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A THREE-DIMENSIONAL POLAR ICE-SHEET MODEL

By D. JENSsEN
(Meteorology Department, University of Melbourne, Parkville, Victoria 3052, Australia)

ABSTRACT. A three-dimensional model of the temperature and velocity distribution within any arbitrary-
shaped ice mass is described. There is a mutual interaction in the model between the flow of the ice and
its thermodynamics, since the flow law used in the model is temperature-dependent.

Ice growth in three dimensions is governed by mass accumulation through precipitation, by mass depletion
through loss of ice over the ocean, and by continuity requirements. Phase changes at the base of the ice are
accounted for. The model has been applied in an exploratory manner to the Greenland ice sheet. Changes
in the ice shape and temperature are presented and discussed. The basic shortcoming of the model as here
presented appears primarily due to the coarse finite-difference mesh used, and to an unsophisticated approach
to modelling the boundary ice.

ResuME, Un modéle tridimensionnel de calotte glaciaire polaire. On décrit un modéle tridimensionnel de la
distribution des températures et des vitesses dans une calotte glaciaire de forme arbitraire. Il y a dans le
modéle une interaction mