 4, where the dark colour indicates the existence of an edge and white the absence.

By construction, the ground truth community assignments of each node in a realisation of an SBM
are known.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 55

Table 8. Parameter settings used to construct the SBM

Parameter Value
Nodes |V| = 3000
blocks 10
Block size |V|/ Number of blocks
Probability Strong community structure: psame = 0.95, pdiff = 0.01

Weak community structure: psame = 0.3, pdiff = 0.1

(a) (b)

Figure 4. SBM: Adjacency matrices of realisations of the strong and weak community structure where
the number of blocks is 10.

Figure 5 depicts the first 16 eigenvalues of LHu, LBoyd (using LWsym or LWrw as graph Laplacian) and
Lmix ∈ {LWsym + γ QPsym , LWrw + γ QPrw , LB+γ sym

+QB−γ sym
, LB+γ rw

+QB−γ rw
−D−1

B+γ
DBγ

QB−γ rw
} for a realisation of

an SBM with 10-block strong and weak community structures, γ = 1, and the NG null model. It is
worth noting that there is a sudden jump in the eigenvalues for both the strong community structure
(Figure 5a) and weak community structure (Figure 5b) at the tenth eigenvalue.60 The graph on which
Figure 5 is based did not require the use of the Nyström extension with QR decomposition (Section 6.4)
for the eigenvalue and eigenvector computation. We have used the Nyström extension only for graphs
with more than 10,000 nodes. In this case, we use the implicitly restarted Lanczos method [44] to find
the eigenvalues and eigenvectors.

The parameters used for performing the MMBO schemes, Hu et al.’s method and Boyd et al.’s
method are given in Table 9. To motivate the choice of m, the number of eigenvalues we used in different
methods, we investigate the effect of the number of used eigenvectors on the final result. In Figure 6,
we plot the modularity score produced by varying m, using the eigenvalues from Figure 5 which are
obtained for a single realisation of an SBM with 10 blocks. For each value of m, each algorithm is
run 20 times and the average modularity scores are plotted. To avoid cluttering the plots, we have only
included results for the algorithms that use the symmetrically normalised (signless) Laplacians. Similar

60Remark D.4 in Appendix D discusses possible relations of the occurrences of jumps of the eigenvalues of Lmix = LWsym +
γ QPsym (or Lmix = LWrw + γ QPrw) on the one hand and LWsym (or LWrw) on the other hand, for P= PNG, the NG null model.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

56 Z. Li et al

(a) (b)

Figure 5. SBM with strong and weak community structure: spectra of LHu,sym, LHu,rw, LBoyd,sym, LBoyd,rw

and four choices of Lmix ∈ {LWsym + γ QPsym , LWrw + γ QPrw , LB+γ sym
+QB−γ sym

, LB+γ rw
+QB−γ rw

−D−1
B+γ

DBγ
QB−γ rw
}

with γ = 1 and the NG null model, for a single realisation of an SBM with 10 blocks. The fol-
lowing graphs overlap: LHu,sym and LHu,rw; LBoyd,sym and LBoyd,rw; LWsym + γ QPsym and LWrw + γ QPrw

(which is expected thanks to Remark 5.2); LB+1 sym
+QB−1 sym

and (using that DB1 = 0 by (20))
LB+1 rw

+QB−1 rw
−D−1

B+1
DB1 QB−1 rw

= LB+1 rw
+QB−1 rw

(which is expected from Remark 5.3).

results were obtained when using the random walk (signless) Laplacians. Upon examining Figure 6, it
is apparent that all depicted methods achieve the highest modularity score (within the depicted domains
for m) at m= 12 for the strong community structure (as shown in Figure 6a) and at m= 10 for the weak
community structure (illustrated in Figure 6b). Moreover, the maximum modularity scores achieved by
the methods are approximately the same (see also Tables 11 and 12). The combined observations from
Figures 5 and 6 suggest that the number of eigenvectors chosen should be at least the same as the number
of clusters, that is, m≥K.

Tables 10–12 present results that are obtained using the same realisation of an SBM with 10 blocks
that was used for Figures 5 and 6. Each method was run 20 times, and the average modularity scores
and other quantities of interest are reported in the tables, followed by the maximum deviations from the
average in parentheses. The reported times are average time per run, including the computation of eigen-
vectors and eigenvalues for the methods that require that. The number of iterations refers specifically to
the iterations of the respective MBO schemes in both MMBO algorithms, Hu et al.’s method and Boyd
et al.’s method. For those four methods, stopping criterion (48) was used. For the methods that require
a prescribed value of K, we use K found by the Leiden algorithm, that is, K = 10 for both the strong
community structure and the weak community structure, since the highest modularity scores in Table 10
are obtained at this value. Using what we learned from Figure 6, for both MMBO algorithms and for
Hu’s method and Boyd’s method we choose m= 12 for the SBM realisation with strong community
structure and m= 10 for the one with weak community structure.

We recall the variability of the initial condition U0 in Algorithms 1 and 2, where each node is ran-
domly allocated to a community under the constraint that each community contains at least one node.
This initial assignment can differ in each iteration. However, such variations in the initial conditions
have a negligible effect on the modularity score that the algorithms yield.

Consider first the results for the SBM with strong community structure, as presented in Tables 10
and 11. It can be observed that the best modularity score, with the value 0.813, is computed with the

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 57

Table 9. Parameter setting of the
MMBO schemes, Hu et al.’s and Boyd
et al.’s methods in SBM

Parameter Value
Clusters Kequal to # blocks
Nt 3
η 10−4

γ 1

(a) (b)

Figure 6. SBM with strong and weak community structures: modularity depending on the number of
eigenvalues used (m) for SBM blocks are 10. The number of clusters K used by the MMBO schemes, Hu
et al.’s and Boyd et al.’s methods are obtained from Leiden algorithm, that is, K = 10 for both the strong
community structure and the weak community structure. All methods use γ = 1, the partitioned-based
stopping condition (48) and the NG null model. The red circle solid curve and purple triangle solid
curve are overlapped by the brown diamond dashed curve and pink octagon dashed curve, respectively.

Louvain method, Leiden algorithm, CNM and spectral clustering. Also all other evaluation measures
(except the run times) are identical for these methods; in fact, these four methods return exactly the
ground truth. The Leiden algorithm is the fastest of all methods and is one of the methods that gives the
highest modularity score. Although the Louvain method and spectral clustering also give high modular-
ity scores, these methods are slower than the MBO-based methods (i.e., both MMBO algorithms, Hu’s
method and Boyd’s method) in Table 11. The average modularity scores for both MMBO algorithms,
which are around 0.77, are similar to Hu et al.’s and Boyd et al.’s methods, but not decisively so when
taking into account the reported maximum deviations from the average. The modularity scores, ARI,
(inverse) purity and NMI in Table 11 are also very similar for these MBO-based methods.

The results for the SBM with weak community structure are presented in Tables 10 and 12. Their
evaluation leads to very similar conclusions as for the case of the strong community structure. Noticeable
differences are that the Louvain, CNM and spectral clustering methods do no longer reproduce the
ground truth. The Leiden algorithm not only gives the highest modularity and highest value for all other
evaluation metrics but also has the shortest run time of all methods.

A surprising result from Tables 10, 11 and 12 is that in the strong community structure case, none
of the MBO-based methods return the same number of non-empty clusters as the ground truth has,
even though the Louvain method, the Leiden algorithm, the CNM method and spectral clustering all do

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

58
Z.Lietal

Table 10. SBM: average NG modularity, other classification metrics scores, and average computation time per run obtained from 20 runs. The
best average results for the strong and for the weak community structure in each column are shown in boldface. For the number of non-empty
clusters we consider the one closest to the ground truth number 10 to be ‘best’ in this context

Community NG Inv. Non-empty Time
structure Method modularity ARI Purity purity NMI clusters (s)
Strong CNM 0.813 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 10 (± 0) 41.1 (± 2.6)

Louvain 0.813 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 10 (± 0) 4.6 (± 1.5)
Leiden 0.813 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 10 (± 0) 0.6 (± 0.2)

Weak CNM 0.107 (± 0.0) 0.36 (± 0.0) 0.39 (± 0.0) 0.92 (± 0.0) 0.63 (± 0.0) 4 (± 0) 61.9 (± 1.7)
Louvain 0.145 (± 0.001) 0.88 (± 0.01) 0.88 (± 0.01) 1.0 (± 0.0) 0.96 (± 0.01) 9 (± 1) 7.1 (± 1.4)
Leiden 0.149 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 10 (± 0) 1.0 (± 0.4)

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

European
JournalofApplied

M
athem

atics
59

Table 11. SBM with strong community structure: average performance of algorithms regarding modularity scores, various classification indicators,
average time per run, and average number of iterations per run. The number of clusters K used by spectral clustering, MMBO schemes, Hu et al.’s,
and Boyd et al.’s methods are obtained from the Leiden algorithm, that is, K = 10. Moreover, for the MMBO schemes, Hu et al.’s method and Boyd
et al.’s method, we choose m= 12. The best average results in each column are shown in boldface (we exclude the ground truth numbers). For the
number of non-empty clusters we consider the one closest to the ground truth number to be ‘best’ in this context

NG Inv. Time Non-empty #
Method modularity ARI Purity purity NMI (s) clusters iter.

MMBO LWsym , QPsym 0.779 (± 0.032) 0.79 (± 0.08) 0.77 (± 0.13) 1.0 (± 0.0) 0.93 (± 0.06) 1.3 (± 0.3) 8 (± 2) 4 (± 2)
Algorithm 1 LWrw , QPrw 0.762 (± 0.025) 0.75 (± 0.04) 0.73 (± 0.03) 1.0 (± 0.0) 0.91 (± 0.02) 1.3 (± 0.4) 8 (± 1) 3.2 (± 0.8)

LB+sym , QB−sym 0.779 (± 0.035) 0.79 (± 0.08) 0.77 (± 0.13) 1.0 (± 0.0) 0.93 (± 0.06) 1.3 (± 0.5) 8 (± 2) 4 (± 1)
LB+rw , QB−rw 0.771 (± 0.025) 0.76 (± 0.04) 0.76 (± 0.03) 1.0 (± 0.0) 0.91 (± 0.02) 1.4 (± 0.4) 8 (± 1) 3.0 (± 1.0)

MMBO LWsym , QPsym 0.779 (± 0.021) 0.81 (± 0.08) 0.80 (± 0.10) 1.0 (± 0.0) 0.94 (± 0.05) 1.3 (± 0.4) 8 (± 2) 4 (± 2)
Algorithm 2 LWrw , QPrw 0.763 (± 0.024) 0.76 (± 0.05) 0.73 (± 0.05) 1.0 (± 0.0) 0.91 (± 0.02) 1.5 (± 0.6) 8 (± 1) 3.8 (± 0.2)

LB+sym , QB−sym 0.779 (± 0.022) 0.81 (± 0.08) 0.80 (± 0.10) 1.0 (± 0.0) 0.94 (± 0.05) 1.3 (± 0.5) 8 (± 2) 4 (± 2)
LB+rw , QB−rw 0.771 (± 0.020) 0.78 (± 0.07) 0.77 (± 0.06) 1.0 (± 0.0) 0.91 (± 0.03) 1.5 (± 0.4) 8 (± 1) 3.6 (± 0.4)

Hu et al. LWsym 0.779 (± 0.018) 0.80 (± 0.10) 0.80 (± 0.12) 1.0 (± 0.0) 0.93 (± 0.04) 2.0 (± 0.4) 8 (± 1) 5 (± 2)
LWrw 0.770 (± 0.020) 0.79 (± 0.10) 0.78 (± 0.11) 1.0 (± 0.0) 0.93 (± 0.04) 1.9 (± 0.4) 8 (± 1) 5 (± 1)

Boyd et al. LWsym 0.779 (± 0.024) 0.81 (± 0.09) 0.80 (± 0.10) 1.0 (± 0.0) 0.93 (± 0.04) 1.6 (± 0.5) 8 (± 1) 4.7 (± 0.1)
LWrw 0.767 (± 0.023) 0.80 (± 0.09) 0.79 (± 0.10) 1.0 (± 0.0) 0.92 (± 0.02) 1.5 (± 0.5) 8 (± 1) 4.3 (± 0.4)

Spectral 0.813 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 2.4 (± 0.4) 10 (± 0) –
clustering

Ground truth 0.813 1.0 1.0 1.0 1.0 – 10 –

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

60
Z.Lietal

Table 12. SBM with weak community structure: average performance of algorithms regarding modularity scores, various classification indicators,
average time per run, and average number of iterations per run. The number of clusters K used by spectral clustering, MMBO schemes, Hu et al.’s,
and Boyd et al.’s methods are obtained from the Leiden algorithm, that is, K = 10. Moreover, for the MMBO schemes, Hu et al.’s method and Boyd
et al.’s method, we choose m= 10. The best average results in each column are shown in boldface (we exclude the ground truth numbers). For the
number of non-empty clusters we consider the one closest to the ground truth number to be ‘best’ in this context

NG Inv. Time Non-empty #
Method modularity ARI Purity purity NMI (s) clusters iter.

MMBO LWsym , QPsym 0.141 (± 0.008) 0.77 (± 0.10) 0.75 (± 0.15) 1.0 (± 0.0) 0.92 (± 0.06) 1.5 (± 0.6) 8 (± 2) 5 (± 2)
Algorithm 1 LWrw , QPrw 0.140 (± 0.003) 0.76 (± 0.08) 0.74 (± 0.10) 1.0 (± 0.0) 0.91 (± 0.03) 1.8 (± 0.5) 7 (± 1) 5 (± 1)

LB+sym , QB−sym 0.141 (± 0.007) 0.77 (± 0.10) 0.75 (± 0.15) 1.0 (± 0.0) 0.92 (± 0.06) 1.4 (± 0.4) 8 (± 2) 5 (± 3)
LB+rw , QB−rw 0.140 (± 0.003) 0.76 (± 0.08) 0.74 (± 0.10) 1.0 (± 0.0) 0.91 (± 0.03) 1.6 (± 0.4) 7 (± 1) 5 (± 1)

MMBO LWsym , QPsym 0.141 (± 0.008) 0.77 (± 0.10) 0.75 (± 0.15) 1.0 (± 0.0) 0.92 (± 0.06) 1.7 (± 0.5) 8 (± 2) 5 (± 3)
Algorithm 2 LWrw , QPrw 0.140 (± 0.003) 0.76 (± 0.07) 0.74 (± 0.09) 1.0 (± 0.0) 0.91 (± 0.03) 2.2 (± 0.5) 7 (± 1) 5 (± 1)

LB+sym , QB−sym 0.141 (± 0.007) 0.77 (± 0.10) 0.74 (± 0.14) 1.0 (± 0.0) 0.91 (± 0.06) 1.6 (± 0.6) 7 (± 2) 6 (± 1)
LB+rw , QB−rw 0.140 (± 0.003) 0.76 (± 0.07) 0.74 (± 0.09) 1.0 (± 0.0) 0.91 (± 0.03) 2.0 (± 0.7) 7 (± 1) 5 (± 1)

Hu et al. LWsym 0.141 (± 0.004) 0.75 (± 0.10) 0.73 (± 0.13) 1.0 (± 0.0) 0.91 (± 0.05) 2.3 (± 0.3) 7 (± 1) 5 (± 1)
LWrw 0.141 (± 0.006) 0.76 (± 0.13) 0.74 (± 0.11) 1.0 (± 0.0) 0.91 (± 0.06) 2.3 (± 0.3) 7 (± 2) 5 (± 2)

Boyd et al. LWsym 0.141 (± 0.005) 0.77 (± 0.10) 0.75 (± 0.15) 1.0 (± 0.0) 0.92 (± 0.06) 1.9 (± 0.4) 8 (± 2) 7 (± 3)
LWrw 0.140 (± 0.005) 0.76 (± 0.10) 0.74 (± 0.14) 1.0 (± 0.0) 0.91 (± 0.05) 1.8 (± 0.4) 7 (± 2) 8 (± 3)

Spectral 0.146 (± 0.001) 0.90 (± 0.01) 0.90 (± 0.0) 1.0 (± 0.0) 0.96 (± 0.01) 3.0 (± 0.7) 9 (± 1) –
clustering

Ground truth 0.149 1.0 1.0 1.0 1.0 – 10 –

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 61

Table 13. Two cows: parameter settings for the Nyström extension and edge weights
in (59) (left) and parameter setting of the MMBO schemes (right)

Parameter Value Parameter Value
k 500 Clusters Determined by Louvain’s method or K = 3
σ 50 m m=K

Nt 3
η 10−5

γ 1

while also achieving a higher modularity score. This observation remains true even in the case with weak
community structure, except for the CNM method, which performs poorly. In the MNIST example, the
number of non-empty clusters found by the MBO-based methods (Tables 6 and 7) is a lot closer to that
of the ground truth than to the number found by the Louvain method and Leiden algorithm (Table 5),
even though all these methods give similar average modularity scores (with the Louvain method even
giving the highest average score). Looking ahead to the ‘two cows’ example of Section 7.4, we can draw
a similar conclusion as in the MNIST case when we compare the number of clusters found by the MBO-
based methods (Tables 15 and 16) with the Louvain method and Leiden algorithm (Table 14); in that
case also, the CNM method performs quite well in this regard. Despite that, the modularity scores that
are obtained by the Leiden algorithm and, especially, the Louvain method, in that setting are noticeably
higher than those obtained by the MBO-based methods. In this context, it is useful to note that Hu’s
method and Boyd’s method were not tested on SBMs in [33] and [7], so we have no other tests on SBMs
for the MBO-based modularity optimisation methods with which to compare the results that we obtained
here.

7.4. Two cows

The ‘two cows’ image is a 213× 320 RGB image [4, 52]. The classification task consists in identifying
pixels that include comparable components, such as sky, cows and grass.

We model the image by a graph as follows. With each pixel i of the image, we associated a node i
in the graph; hence, |V| = 213× 320= 68, 160. We then define the weighted adjacency matrix W by
assigning to each node i ∈ V a feature vector xi ∈R27 and defining ωij to be as in (59) with σ = 50. The
feature vector of node i contains the three RGB intensity levels for each of the nine pixels in the three-
by-three patch centred at pixel i in the image. To obtain full patches for pixels at the edge of the image,
we use symmetric padding, which consists of adding an extra row or column of pixels around the edge
of the image that mirror the pixel values that are at the edge of the image.

Actually constructing the matrix W ∈R68,160×68,160 would require too much memory and computing
time to be feasible, if even possible. Due to the Nyström extension with QR decomposition from Section
6.4, however, we can still compute the eigenvalues and eigenvectors of Lmix for the MMBO schemes or
of the method-specific matrices for Hu’s method and Boyd’s method. All parameter values that we use
are listed in Table 13.

Observing the original RGB image, we manually cluster the pixels into three ‘communities’ repre-
senting the sky, the grass and both cows. In the ‘ground truth’ image in Figure 7, we have represented
each cluster by a different colour.

Figure 7 and 8 display the image segmentation outcomes for the various methods. We have run each
method 20 times and display the result with the highest modularity score. In Algorithms 1 and 2, the
initial condition U0 varies, as each node is randomly assigned to a community with the constraint that
each community contains at least one node. Although this assignment may differ in each iteration, these
variations have a negligible impact on the resulting modularity score. Tables 14–16 show the average
modularity scores and other quantities of interest, followed by the maximum deviation (in absolute value)

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

62
Z.Lietal

Table 14. Two cows: average performance of algorithms regarding modularity scores, various classification metrics, and computation time per
run under NG null model. The best average result in each column is shown in boldface (we exclude the ground truth numbers). For the number of
non-empty clusters we consider the one closest to the ground truth number 3 to be ‘best’ in this context

NG Inv. Time Non-empty
Method modularity ARI Purity purity NMI (s) clusters
Louvain 0.92 (± 0.01) 0.017 (± 0.001) 0.98 (± 0.01) 0.05 (± 0.0) 0.30 (± 0.01) 50.8 (± 3.3) 168 (± 10)
CNM 0.70 (± 0.02) 0.31 (± 0.01) 0.75 (± 0.01) 0.66 (± 0.0) 0.45 (± 0.01) 1586.5 (± 183.4) 7 (± 1)
Leiden 0.87 (± 0.01) 0.23 (± 0.03) 0.99 (± 0.01) 0.31 (± 0.04) 0.52 (± 0.02) 3.8 (± 0.5) 16 (± 2)
Ground truth 0.53 1.0 1.0 1.0 1.0 – 3

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

European
JournalofApplied

M
athem

atics
63

Table 15. Two cows: average performance of algorithms under the NG null model regarding modularity scores, various classification metrics, and
computation time per run under the NG model. In all cases, K = 168 is applied to spectral clustering, MMBO schemes, Hu et al.’s method, and
Boyd et al.’s method. Note that for the MMBO schemes, Hu et al.’s and Boyd et al.’s methods, we choose m=K = 168 and use modularity-based
stopping condition (49). The best average results in each column are shown in boldface. For the number of non-empty clusters we consider the one
closest to the ground truth number 3 to be ‘best’ in this context

NG Inv. Time Non-empty iter.
Method modularity ARI Purity purity NMI (s) clusters iter.

MMBO LWsym , QPsym 0.79 (± 0.06) 0.45 (± 0.08) 0.98 (± 0.01) 0.64 (± 0.08) 0.66 (± 0.07) 15.8 (± 3.3) 7 (± 1) 34 (± 16)
Algorithm 1 LWrw , QPrw 0.77 (± 0.04) 0.42 (± 0.03) 0.98 (± 0.01) 0.58 (± 0.06) 0.64 (± 0.02) 13.1 (± 2.5) 7 (± 2) 37 (± 10)

LB+sym , QB−sym 0.55 (± 0.08) 0.48 (± 0.09) 0.80 (± 0.02) 0.75 (± 0.05) 0.45 (± 0.06) 20.4 (± 8.9) 8 (± 2) 59 (± 20)
LB+rw , QB−rw 0.56 (± 0.08) 0.44 (± 0.07) 0.78 (± 0.03) 0.83 (± 0.02) 0.46 (± 0.02) 22.5 (± 3.9) 6 (± 2) 41 (± 17)

MMBO LWsym , QPsym 0.79 (± 0.05) 0.43 (± 0.07) 0.98 (± 0.01) 0.64 (± 0.05) 0.64 (± 0.05) 20.7 (± 5.1) 8 (± 1) 37 (± 20)
Algorithm 2 LWrw , QPrw 0.78 (± 0.03) 0.42 (± 0.02) 0.98 (± 0.01) 0.59 (± 0.05) 0.65 (± 0.05) 23.5 (± 5.8) 6 (± 2) 33 (± 16)

LB+sym , QB−sym 0.58 (± 0.15) 0.37 (± 0.08) 0.79 (± 0.04) 0.69 (± 0.12) 0.43 (± 0.07) 30.2 (± 11.6) 8 (± 2) 45 (± 17)
LB+rw , QB−rw 0.60 (± 0.12) 0.35 (± 0.07) 0.80 (± 0.04) 0.70 (± 0.10) 0.43 (± 0.05) 26.3 (± 7.5) 12 (± 4) 29 (± 13)

Hu et al. LWsym 0.76 (± 0.04) 0.41 (± 0.02) 0.98 (± 0.01) 0.57 (± 0.02) 0.64 (± 0.01) 42.8 (± 15.0) 8 (± 1) 44 (± 13)
LWrw 0.78 (± 0.04) 0.34 (± 0.03) 0.98 (± 0.01) 0.49 (± 0.06) 0.58 (± 0.03) 44.5 (± 12.7) 13 (± 3) 44 (± 28)

Boyd et al. LWsym 0.76 (± 0.03) 0.41 (± 0.02) 0.98 (± 0.02) 0.57 (± 0.03) 0.64 (± 0.02) 34.9 (± 10.6) 8 (± 2) 40 (± 32)
LWrw 0.78 (± 0.03) 0.41 (± 0.02) 0.98 (± 0.02) 0.64 (± 0.03) 0.64 (± 0.03) 32.4 (± 13.1) 13 (± 2) 39 (± 26)

Spectral 0.85 (± 0.02) 0.03 (± 0.0) 0.96 (± 0.01) 0.10 (± 0.01) 0.27 (± 0.01) 52.7 (± 5.1) 168 (± 0) −
clustering

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

64
Z.LietalTable 16. Two cows: average performance of algorithms regarding modularity scores, various classification metrics, and computation time per run

under the NG model. In all cases, K = 3 is applied to spectral clustering, MMBO schemes, Hu et al.’s method, and Boyd et al.’s method. Note that
for the MMBO schemes, Hu et al.’s and Boyd et al.’s methods, we choose m=K = 3 and use modularity-based stopping condition (49). The best
average results in each column are shown in boldface. For the number of non-empty clusters we consider the one closest to the ground truth number
3 to be ‘best’ in this context

NG Inv. Time Non-empty #
Method modularity ARI Purity purity NMI (s) clusters iter.

MMBO LWsym , QPsym 0.54 (± 0.08) 0.95 (± 0.06) 0.99 (± 0.05) 0.98 (± 0.04) 0.92 (± 0.10) 5.1 (± 1.3) 3 (± 1) 7 (± 5)
Algorithm 1 LWrw , QPrw 0.54 (± 0.06) 0.94 (± 0.06) 0.99 (± 0.04) 0.98 (± 0.03) 0.92 (± 0.10) 4.5 (± 1.0) 3 (± 1) 8 (± 5)

LB+sym , QB−sym 0.50 (± 0.03) 0.88 (± 0.29) 0.96 (± 0.17) 0.98 (± 0.03) 0.85 (± 0.31) 7.5 (± 2.2) 3 (± 1) 11 (± 8)
LB+rw , QB−rw 0.52 (± 0.03) 0.85 (± 0.18) 0.93 (± 0.11) 0.96 (± 0.02) 0.84 (± 0.27) 6.2 (± 1.7) 3 (± 1) 10 (± 5)

MMBO LWsym , QPsym 0.54 (± 0.08) 0.95 (± 0.06) 0.99 (± 0.04) 0.98 (± 0.04) 0.92 (± 0.09) 6.3 (± 1.5) 3 (± 1) 7 (± 4)
Algorithm 2 LWrw , QPrw 0.54 (± 0.06) 0.94 (± 0.08) 0.97 (± 0.05) 0.98 (± 0.05) 0.92 (± 0.13) 5.5 (± 1.9) 3 (± 1) 8 (± 6)

LB+sym , QB−sym 0.50 (± 0.04) 0.88 (± 0.23) 0.96 (± 0.17) 0.98 (± 0.03) 0.85 (± 0.21) 9.7 (± 2.6) 3 (± 1) 13 (± 7)
LB+rw , QB−rw 0.52 (± 0.03) 0.90 (± 0.20) 0.96 (± 0.13) 0.97 (± 0.02) 0.84 (± 0.17) 7.1 (± 1.6) 3 (± 1) 10 (± 4)

Hu et al. LWsym 0.54 (± 0.05) 0.90 (± 0.07) 0.93 (± 0.10) 0.96 (± 0.05) 0.83 (± 0.10) 9.4 (± 1.2) 3 (± 1) 12 (± 6)
LWrw 0.54 (± 0.05) 0.91 (± 0.08) 0.92 (± 0.09) 0.96 (± 0.06) 0.83 (± 0.13) 10.7 (± 1.4) 3 (± 1) 12 (± 6)

Boyd et al. LWsym 0.54 (± 0.05) 0.93 (± 0.08) 0.97 (± 0.06) 0.97 (± 0.06) 0.88 (± 0.13) 6.9 (± 1.2) 3 (± 1) 11 (± 6)
LWrw 0.54 (± 0.05) 0.93 (± 0.08) 0.97 (± 0.06) 0.97 (± 0.06) 0.89 (± 0.13) 7.3 (± 1.1) 3 (± 1) 12 (± 6)

Spectral 0.49 (± 0.02) 0.87 (± 0.01) 0.95 (± 0.01) 0.95 (± 0.01) 0.83 (± 0.01) 11.6 (± 1.5) 3 (± 0) −
clustering

https://doi.org/10.1017/S095679252400072X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 65

Figure 7. The ‘two cows’ image segmented using different methods with γ = 1. The number of clusters
K used by MMBO algorithms, Hu et al.’s method and Boyd et al.’s method is obtained from Louvain’s
method, that is, K = 168. Moreover, for the MMBO schemes, Hu et al.’s method and Boyd et al.’s method,
we choose m=K = 168. Each method’s displayed image segmentation result is the one with the highest
modularity scores for that method from among 20 runs.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

66 Z. Li et al

Figure 8. The ‘two cows’ image is segmented using different methods with γ = 1. The number of clusters
K used by MMBO algorithms, Hu et al.’s method and Boyd et al.’s method is obtained from the ground
truth (shown in Figure 7), that is, K = 3. Moreover, for the MMBO scheme, Hu et al.’s method and Boyd
et al.’s method, we choose m=K = 3. Each method’s displayed image segmentation result is the one
with the highest modularity scores for that method from among 20 runs.

from the average in parentheses. The MMBO schemes, Hu et al.’s method and Boyd et al.’s method are
implemented using the modularity-based stopping criterion (49). Moreover, we set m=K.

These figures also explore two different strategies for determining the value of K in spectral cluster-
ing, MMBO schemes, Hu et al.’s method and Boyd et al.’s method. The first strategy involves using the
Louvain method to determine K (Figure 7). We see that spectral clustering is not capable of segmenting
the cows completely. Even worse, the Louvain method segments the images too finely if reproducing
the ground truth is the goal, finding about 168 (non-empty) clusters. This does, however, give a high

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 67

modularity score. This suggests that there are better values of γ to choose for the Louvain method if we
want to reproduce the ground truth partition. Besides with γ = 1, we also tested Louvain’s method with
γ ∈ {0.5, 1.5, 2} and found on average 72 (for γ = 0.5), 263 (for γ = 1.5) and 359 (for γ = 2) non-empty
clusters.61

In Figure 7, the MMBO schemes effectively group most sky-representing pixels into a single class,
while the Boyd method (with LWrw) manages to cluster some cow-representing pixels together. However,
none of these methods achieves a level of segmentation that comes close to matching the ground truth,
although it should be noted that the MBO-based methods return a number of non-empty clusters that is
much closer to the ground truth than might be expected based on the choice K = 168.

The second strategy for determining the value of K is based on the ground truth. Upon examining
the ground truth, we find that K = 3. This approach leads to the results shown in Figure 8. In this figure,
the MMBO schemes (with LWsym + γ QPsym and LWrw + γ QPrw) successfully classify the sky and cows,
clustering the cows (of different colours) into a single category. Nevertheless, a few pixels representing
grass are incorrectly labelled as cows.

In Tables 14–16, we present quantitative results. With respect to the modularity score, the Louvain
method performs best, but at substantially greater run time than most other methods (except CNM).
It should be noted that the Louvain method finds 168 clusters. Out of the other methods, the Leiden
algorithm achieves the highest average modularity and shortest (average) running time, but ARI, inverse
purity and NMI are lower than those of MBO-based methods. Also the number of non-empty clusters
that is found by the Leiden algorithm, although much closer to the ground truth than the number that the
Louvain method found, is still further removed from the ground truth number than the numbers obtained
by the MBO-based methods. This suggests modularity may not be the best metric to capture the ground
truth behaviour in this case; this suggestion is all but confirmed by the low modularity score obtained
by the ground truth in Table 14, at least for the modularity score with γ = 1 and the NG null model.
In Table 16, we show the result with the ground truth value K = 3, for those methods that allow us to
specify the value of K. Observing Tables 15 and 16, we note that in some cases, the MMBO schemes
(with LWsym + γ QPsym) obtain a slightly higher average modularity score than the methods from Hu et al.
and Boyd et al.

8. Conclusion and future research

In this paper, we have derived a novel expression for the modularity function at a fixed number of
communities in terms of total variation functional based on the graph and a signless total variation func-
tional based on the null model. From this expression, we have developed a modularity MBO (MMBO)
approach for modularity optimisation. When working with large networks, we implement the Nyström
extension with QR decomposition to compute the leading eigenvalues and corresponding eigenvectors.

Our MMBO schemes can handle large data sets (such as the MNIST data set) while requiring low
computational costs. In numerical experiments, we compared our method with the Louvain method [6],
the Leiden algorithm [71], CNM [19] and spectral clustering [37], and the methods by Hu et al. [33] and
Boyd et al. [7]. These experiments show that our methods are competitive in terms of modularity scores
and run times with most of the other methods. We have observed that the Leiden algorithm often obtains
a somewhat higher modularity score in a shorter time. With respect to the other evaluation metrics of
interest, the MMBO methods sometimes outperform all the other methods. In particular, we note that all
the MBO-based methods, and especially the MMBO methods, often find substantially smaller numbers
of clusters than the other methods, including Leiden, which hints at an inherent scale in these methods
that is of interest for future research.

Other potential directions for future research are the generalisation of the MMBO algorithms to
signed graphs, that is, graphs in which the edge weights may be negative as well, along the lines of

61In fact, the results of Hu et al. [34] suggest that values around γ = 0.13 could lead to a smaller number of clusters, closer to
the ground truth.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

68 Z. Li et al

Cucuringu et al. [20], the incorporation of mass constraints or fidelity forcing based on training data,
as in Budd and Van Gennip [11] and Budd et al. [12], respectively, and the combination of the MMBO
scheme with artificial neural networks, similar to Liu et al. [45]. Also the use of different null models
can be considered.

The newly proposed MMBO algorithms in this paper share an underlying philosophy in their con-
struction with the methods by Hu et al. and Boyd et al.. The first step in devising each of these methods
is to rewrite the modularity functional into an equivalent form. Then the non-convex discrete domain
is relaxed into a convex domain. The first step in this approach allows for the use of a great variety of
functionals that are all equivalent to the modularity functional on the original discrete domain. One of
the reasons for the choice we made in this paper is that it clearly illustrates the role of the null model in
the modularity functional. A more systematic study into the effect of the choice of equivalent functional
in this first step on the accuracy of the resulting method would be a very illuminating topic for future
research.

Acknowledgements. For a significant period during the early development of this paper, ZL was affiliated to the Department of
Mathematics and Computer Science, Freie Universität Berlin.

For part of the period during which this work was written, YvG acknowledges support from the European Union Horizon
2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 777826 (NoMADS).

The authors thank both anonymous reviewers for their valuable feedback on an earlier manuscript. It has led to a significantly
improved final version.

Competing interests. None.

References
[1] Ambrosio, L., Gigli, N. & Savaré, G. (2008). Gradient Flows: In Metric Spaces and in the Space of Probability Measures.

second ed. Springer Science & Business Media.
[2] Arenas, A., Fernández, A. & Gómez, S. (2008) Analysis of the structure of complex networks at different resolution levels.

New J. Phys. 10(5), 053039.
[3] Aynaud, T. (2020). Python-louvain x.y: Louvain algorithm for community detection. Available at:

https://github.com/taynaud/python-louvain, The package name on pip is python-louvain but it is imported as community in
python,

[4] Bertozzi, A. L. & Flenner, A. (2012) Diffuse interface models on graphs for classification of high dimensional data.
Multiscale Model. Sim. 10(3), 1090–1118.

[5] Bertozzi, A. L. & Flenner, A. (2016) Diffuse interface models on graphs for classification of high dimensional data. Siam
Rev. 58(2), 293–328.

[6] Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. (2008) Fast unfolding of communities in large networks.
J. Stat. Mech.: Theor. Exp. 2008(10), P10008.

[7] Boyd, Z. M., Bae, E., Tai, X.-C. & Bertozzi, A. L. (2018) Simplified energy landscape for modularity using total variation.
SIAM J. Appl. Math. 78(5), 2439–2464.

[8] Braides, A. (2002).
-Convergence for Beginners. vol. 22 of Oxford Lecture Series in Mathematics and its Applications,
first ed. Oxford University Press, Oxford.

[9] Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z. & Wagner, D. (2007) On modularity clustering.
IEEE T. Knowl. Data En. 20(2), 172–188.

[10] Budd, J. (2023). Graph-based learning for imageprocessing. accessed 29-August-2023. Available at:
https://jeremybudd.com/.

[11] Budd, J. M. & Van Gennip, Y. (2022) Mass-conserving diffusion-based dynamics on graphs. Euro. J. Appl. Math. 33(3),
423–471.

[12] Budd, J., van Gennip, Y. & Latz, J. (2021) Classification and image processing with a semi-discrete scheme for fidelity
forced Allen–Cahn on graphs, GAMM Mitteilungen Special Issue: Scientific Machine Learning Part-I, Vol. 44, pp. 1–43.

[13] Bunch, J. R., Nielsen, C. P. & Sorensen, D. C. (1978) Rank-one modification of the symmetric eigenproblem. Numer. Math.
31(1), 31–48.

[14] Butcher, J. C. (2016). Numerical Methods for Ordinary Differential Equations, John Wiley & Sons.
[15] Chacón, Jé E. & Rastrojo, A. I. (2023) Minimum adjusted rand index for two clusterings of a given size. Adv. Data. Anal.

Classif. 17(1), 125–133. https://doi.org/10.1007/s11634-022-00491-w
[16] Chung, Fan R. K. (1997). Spectral Graph Theory. In: CBMS Regional Conference Series in Mathematics, Conference Board

of the Mathematical Sciences, Washington, DC, Providence, RI: by the American Mathematical Society, vol. 92.
[17] Clarke, F. H. (1983) Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and

Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc, New York.
[18] Clason, C. (2022). Nonsmooth analysis and optimization. https://arxiv.org/abs/1708.04180.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://github.com/taynaud/python-louvain
https://jeremybudd.com/
https://doi.org/10.1007/s11634-022-00491-w
https://arxiv.org/abs/1708.04180
https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 69

[19] Clauset, A., Newman, M. E. J. & Moore, C. (2004) Finding community structure in very large networks. Phys. Rev. E. 70(6),
066111.

[20] Cucuringu, M., Pizzoferrato, A. & van Gennip, Y. (2021) An MBO scheme for clustering and semi-supervised clustering
of signed networks. Commun. Math. Sci 19(1), 73–109. https://dx.doi.org/10.4310/CMS.2021.v19.n1.a4.

[21] Duch, J. & Arenas, A. (2005) Community detection in complex networks using extremal optimization. Phys. Rev. E. 72(2),
027104.

[22] Fortunato, S. & Barthélemy, M. (2007) Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41.
www.pnas.org/cgi/doi/10.1073/pnas.0605965104.

[23] Fowlkes, C., Belongie, S., FanC. & Malik, J. (2004) Spectral grouping using the yström method. IEEE T. Pattern. Anal.
26(2), 214–225.

[24] Garcia-Cardona, C., Merkurjev, E., Bertozzi, A. L., Flenner, A. & Percus, A. G. (2014) Multiclass data segmentation using
diffuse interface methods on graphs. IEEE T. Pattern. Anal. 36(8), 1600–1613.

[25] Gates, A. J. & Ahn, Y.-Y. (2017) The impact of random models on clustering similarity. J. Mach. Learn. Res. 18(87), 1–28.
[26] Girvan, M. & Newman, M. E. J. (2002) Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12),

7821–7826.
[27] Golub, G. H. & Van Loan, C. F. (2013). Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. fourth

ed. Johns Hopkins University Press, Baltimore, MD.
[28] Guimerà, R., Sales-Pardo, M. & Nunes Amaral, L. A. (2004) Modularity from fluctuations in random graphs and complex

networks. Phys. Rev. E. 70(2), 025101.
[29] Hale, J. K. (2009). Ordinary Differential Equations, Courier Corporation.
[30] Hall, B. C. (2003). Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, volume 27, Springer,
[31] Hoffman, K. & Kunze, R. (1971) Linear Algebra. second ed. Prentice-Hall, Inc, Englewood Cliffs, NJ.
[32] Holland, P. W., Laskey, K. B. & Leinhardt, S. (1983) Stochastic blockmodels: First steps. Soc. Networks 5(2), 109–137.
[33] Hu, H., Laurent, T., Porter, M. A. & Bertozzi, A. L. (2013) A method based on total variation for network modularity

optimization using the MBO scheme. SIAM J. Appl. Math. 73(6), 2224–2246.
[34] Hu, H., van Gennip, Y., Hunter, B., Bertozzi, A. L. & Porter, M. A. (2012). Multislice modularity optimization in community

detection and image segmentation. In 2012 IEEE 12th International Conference on Data Mining Workshops, pp. 934–936.
[35] Hubert, L. & Arabie, P. (1985) Comparing partitions. J. Classif. 2(1), 193–218.
[36] Jeub, L. G. S., Sporns, O. & Fortunato, S. (2018) Multiresolution consensus clustering in networks. Sci. Rep. 8(1), 1–16.
[37] Jianbo Shi & Malik, J. (2000) Normalized cuts and image segmentation. IEEE T. Pattern. Anal. 22(8), 888–905.
[38] Karataş, A. & Şahin, S. (2018) Application areas of community detection: A review. In: 2018 International Congress On

Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), IEEE, pp. 65–70.
[39] Keetch, B. & van Gennip, Y. (2019) A max-cut approximation using a graph based MBO scheme. Discrete Contin. Dyn.

Syst. Series B 24(11), 6091–6139.
[40] Lancichinetti, A. & Fortunato, S. (2009) Community detection algorithms: A comparative analysis. Phys. Rev. E. 80(5),

056117.
[41] Lancichinetti, A. & Fortunato, S. (2011) Limits of modularity maximization in community detection. Phys. Rev. E. 84(6),

066122.
[42] Lancichinetti, A., Fortunato, S. & Radicchi, F. (2008) Benchmark graphs for testing community detection algorithms. Phys.

Rev. E. 78(4), 046110.
[43] LeCun, Y., Cortes, C. & Christopher, J. C. B. 1998). The MNIST database of handwritten digits.
[44] Lehoucq, R. B., Sorensen, D. C. & Yang, C. (1998) ARPACK users’ guide: Solution of large-scale eigenvalue problems

with implicitly restarted Arnoldi methods. SIAM.
[45] Liu, H., Liu, J., Chan, R. & Tai, X.-C. (2023) Double-well net for image segmentation. https://arxiv.org/abs/2401.00456.
[46] Luo, X. & Bertozzi, A. L. (2017) Convergence of the graph Allen–Cahn scheme. J. Stat. Phys. 167, 934–958.

https://doi.org/10.1007/s10955-017-1772-4.
[47] Maso, G. D. (1993). An introduction to
-convergence, Progress in Nonlinear Differential Equations and Their Applications,

Vol. 8, first ed. Birkhäuser, Boston
[48] Merkurjev, E., Garcia-Cardona, C. & Bertozzi, A. L., Flenner, A. & Percus, A. G. (2014) Diffuse interface methods for

multiclass segmentation of high-dimensional data. Appl. Math. Lett. 33, 29–34. https://doi.org/10.1016/j.aml.2014.02.008.
[49] Merkurjev, E., Kostić, T. & Bertozzi, A. L. (2013) An MBO scheme on graphs for classification and image processing.

SIAM J. Imaging. Sci. 6(4), 1903–1930.
[50] Merriman, B., Bence, J. K. & Osher, S. J. (1992) Diffusion generated motion by mean curvature. UCLA Department of

Mathematics CAM report 92-18.
[51] Merriman, Barry, Bence, James K. & Osher, Stanley J. (1993) Diffusion generated motion by mean curvature, AMS Selected

Letters, Crystal Grower’s Workshop, pp. 73–83.
[52] Microsoft. Microsoft research cambridge object recognition image database version 1.0.,

https://www.microsoft.com/en-us/download/details.aspx?id=52644, 18 May 2005.
[53] Mollaian, M., Dörgő, G. & Palazoglu, A. (2021) Studying the synergy between dimension reduction and clustering methods

to facilitate fault classification, Computer Aided Chemical Engineering, Vol. 50, Elsevier, pp. 819–824.
[54] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. (2010) Community structure in time-dependent,

multiscale, and multiplex networks. Science 328, 876–878. https://doi.org/10.1126/science.1184819
[55] Newman, M. (2010). Networks: An Introduction, 1st edition, Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://dx.doi.org/10.4310/CMS.2021.v19.n1.a4
https://www.pnas.org/cgi/doi/10.1073/pnas.0605965104
https://arxiv.org/abs/2401.00456
https://doi.org/10.1007/s10955-017-1772-4
https://doi.org/10.1016/j.aml.2014.02.008.
https://www.microsoft.com/en-us/download/details.aspx?id=52644
https://doi.org/10.1126/science.1184819
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1017/S095679252400072X

70 Z. Li et al

[56] Newman, M. E. J. (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582.
www.pnas.org/cgi/doi/10.1073/pnas.0601602103.

[57] Newman, M. E. J. & Girvan, M. (2004) Finding and evaluating community structure in networks American Physical Society.
Phys. Rev. E. 69(2), 026113. https://link.aps.org/doi/10.1103/PhysRevE.69.026113.

[58] Nyström, E. J. (1930) Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben.
Acta. Math. 54(0), 185–204.

[59] Pedregosa, Fabian, Varoquaux, Gaël, Gramfort, Alexandre, et al. (2011) Scikit-learn: Machine learning in Python. J Mach
Learn Res 12, 2825–2830

[60] Perlasca, P., Frasca, M., Ba, C. T., Gliozzo, J., Notaro, M., Pennacchioni, M., Valentini, G., Mesiti, M. & Cherifi, H. (2020)
Multi-resolution visualization and analysis of biomolecular networks through hierarchical community detection and web-
based graphical tools. PLoS ONE 15(12), e0244241.

[61] Rand, W. M. (1971) Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850.
[62] Reichardt, Jörg, Bornholdt, S. (2006) Statistical mechanics of community detection. Phys. Rev. E. 74(1), 016110.
[63] Schütze, H., Manning, C. D. & Raghavan, P. (2008). Introduction to Information Retrieval, volume 39, Cambridge University

Press Cambridge, .
[64] Shannon, C. E. (1948) A mathematical theory of communication. Bell Sys. Tech. J. 27(3), 379–423.
[65] Singh, D. K. & Choudhury, P. (2023) Community detection in large-scale real-world networks, Advances in Computers,

Vol. 128, Elsevier, pp. 329–352.
[66] Steinley, D. (2004) Properties of the Hubert-Arable Adjusted Rand Index.. Psychol. Methods 9(3), 386–396.
[67] Sun, B. & Chang, H. (2022) Proximal gradient methods for general smooth graph total variation model in unsupervised

learning. J. Sci. Comput. 93(1), 23, Paper No. 2.
[68] The NetworkX Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex

networks., Accessed: 2022-01-27. Available at: https://networkx.org/.
[69] Thompson, R. C. (1976) The behavior of eigenvalues and singular values under perturbations of restricted rank. Linear

Algebra Appl. 13(1), 69–78.
[70] Traag, V. (2020). The Leiden algorithm python package. Available at: https://github.com/vtraag/leidenalg.
[71] Traag, V. A., Waltman, L. & van Eck, N. J. (2019) From louvain to Leiden: Guaranteeing well-connected communities. Sci.

Rep. 9(1), 5233.
[72] van Gennip, Y. & Bertozzi, A. L. (2012)
-convergence of graph Ginzburg–Landau functionals. Adv. Differential Equ.

11(12), 1115–1180.
[73] van Gennip, Y., Guillen, N., Osting, B. & Bertozzi, A. L. (2014) Mean curvature, threshold dynamics, and phase field theory

on finite graphs. Milan. J. Math. 82(1), 3–65.
[74] von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416.
[75] Weyl, H. (1912) Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer

Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479.

Appendix A Multiple-well potential with 1-norms and 2-norms

From (36) we recall that, for w ∈RK ,

�mul(w) := 1

2

(
K∏

k=1

1

4
||w− e(k)||21

)
.

Merkurjev et al. [48, Section 2.1] and Garcia-Cardona et al. [24, Section 3.1] argue that the choice for
1-norms instead of 2-norms is driven by the presence of an unwanted local minimiser in the interior of
the simplex S(K) from (44) when 2-norms are used.

First we prove that such a minimiser indeed does not exist with the current definition as in (36). Recall
that 1K ∈RK is the column vector whose entries are all 1.

Lemma A.1. Let K ≥ 3. The only local minimisers of the function �mul from (36) on R
K are its global

minimisers at the vertices of the simplex S(K) from (44) and a local minimiser (which is not a global
minimiser) at −1K .

Proof. We recall that the vertices of the simplex S(K) are the vectors e(k) that are defined in Section
4.2. Since �mul ≥ 0 and �mul(w)= 0 if and only if w= e(k), it is clear that �mul has global minima at and
only at these vertices.

Now assume that w ∈RK is such that, for all j ∈ {1, . . . , K}, wj �∈ {−1, 1}. Then

∂

∂wj

1

4
‖w− e(k)‖2

1 =
1

2
‖w− e(k)‖1

∂

∂wj

K∑
l=1

|wl − e(k)
l | = 1

2
sgn(wj − e(k)

j)‖w− e(k)‖1.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://www.pnas.org/cgi/doi/10.1073/pnas.0601602103
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://networkx.org/
https://github.com/vtraag/leidenalg
https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 71

Thus

∂

∂wj

�mul(w)= 1

4

K∑
k=1

sgn(wj − e(k)
j)‖w− e(k)‖1

K∏
l=1

l �=k

1

4
‖w− e(l)‖2

1

= 1

4

K∑
k=1

sgn(wj − e(k)
j)

(
2�mul(w)

1
4
‖w− e(k)‖1

)

= 2�mul(w)
K∑

k=1

sgn(wj − e(k)
j)

‖w− e(k)‖1

.

Assume that �mul has a local minimum at w=w∗ which satisfies, for all j ∈ {1, . . . , K}, w∗j �∈ {−1, 1}.
Then, for all j ∈ {1, . . . , K}, ∂

∂w∗j
�mul(w)= 0. Since w∗ is not a vertex of the simplex, �mul(w∗) �= 0 and

thus, for all j ∈ {1, . . . , K},
K∑

k=1

sgn(w∗j − e(k)
j)

‖w∗ − e(k)‖1

= 0. (60)

If w∗j <−1, then, for all k ∈ {1, . . . , K}, sgn(w∗j − e(k)
j)=−1 and thus

K∑
k=1

−1

‖w∗ − e(k)‖1

= 0.

This is a contradiction. If w∗j > 1, then, for all k ∈ {1, . . . , K}, sgn(w∗j − e(k)
j)= 1, which leads to a sim-

ilar contradiction. Hence, it must hold that, for all j ∈ {1, . . . , K}, w∗j ∈ (− 1, 1). In that case, for all
j ∈ {1, . . . , K}, if k= j we have sgn(w∗j − e(k)

j)=−1 and for all k ∈ {1, . . . , K} \ {j} we have sgn(w∗j −
e(k)

j)= 1. Therefore, for all j ∈ {1, . . . , K},
1

‖w∗ − e(j)‖1

=
K∑

k=1
k �=j

1

‖w∗ − e(k)‖1

.

Summing both sides over all j ∈ {1, . . . , K}, we obtain
K∑

j=1

1

‖w∗ − e(j)‖1

=
K∑

j=1

K∑
k=1
k �=j

1

‖w∗ − e(k)‖1

= (K − 1)
K∑

k=1

1

‖w∗ − e(k)‖1

.

Since K ≥ 3, it follows that
K∑

k∗=1

1

‖w∗ − e(k)‖1

= 0,

which is again a contradiction. (For future reference, we note that the proof by contradiction that followed
(60) did not depend on any properties of ‖w∗ − e(k)‖1 except its positivity.)

Hence if �mul has a local minimum at w∗, there must exist a j ∈ {1, . . . , K}, such that w∗j ∈ {−1, 1}.
Assume there is exactly one such j which we call j∗ and define the subspace

R
K
j∗ := {w ∈RK:wj∗ =w∗j∗ }.

Since �mul has a local minimum at w∗, �mul|RK
j∗ also has a local minimum at w∗. If we write

‖w− e(k)‖1,RK
j∗ :=

K∑
j=1
j �=j∗

|wj − e(k)
j |,

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

72 Z. Li et al

then

‖w− e(k)‖1

∣∣
R

K
j∗
= qk + ‖w− e(k)‖1,RK

j∗ ,

where

qk := (1+w∗j∗)− 2w∗j∗δkj∗ =
⎧⎨
⎩

0, = if (w∗j∗ =−1 and k �= j∗) or (w∗j∗ = 1 and k= j∗),

2, = if (w∗j∗ =−1 and k= j∗) or (w∗j∗ = 1 and k �= j∗).

In particular qk ≥ 0. Thus

�mul|RK
j∗ (w)= 1

2

(
K∏

k=1

1

4

(
||w− e(k)||1

∣∣
R

K
j∗

)2
)
= 1

2

(
K∏

k=1

1

4

(
qk + ||w− e(k)||1,RK

j∗

)2
)

.

Recall that we have assumed that, if j �= j∗, then w∗j �∈ {−1, 1}. Hence, in that case

∂

∂wj

1

4

(
qk + ||w− e(k)||1,RK

j∗

)2 = 1

2

(
qk + ||w− e(k)||1,RK

j∗

) ∂

∂wj

||w− e(k)||1,RK
j∗

= 1

2

(
qk + ||w− e(k)||1,RK

j∗

)
sgn(wj − e(k)

j)

and therefore

∂

∂wj

�mul|RK
j∗ (w)= 1

2

K∑
k=1

1

2
sgn(wj − e(k)

j)
(

qk + ||w− e(k)||1,RK
j∗

) K∏
l=1
l �=k

1

4

(
ql + ||w− e(l)||1,RK

j∗

)2

= 1

2

K∑
k=1

sgn(wj − e(k)
j)

�mul|RK
j∗ (w)

qk + ||w− e(k)||1,RK
j∗

.

Since �mul|RK
j∗ has a local minimum at w∗, we require that, for all j ∈ {1, . . . , K} \ {j∗}, ∂

∂wj
�mul|RK

j∗ (w
∗)= 0.

Since qk + ||w∗ − e(k)||1,RK
j∗ > 0, we can use a similar proof by contradiction as that which followed (60)

to show that there must be a j∗∗ ∈ {1, . . . , K} \ {j∗} for which w∗j∗∗ ∈ {−1, 1}. If, for all j ∈ {1, . . . , K} \
{j∗, j∗∗}, w∗j �∈ {−1, 1}, then via essentially the same arguments as in the previous case (with two values
qk, qk

′ ∈ {0, 2}, k �= k′; in particular their sum is non-negative), it can be shown that w∗ is also not a local
minimiser, and thus there must be another component of w∗ in {−1, 1}. Repeating this approach further
shows that w∗ is not a local minimiser if at least one of its components is not in {−1, 1}.

Consider now the case that all components of w∗ are in {−1, 1} and not all of its components are−1.
Thus, at least two components are 1 since it is assumed that w∗ is not a vertex. We define

J := {j ∈ {1, . . . , K}:w∗j = 1};
then

‖w∗ − e(k)‖1 = |w∗k − 1| + 2|J \ {k}|.
Since w∗ is not one of the vertices e(k), we have, for all k ∈ {1, . . . , K}, |w∗k − 1| = 2 or |J \ {k}| ≥ 1, thus
‖w∗ − e(k)‖1 ≥ 2.

If there exists a k∗ such that w∗k∗ = 1, and thus |J \ {k∗}| ≥ 1, let l∗ ∈ J \ {k∗} and, for all ε ∈ (0, 2),
define wε via wε

j := w∗j if j �= l∗ and wε
j := w∗j − ε if j= l∗. Then

‖wε − e(k∗)‖1 = 2|J \ {k∗, l∗}| + (2− ε)= 2|J \ {k∗}| − ε= ‖w∗ − e(k∗)‖1 − ε,

‖wε − e(l∗)‖1 = |wε

l∗ − 1| + 2|J \ {l∗}| = ε+ 2|J \ {l∗}| = ‖w∗ − e(l∗)‖1 + ε

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 73

and, for all k ∈ {l, . . . , K} \ {k∗, l∗},
‖wε − e(k)‖1 = |wε

k − 1| + 2|J \ {k, l∗}| + |wε

l∗ + 1| = |wε

k − 1| + 2|J \ {k, l∗}| + 2− ε

= |wε

k − 1| + 2|J \ {k, l∗}| + |w∗l∗ + 1| − ε= ‖w∗ − e(k)‖1 − ε.

For notational convenience, we write ak := ‖w∗ − e(k)‖1. Then

�mul(w
ε)= 2−2K−1f 2(ε), with f (ε) := (al∗ + ε)

K∏
k=1
k �=l∗

(ak − ε).

We compute

f ′(ε)=
K∏

k=1
k �=l∗

(ak − ε)+ (al∗ + ε)
K∑

k=1
k �=l∗

(−1)
K∏

l=1
l �=l∗
l �=k

(al − ε)=
K∏

l=1
l �=l∗

(al − ε)

⎛
⎜⎝1− (al∗ + ε)

K∑
k=1
k �=l∗

1

ak − ε

⎞
⎟⎠ .

Since al∗ = ak∗ , we have al∗+ε

ak∗−ε
> 1 and thus f ′(ε) < 0 for ε ∈ (0, 2). Thus, for small ε, �mul(wε) < �mul(w∗)

which contradicts w∗ being a local minimiser of �mul.
It remains to study the case in which, for all k ∈ {1, . . . , K}, |w∗k − 1| = 2, that is, w∗ =−1K . We claim

this is a local, but not global minimiser of �mul. That−1K is not a global minimiser follows simply from
�mul(− 1K)= 1

2
> 0.

To prove that −1K is a local minimiser via a proof by contradiction, assume that for all ε ∈ (0, 2),
there exists a z̃ε ∈RK such that ‖z̃ε + 1K‖1 ≤ ε and �mul(z̃ε) < �mul(− 1K). Thus for every ε ∈ (0, 2) the
set

argmin
z∈RK

‖z+1K‖1≤ε

�mul(z) (61)

is not empty and does not contain −1K . For every ε ∈ (0, 2), let zε be an element of this set. Then there
must be a k∗ such that ‖zε − e(k∗)‖1 < ‖ − 1K − e(k∗)‖1 < 2 and therefore there exists an η ∈ (0, 2] such
that ‖zε − e(k∗)‖1 = 2− η. Hence

|zε

k∗ − 1| +
K∑

j=1
j �=k∗

|zε

j + 1| = 2− η. (62)

For future use, we note that

2= ‖− 1K − e(k∗)‖1 ≤ ‖− 1K − zε‖1 + ‖zε − e(k∗)‖1 ≤ ε+ 2− η

and thus 0≤ η≤ ε.
Because, for all j ∈ {1, . . . , K}, zε

j ∈ [− 1− ε,−1+ ε], there exist εj ∈ [− ε, ε], such that, for all j ∈
{1, . . . , K}, zε

j =−1+ εj. Condition (62) implies

2− εk∗ +
K∑

j=1
j �=k∗

|εj| = 2− η,

thus

εk∗ = η+
K∑

j=1
j �=k∗

|εj|.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

74 Z. Li et al

In particular, εk∗ > 0. Furthermore, for l �= k∗,

‖zε − e(l)‖1 = |zl − 1| +
K∑

j=1
j �=l

|zj + 1| = 2− εl +
K∑

j=1
j �=l

|εj| = 2− εl + εk∗ +
K∑

j=1
j �=k∗

|εj| − |εl|

= 2+ η− εl − |εl| + 2
K∑

j=1
j �=k∗

|εj| = 2+ η− εl + |εl| + 2
K∑

j=1
j �=k∗
j �=l

|εj| = 2+ η+ 2
K∑

j=1
j �=k∗
j �=l

|εj|.

For the final equality we used that |εl| = εl, which follows from the equalities in the first line in this
calculation. Indeed, if εl < 0 then ‖zε − e(l)‖1 is larger than if εl ≥ 0 and this choice does not influence
‖zε − e(k)‖1 for k �= l as those norms depend on εl only through their dependence on |εl|. Thus �mul(zε)
will not be minimal in the sense of (61) if εl < 0. Hence, for all l ∈ {1, . . . , K} \ {k∗}, εl ≥ 0. It follows
that, for all l ∈ {1, . . . , K} \ {k∗},

‖zε − e(l)‖1 ≥ 2+ η

and therefore

�mul(z
ε)= 1

2
g2(ε1, . . . , εK)

with

g(ε1, . . . , εK) := 2−K‖zε − e(k∗)‖1

K∏
l=1

l �=k∗

‖zε − e(l)‖1

≥ 2−K(2− η)(2+ η)K−1 = 2−K(2− η)(2+ η)22K−3

= 2−K
[
8+ η(− η2 − 2η+ 4)

]
2K−3,

where we used that K ≥ 3. If η ∈
(

0,
√

5− 1
)
, then 8+ η(− η2 − 2η+ 4) > 8 and thus g(ε1, . . . , εK) > 1

and �mul(zε) > 1
2
=�mul(− 1K). By choosing ε <

√
5− 1, we force η <

√
5− 1 and thus we have a con-

tradiction with the minimality of zε in the sense of (61). Hence −1K is a local minimiser of �mul.

Next we consider the following alternative multiple-well potential:

�̃mul(w) := 1

2

(
K∏

k=1

1

4
||w− e(k)||22

)
.

We show that �̃mul has a local minimiser in the interior of the simplex.

Lemma A.2. Let K ≥ 2. The function �̃mul has global minimisers at the vertices of the simplex S(K)
from (44). It also has a local minimiser at the unique point w∗ in the interior of S(K) that is equidistant
(in the Euclidean distance) from all vertices of S(K).

Proof. The first statement is true since �̃mul ≥ 0 and, for all k ∈ {1, . . . , K}, �̃mul(e(k))= 0.
Furthermore, for all w ∈RK and all j ∈ {1, . . . , K},

∂

∂wj

1

4
‖w− e(k)‖2

2 =
1

2
(wj − e(k)

j).

Thus
∂

∂wj

�̃mul(w)= 1

4

K∑
k=1

(wj − e(k)
j)

K∏
l=1
l �=k

1

4
‖w− e(l)‖2

2.

In particular, �̃mul is differentiable on R
K .

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 75

Let w∗ ∈RK be the vector in the interior of S(K) equidistant to all vertices of S(K), that is, for all
l ∈ {1, . . . , K},∑K

k=1 (w∗l − e(k)
l), thus w∗l = 2−K

K
. We compute, for all k ∈ {1, . . . , K},

‖w− e(k)‖2
2 =
(

2−K

K
− 1

)2

+ (K − 1)

(
2−K

K
+ 1

)2

= 4

(
1− 1

K

)
= :d2 > 0.

Therefore

∂

∂wj

�̃mul(w
∗)= 1

4

K∑
k=1

(
2−K

K
− e(k)

j

) K∏
l=1
l �=k

1

4
d2 = 4−Kd2(K−1)

K∑
k=1

(
2−K

K
− e(k)

j

)
= 0,

since
∑K

k=1 e(k)
j = 1− (K − 1)= 2−K.

For second partial derivatives, with j, l ∈ {1, . . . , K},
∂

∂wl

∂

∂wj

�̃mul(w)= 1

4

K∑
k=1

(
δjl

K∏
m=1
m �=k

1

4
‖w− e(m)‖2

2

+ (wj − e(k)
j)

K∑
m=1
m �=k

1

4

(
∂

∂wl

‖w− e(m)‖2
2

) K∏
r=1

r �∈{k,m}

1

4
‖w− e(m)‖2

2

)

= 1

4

K∑
k=1

(
δjl

K∏
m=1
m �=k

1

4
‖w− e(m)‖2

2

+ 1

2
(wj − e(k)

j)
K∑

m=1
m �=k

(wl − e(m)
l)

K∏
r=1

r �∈{k,m}

1

4
‖w− e(m)‖2

2

)
,

where δjl is the Kronecker delta. In the case where K = 2 we should interpret
K∏

r=1
r �∈{k,m}

1

4
‖w− e(m)‖2

2 as 1.

Thus at w=w∗ we find

∂

∂wl

∂

∂wj

�̃mul(w)

∣∣∣∣
w=w∗
= 1

4

K∑
k=1

(
δjl

K∏
m=1
m �=k

1

4
d2 + 1

2

(
2−K

K
− e(k)

j

) K∑
m=1
m �=k

(
2−K

K
− e(m)

l

) K∏
r=1

r �∈{k,m}

1

4
d2

)

= α

8

K∑
k=1

(
1

2
d2δjl +

(
2−K

K
− e(k)

j

) K∑
m=1
m �=k

(
2−K

K
− e(m)

l

))
,

where α := (1
4
d2
)K−2 = (1−K−1

)K−2
> 0.

Since e(k) is a vertex of S(K), we know that
∑K

k=1 e(k)
j =−K + 2. Moreover, direct computation tells

us that, for all j, l ∈ {1, . . . , K},
K∑

m=1
m �=k

e(m)
l =−K + qkl := −K +

⎧⎨
⎩

1, if l= k,

3, if l �= k.

Furthermore,

−
K∑

k=1

K∑
m=1
m �=k

e(m)
l =

K∑
k=1

(K − qlk)=K2 −
K∑

k=1

qlk =K2 − (1+ 3(K − 1))=K2 − 3K + 2

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

76 Z. Li et al

and
K∑

k=1

e(k)
j

K∑
m=1
m �=k

e(m)
l =−K

K∑
k=1

e(k)
j +

K∑
k=1

qkle
(k)
j =K(K − 2)+ (− 3K + 8− 4δjl)=K2 − 5K + 8− 4δjl,

where we used that

qkle
(k)
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, if l= k and j �= k,

1, if l= k and j= k,

−3, if l �= k and j �= k,

3, if l �= k and j= k,

and therefore
K∑

k=1

qkle
(k)
j =−3K + 8− 4δjl.

Combining these results with our computation of the second partial derivatives at w∗ we find

∂

∂wl

∂

∂wj

�̃mul(w
∗)

∣∣∣∣
w=w∗
= α

8

K∑
k=1

(
1

2
d2δjl + (K − 1)(2−K)2

K2
− (K − 1)(2−K)

K
e(k)

j

− 2−K

K

K∑
m=1
m �=k

e(m)
l + e(k)

j

K∑
m=1
m �=k

e(m)
l

)

= α

8

(
1

2
d2Kδjl + (K − 1)(2−K)2

K
− (K − 1)(2−K)2

K

+ 2−K

K
(K2 − 3K + 2)+K2 − 5K + 8− 4δjl

)

= α

2

(
1

8
d2K − 1

)
δjl + α

2K
= α

2

(
1

2
(K − 1)δjl +K−1

)
.

Thus the Hessian matrix H(w∗) at w∗ has entries

(H(w∗))jl = α

2

(
1

2
(K − 1)δjl +K−1

)
= α

2

(
1

2
(K − 1)+K−1

)
Hjl,

where the matrix H has entries Hjl = 1 if j= l and Hjl = β := α
2 K−1

α
2 (

1
2 (K−1)+K−1)

= 2
K(K−1)+2

∈ (0, 1) if j �= l.
The eigenvalues of H have the same signs as the eigenvalues of the Hessian matrix H(w∗), because

α

2

(
1
2
(K − 1)+K−1

)
> 0. We will show that all these eigenvalues are positive and therefore �̃mul has a

local minimum at w∗.
We note that H= (1− β)I + β1K1T

K , where I ∈RK×K is the identity matrix and 1K ∈RK the vector
with 1 as each entry. Thus, if v ∈RK is an eigenvector of H with eigenvalue λ, then

(1− β)v+ β〈1K , v〉1K = λv,

which is equivalent to

(λ+ β − 1)v= β〈1K , v〉1K . (63)

Direct verification shows that v1 := 1K is an eigenvector with eigenvalue λ1 := β(K − 1)+ 1. If
{v2, . . . , vK} is an orthogonal basis for (span({v1}))⊥, then, for all l ∈ {2, . . . , K}, vl is an eigenvector
with eigenvalue λl := 1− β, because 〈1K , v〉 = 0 forces the term in parentheses in equation (63) to
be zero. Since 0 < β < 1, this shows that all eigenvalues of H, and thus all eigenvalues of H(w∗), are
positive.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 77

Appendix B Proofs of Lemmas 5.1 and 5.5

Proof of Lemma 5.1. We recall that in each of the cases (a)–(c), it has to be shown that the eigenvalues
of Lmix are non-negative and that Lmix is real diagonalisable as Lmix = X�X−1 with X of the specific form
stated in each case.

Firstly, if Lmix is as in case (a), then Lmix is a symmetric real matrix and thus (by a standard result from
linear algebra [31]) Lmix is orthogonally real diagonalisable. Furthermore, since W, P, B+

γ
, and B−

γ
are all

symmetric matrices with non-negative entries, Lemmas 2.1 and 2.2 establish that LW , QP, LWsym , QPsym ,
LB+γ , QB−γ , LB+γ sym

, and QB−γ sym
are all positive semidefinite with respect to the Euclidean inner product.

Hence so is Lmix and thus its eigenvalues are non-negative.62 This concludes the proof of part (a).
Secondly, if Lmix is as in case (b), then

Lmix =D
− 1

2
W LWsym D

1
2
W + γ D

− 1
2

P QPsym D
1
2
P =D

− 1
2

W

(
LWsym + γ QPsym

)
D

1
2
W ,

where for the second equality we used the assumption that DP =DW . Hence Lmix is similar to the real
diagonalisable matrix LWsym +QPsym and thus both matrices have the same eigenvalues and Lmix is real
diagonalisable (but not orthogonally). Moreover, from Lemma 2.1 we know that LWrw is positive semidef-
inite with respect to the W-degree-weighted inner product and from Lemma 2.2 we have that QPrw

is positive semidefinite with respect to the P-degree-weighted inner product. Under the assumption
DW =DP these inner products are equal and thus Lmix is positive semidefinite with respect to this inner
product. Hence its eigenvalues are non-negative.

Since, by definition of X̃, (
LWsym +QWsym

)
X̃ = X̃�,

we get

LmixD
− 1

2
W X̃ =D

− 1
2

W

(
LWsym +QWsym

)
X̃ =D

− 1
2

W X̃�,

hence X =D
− 1

2
W X̃. From case (a) we know that X̃−1 = X̃T , and thus X−1 = X̃TD

1
2
W .

Thirdly, let Lmix be as in case (c).
From (39) we recall that Lmix = LB+γ rw

+D−1
B+γ

QB−γ . Hence

D
1
2

B+γ
LmixD

− 1
2

B+γ
=D

1
2

B+γ
LB+γ rw

D
− 1

2

B+γ
+D

1
2

B+γ
D−1

B+γ
QB−γ D

− 1
2

B+γ
= LB+γ sym

+D
− 1

2

B+γ
QB−γ D

− 1
2

B+γ
.

As the sum of two real symmetric matrices, the right-hand side above is a real symmetric matrix and thus
has real eigenvalues. Since Lmix is similar to this matrix, it has the same, and thus also real, eigenvalues.

Moreover, by Lemma 2.2 part (a), we know that QB−γ is positive semidefinite with respect to the

Euclidean norm and thus so is D
− 1

2

B+γ
QB−γ D

− 1
2

B+γ
, since

〈D− 1
2

B+γ
QB−γ D

− 1
2

B+γ
u, u〉 = 〈QB−γ D

− 1
2

B+γ
u, D

− 1
2

B+γ
u〉 ≥ 0.

By Lemma 2.1 part (b) also LB+γ sym
is positive semidefinite with respect to the Euclidean inner product and

thus so is the sum LB+γ sym
+D

− 1
2

B+γ
QB−γ D

− 1
2

B+γ
. It follows that this matrix, and thus also Lmix, have non-negative

eigenvalues.63 Finally, since D
1
2

B+γ
LmixD

− 1
2

B+γ
is real and symmetric, it is (real) orthogonally diagonalisable

and thus X̃−1 = X̃T , hence X−1 = X̃TD
1
2

B+γ
.

62After all, if (λ, v) is a (real) eigenpair of Lmix, then Lmixv= λv and thus λ‖v‖2 = 〈λv, v〉 = 〈Lmixv, v〉 ≥ 0.
63In particular, because D

1
2

B+γ
LmixD

− 1
2

B+γ
is positive semidefinite with respect to the Euclidean inner product, Lmix is positive

semidefinite with respect to the B+γ -degree-weighted inner product:

〈Lmixu, u〉B+γ = 〈D−1
B+γ

D
1
2

B+γ
Lmixu, D

1
2

B+γ
u〉B+γ = 〈D

1
2

B+γ
LmixD

− 1
2

B+γ
(D

1
2

B+γ
u), D

1
2

B+γ
u〉 ≥ 0.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

78 Z. Li et al

Proof of Lemma 5.5. To prove positivity of the eigenvalues of Lmix it suffices to prove that Lmix is positive
definite (see footnote 62). In each of the cases of the lemma, the assumptions of the corresponding part
of Lemma 5.1 are satisfied. Hence, we already know that Lmix is positive semidefinite. It remains to
prove that, for u ∈ V , 〈Lmixu, u〉 = 0 implies u= 0, where the inner product may be the Euclidean inner
product, or one of the degree-weighted inner products. We treat each variant of Lmix separately: Cases I
and II cover part (a); part (b) corresponds to Case III; and Cases IV–VI concern the variants from part
(c). Let u ∈ V .
Case I Let Lmix = LW + γ QP and assume the matrix P has at least one positive entry. Assume
〈Lmixu, u〉 = 0. From (6) and (10) we have

0= 〈Lmixu, u〉 = 1

2

∑
i,j∈V

[
ωij(ui − uj)

2 + γ pij(ui + uj)
2
]

.

Let i, j ∈ V , then

[if ωij > 0, then ui = uj] and [if pij > 0, then ui =−uj]. (64)

The first implication shows that u needs to have the same value on any two nodes that are connected by
an edge. By induction, it follows that u needs to have the same value on any two nodes that are connected
by a path in the graph. We recall that the graph based on W is assumed to be connected, hence any two
nodes are connected by a path and thus u is constant on V .

By assumption there is a positive entry of P. If the entry is a diagonal entry pii, then (64) implies that
ui = 0. Since u is constant on V , u= 0. If the positive entry is an off-diagonal entry pij with i �= j, then
by (64) and the constancy of u, ui =−uj =−ui. Again, we conclude that ui = 0 and thus u= 0.

Case II Next, assume DP is invertible (we recall DW is invertible per assumption), let Lmix = LWsym +
γ QPsym . Since P is assumed to have non-negative entries, invertibility of DP implies that the matrix P
has at least one positive entry. Assume 〈Lmixu, u〉 = 0. From (7) and (11) we have

0= 〈Lmixu, u〉 = 1

2

∑
i,j∈V

⎡
⎣ωij

(
ui√
(dW)i

− uj√
(dW)j

)2

+ γ pij

(
ui√
(dP)i

+ uj√
(dP)j

)2
⎤
⎦ .

Let i, j ∈ V , then

[if ωij > 0, then ui =
√

(dW)−1
j (dW)iuj] and [if pij > 0, then ui =−

√
(dP)−1

j (dP)iuj]. (65)

For x ∈R, we define the signum function sgn(x)=

⎧⎪⎨
⎪⎩

1, if x > 0,

−1, if x < 0,

0, if x= 0.
Since DW and DP are non-negative invertible diagonal matrices, their diagonal entries are positive.

Thus from (65) it follows that

[if ωij > 0, then sgn(ui)= sgn(uj)] and [if pij > 0, then sgn(ui)=−sgn(uj)].

Thus, by a similar argument as in the previous case, connectedness of the graph based on W implies
that sgn(u) is constant on V . Furthermore, based on P having a positive entry, we can use an argument
as before to conclude that sgn(u)= 0 and thus u= 0.

Case III Next, let Lmix = LWrw + γ QPrw and assume that 〈Lmixu, u〉W = 0. Assume that the null model is
such that DW =DP. This assumption allows us to use Lemma 5.1 part (b) to establish that Lmix is positive
semidefinite. Moreover, it implies that the W-degree-weighted and P-degree-weighted inner products

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 79

are the same. Furthermore, since the diagonal elements of DW are non-zero, so are the diagonal elements
of DP, and since P is a non-negative matrix, this implies that P has a positive entry. Because we also
know, by (8) and (12), that

〈Lmixu, u〉W = 1

2

∑
i,j∈V

[
ωij(ui − uj)

2 + pij(ui + uj)
2
]

,

the remainder of the proof in this case follows in exactly the same fashion as in case I.
In the remaining three cases, we always assume the conditions of part (c) of the lemma to be satisfied.

Case IV Let Lmix = LB+γ +QB−γ and assume that 〈Lmixu, u〉 = 0. Repeating the argument from case I above
with B+

γ
instead of W and B−

γ
instead of P (and γ absent from the correct places), we find the analogue

of (64):

[if (b+
γ

)ij > 0, then ui = uj] and [if (b−
γ

)ij > 0, then ui =−uj]. (66)

If assumption (i) is satisfied, then the same argument as in the first case (with B+
γ

and B−
γ

instead of W
and P) proves u= 0.

If assumption (ii) holds, because the graph with adjacency matrix B−
γ

is connected, for all nodes
k, l ∈ V it holds that there exists a path in this graph connecting k and l and thus uk =±ul. Since this
holds for all pairs of nodes, |u| is constant on V . For the nodes i and j from the assumption we know that
ui = uj and, since they are connected by a path with an odd number of edges in the graph with adjacency
matrix B−

γ
, we have ui =−uj. Thus ui = uj and hence |u| = 0 and therefore u= 0.

If assumptions (iii) is satisfied, then for all i ∈ V , (b−
γ

)ii > 0. Hence, for all i ∈ V , ui =−ui, thus ui = 0
and u= 0.

Case V Next let Lmix = LB+γ sym
+QB−γ sym

and assume that 〈Lmixu, u〉 = 0. We repeat the argument from case
II with B+

γ
instead of W and B−

γ
instead of P (and γ absent from the correct places) to find

[if (b+
γ

)ij > 0, then sgn(ui)= sgn(uj)] and [if (b−
γ

)ij > 0, then sgn(ui)=−sgn(uj)].

For each of the three assumptions (i), (ii), and (iii) we repeat the arguments from case IV, but for sgn(u)
instead of u. Then we find under each of the assumptions that sgn(u)= 0 and thus u= 0.

Case VI Finally, let Lmix = LB+γ rw
+QB−γ rw

−D−1
B+γ

DBQB−γ rw
and assume that 〈Lmixu, u〉B+γ = 0. Then we use

(39), (8), and (10) to compute

0= 〈Lmixu, u〉B+γ = 〈LB+γ rw
u, u〉B+γ + 〈D−1

Bγ
QB−γ u, u〉B+γ = 〈LB+γ rw

u, u〉B+γ + 〈QB−γ u, u〉

= 1

2

∑
i,j∈V

(b+
γ

)ij(ui − uj)
2 + 1

2

∑
i,j∈V

(b−
γ

)ij(ui + uj)
2.

Thus, again we recover (66). From here the proof proceeds in the same way as in case IV and we conclude
that, under each of the three assumptions (i), (ii), and (iii), u= 0.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

80 Z. Li et al

Appendix C Proof of Lemma 6.1

Proof of Lemma 6.1.

(a) Since the infinity operator norm is sub-multiplicative64 and U(τ)= e−τLmix U0, we get

‖U(τ)−U0‖∞ ≤ ‖e−τLmix − I‖∞‖U0‖∞ ≤ ‖U0‖∞
∞∑

l=1

τ l

l! ‖Lmix‖l
∞ = ‖U0‖∞

(
eτ‖Lmix‖∞ − 1

)
. (67)

Since U0 ∈ Pt(K), we have ‖U0‖∞ =K and the first result follows. Let δij denote the Kronecker
delta. We recall that W, P, B+

γ
, and B−

γ
have non-negative entries and that in the cases in which

expressions of the form x−1 or x−
1
2 appear, x is assumed to be positive (as is needed to have Lmix

be well-defined in those cases).
(i) From (Lmix)ij = (dW)iδij −ωij + γ (dP)iδij + γ pij, it follows that

‖Lmix‖∞ ≤max
i∈V

(∑
j∈V

(dW)iδij +
∑
j∈V

ωij +
∑
j∈V

γ (dP)iδij +
∑
j∈V

γ pij

)

=max
i∈V

((dW)i + (dW)i + γ (dP)i + γ (dP)i)≤ 2 max
i∈V

(dW)i + 2 max
i∈V

(dP)i

= Lmax.

(ii) Since (Lmix)ij = δij − (dW)
− 1

2
i ωij(dW)

− 1
2

j + γ δij + (dP)
− 1

2
i γ pij(dP)

− 1
2

j , we obtain

‖Lmix‖∞ ≤max
i∈V

(
1+ (dW)

1
2
i

d
1
2
W,min

+ γ + γ
(dP)

1
2
i

d
1
2
P,min

)
≤ 1+ γ +max

i∈V

(dW)
1
2
i

d
1
2
W,min

+ γ max
i∈V

(dP)
1
2
i

d
1
2
P,min

= Lmax.

(iii) From (Lmix)ij = δij − (dW)−1
i ωij + γ δij + γ (dP)−1

i pij, we get

‖Lmix‖∞ ≤max
i∈V

(1+ 1+ γ + γ)= Lmax.

(iv) Using (Lmix)ij = (dB+γ)iδij − (b+
γ

)ij + (dB−γ)iδij + (b−
γ

)ij yields

‖Lmix‖∞ ≤max
i∈V

(
2(dB+γ)i + 2(dB−γ)i

)≤ 2 max
i∈V

(dB+γ)i + 2 max
i∈V

(dB−γ)i = Lmax.

(v) Since (Lmix)ij = δij − (dB+γ)
− 1

2
i (b+

γ
)ij(dB+γ)

− 1
2

j + δij + (dB−γ)
− 1

2
i (b−

γ
)ij(dB−γ)

− 1
2

j , we find

‖Lmix‖∞ ≤max
i∈V

⎛
⎝2+ (dB+γ)

1
2
i

d
1
2

B+γ ,min

+ (dB−γ)
1
2
i

d
1
2

B−γ ,min

⎞
⎠≤ 2+max

i∈V

(dB+γ)
1
2
i

d
1
2

B+γ ,min

+max
i∈V

(dB−γ)
1
2
i

d
1
2

B−γ ,min

= Lmax.

(vi) Since (Lmix)ij = δij − (dB+γ)−1
i (b+

γ
)ij + (dB+γ)−1

i

(
(dB−γ)i + (b−

γ
)ij

)
by (39), we obtain

‖Lmix‖∞ ≤max
i∈V

(
2+ 2

(dB−γ)i

(dB+γ)i

)
≤ 2

(
1+max

i∈V

(dB−γ)i

dB+γ ,min

)
= Lmax.

(b) Let K = 2. Each column of U satisfies the same ODE:
dU∗1

dt
=−LmixU∗1 and

dU∗2
dt
=−LmixU∗2.

64If A ∈Rn×p and B ∈Rp×q, then

‖AB‖∞ = max
i∈{1,...,n}

q∑
j=1

|(AB)ij| = max
i∈{1,...,n}

q∑
j=1

∣∣∣∣∣
p∑

l=1

AilBlj

∣∣∣∣∣≤ max
i∈{1,...,n}

q∑
j=1

p∑
l=1

|Ail||Blj|

≤ max
i∈{1,...,n}
k∈{1,...,p}

q∑
j=1

p∑
l=1

|Ail||Bkj| = ‖A‖∞‖B‖∞.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 81

Setting v := 1
2
(U∗1 −U∗2), we obtain dv

dt
=−Lmixv with initial condition v(0)= 1

2
(U0
∗1 −U0

∗2).
Because K = 2, each entry of the vector v(0) is either 1 or −1. Thus, if for an i ∈ V , |vi(τ)−
vi(0)|< 1, then sgn(vi(τ))= sgn(vi(0)) and thus Ui1(τ) > Ui2(τ) if and only if Ui1(0) > Ui2(0),
and Ui1(τ) < Ui2(τ) if and only if Ui1(0) < Ui2(0). Thus, if for all i ∈ V , |vi(τ)− vi(0)|< 1, then
U1 =U0. If τ < τlow, it follows by (67) applied to the column vector v− v(0) instead of the matrix
U −U0 (with ‖v(0)‖∞ = 1) that, ‖v(τ)− v(0)‖∞ < 1 and thus, for all i ∈ V , |vi(τ)− vi(0)|< 1.

(c) In the notation of Lemma 5.1, we have Lmix = X�X−1. By a property of matrix exponentials, we
find that e−τLmix = Xe−τ�X−1. Lemma 5.1 shows that for each choice of Lmix, X−1 = X̃D

1
2 for some

diagonal and invertible matrix D with positive diagonal entries and for an orthogonal matrix X̃.
Hence (

e−τLmix
)T

Ce−τLmix = (Xe−τ�X−1
)T

CXe−τ�X−1

=
(

D−
1
2 X̃−1e−τ�X̃D

1
2

)T

CD−
1
2 X̃−1e−τ�X̃D

1
2

=D
1
2 X̃−1e−τ�X̃D−

1
2 CD−

1
2 X̃−1e−τ�X̃D−

1
2

=D
1
2 X̃−1e−2τ�X̃D−

1
2 ,

where the last equality follows if C=D. From Lemma 5.1 we see that D=DW if Lmix = LWrw +
γ QPrw , D=DB+γ if Lmix = LB+γ rw

+QB−γ rw
−D−1

B+γ
DBγ

QB−γ rw
, and D= I for the other choices of Lmix.

Thus with the choice of C as stated in the current lemma, we have
∥∥e−τLmix

∥∥2

Fr,C = tr
(

D
1
2 X̃−1e−2τ�X̃D−

1
2

)
= tr

(
X̃−1e−2τ�X̃

)= tr
(
e−2τ�

)= ∥∥e−τ�
∥∥2

Fr ,

where we used twice the cyclic property of the trace. Since the trace of a square matrix is the sum
of its eigenvalues, we find ∥∥e−τLmix

∥∥
Fr,C =

∥∥e−τ�
∥∥

Fr ≤ e−τλ1 .

By property (4) of the C-Frobenius norm, we conclude that

‖U(τ)‖Fr,C =
∥∥e−τLmix U0

∥∥
Fr,C ≤

∥∥e−τLmix
∥∥

Fr,C

∥∥U0
∥∥

Fr ≤ e−τλ1
∥∥U0

∥∥
Fr .

(d) Since C is diagonal and has positive diagonal entries, we compute

‖U(τ)‖Fr,C =
√√√√∑

i∈V

K∑
k=1

Cii|Uik(τ)|2 ≥ c
1
2
min

√√√√∑
i∈V

K∑
k=1

|Uik(τ)|2 ≥ c
1
2
min

√√√√max
i∈V

K∑
k=1

|Uik(τ)|2

≥ c
1
2
minK

− 1
2 max

i∈V

(
K∑

k=1

|Uik(τ)|
)
= c

1
2
minK

− 1
2 ‖U(τ)‖∞.

The third inequality follows from the Cauchy–Schwarz inequality for the Euclidean inner product
and norm applied to the vector maxi∈V |Ui∗(τ)| ∈RK and the vector of ones in R

K . Using the result
of part (c), we thus have

‖U(τ)‖∞ ≤K
1
2 c
− 1

2
min‖U(τ)‖Fr,C ≤K

1
2 c
− 1

2
mine−τλ1

∥∥U0
∥∥

Fr .

Hence, if τ > τupp, then ‖U(τ)‖∞ < θ .

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

82 Z. Li et al

Appendix D Weyl’s inequality and rank–one matrix updates

If A ∈Cn×n is a Hermitian matrix, it is known that it has n real eigenvalues λi(A) (counted according to
algebraic multiplicity), which we label according to their ordering:

λ1(A)≤ λ2(A)≤ . . .≤ λn(A).

Weyl’s inequality (which we present below without proof) gives a bound on the eigenvalues of the
sum of Hermitian matrices. That result is followed by the theorem of rank–one matrix updates (also
without proof), which illustrates why the eigenvalues of the original matrix and the rank–one update
matrix are interleaved.

Theorem D.1. (Weyl’s inequality [73]) Let A, B ∈Cn×n be Hermitian matrices. Then, for all i ∈
{1, . . . , n},

λi(A)+ λ1(B)≤ λi(A+ B)≤ λi(A)+ λn(B).

Theorem D.2. (Rank–one matrix updates [74, 75]) If A, B ∈Cn×n are positive semidefinite Hermitian
matrices and B has rank at most equal to one, then, for all i ∈ {1, . . . , n− 1},

λi(A+ B)≤ λi+1(A)≤ λi+1(A+ B).

Proof. This follows from [69, Theorem 1].

Corollary D.3. Let Lmix = LWsym + γ QPsym , where P= PNG is obtained from the Newman–Girvan null
model. Then, for all i ∈ {1, . . . , n},

λi(LWsym)+ γ ≤ λi(Lmix)≤ λi(LWsym)+ 2γ . (68)

Moreover, for all i ∈ {1, . . . , n− 1},
λi(Lmix)≤ λi+1(LWsym + γ I)= λi+1(LWsym)+ γ ≤ λi+1(Lmix). (69)

Finally, if Lmix = LWrw + γ QPrw instead, then (68) and (69) also hold, both in the original form and with
LWrw replacing LWsym .

Proof. Since DP =DW , the matrix D
− 1

2
P PD

− 1
2

P can be written as zzT , where the column vector z ∈R|V|
has entries zi = (volW(V))−

1
2 (dW)

1
2
i . Thus D

− 1
2

P PD
− 1

2
P has rank one and hence all its eigenvalues but one

are equal to zero. The only non-zero eigenvalue equals one. (It can be checked that the vector v with
entries vi := (dW)

1
2
i is a corresponding eigenvector.) Thus QPsym = I + zzT has one eigenvalue equal to 2

and |V| − 1 eigenvalues equal to 1. In particular λ1(QPsym)= 1 and λ|V|(QPsym)= 2. Because both LWsym

and γ QPsym are real symmetric matrices, from Theorem D.1 it follows that, for all i ∈ {1, . . . , n}, (68)
holds.

Since zzT has non-negative eigenvalues, it is positive semidefinite. By Lemma 2.1 also LWsym + γ I
is positive semidefinite. Since Lmix = LWsym + γ I + γ zzT , it follows from Theorem D.2 that, for all i ∈
{1, . . . , n− 1}, (69) holds.

Since LWsym and LWrw have the same eigenvalues and, by Remark 5.2, also LWsym + γ QPsym and LWrw +
γ QPrw have the same eigenvalues, the final statement of this corollary follows immediately.

Remark D.4. It can be observed in Figure 5 that there is a jump between the 9th and 10th eigenvalues of
the operators included in the plot, in the SBM example from Section 7.3 with 10 blocks. For the SBM
with strong community structure, this jump is more pronounced than for the SBM with weak community
structure. A jump in the spectrum of the graph Laplacian for a graph with a strong community structure
with K communities after the K th eigenvalue is expected and in fact a key reason why graph Laplacians
are useful for clustering; see for example [29, Section 4]. For the SBM this is confirmed by the plot in
Figure 9a; in Figure 9b we see that also for the SBM with the weak community structure a jump occurs
after the 10th eigenvalues, but a much smaller one.

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X

European Journal of Applied Mathematics 83

(a) (b)

Figure 9. SBM with strong and weak community structure (see Section 7.3 for details): spectra of LWsym

and LWrw . As expected [74], both operators have the same eigenvalues.

Let us consider the operator Lmix = LWsym + γ QPsym which is included in the plots of Figure 5. Applying
(69) yields

λ9(Lmix)≤ λ10(LWsym)+ γ ≤ λ10(Lmix)≤ λ11(LWsym)+ γ ≤ λ11(Lmix).

Hence, given the jump between the 10th and 11th eigenvalue of LWsym , there are three principal
scenarios:

1. there is a similarly large jump between λ9(Lmix) and λ10(Lmix),
2. or there is a similarly large jump between λ10(Lmix) and λ11(Lmix),
3. or there are two smaller jumps between λ9(Lmix) and λ10(Lmix) and between λ10(Lmix) and λ11(Lmix).

In Figure 5 one encounters the first scenario.
By the last statement of Corollary D.3, we can argue similarly for the eigenvalues of LWrw and Lmix =

LWrw + γ QPrw .

Cite this article: Li Z., van Gennip Y. and John V. An MBO method for modularity optimisation based on total variation and
signless total variation. European Journal of Applied Mathematics, https://doi.org/10.1017/S095679252400072X

https://doi.org/10.1017/S095679252400072X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400072X
https://doi.org/10.1017/S095679252400072X

	Introduction
	Contributions
	Paper outline

	Mathematical preliminaries
	Graphical framework
	Laplacians for unsigned graphs
	Review of the modularity function

	Reformulation of modularity optimisation
	Reformulation of modularity optimisation for binary segmentation
	Generalisation to multiple clusters

	Diffuse-interface methods
	Binary classification with graph Ginzburg"2013`Landau functionals
	Multiclass clustering with graph Ginzburg"2013`Landau functionals

	MBO schemes
	MBO schemes for binary community detection
	Numerical schemes for binary MMBO
	Closed-form matrix exponential solution
	Implicit Euler finite-difference discretisation
	Truncation

	Multiclass MMBO scheme
	Numerical schemes for multiclass MMBO
	Closed-form matrix exponential solution
	Implicit Euler finite-difference discretisation

	The modularity MBO algorithms
	Choice of the time step
	MMBO scheme using the closed-form solution of the linear-dynamics step
	Alternative variant of the MMBO scheme
	Nystr"00F6`m extension with QR decomposition

	Numerical studies
	Related algorithms, null model and additional evaluation metrics
	Related algorithms
	Null model for modularity optimisation
	Additional evaluation metrics

	MNIST
	Stochastic block model
	Two cows

	Conclusion and future research
	References
	Appendix A Multiple-well potential with 1-norms and 2-norms
	Appendix B Proofs of Lemmas 5.1 and 5.5
	Appendix C Proof of Lemma 6.1
	Appendix D Weyl"2019`s inequality and rank"2013`one matrix updates

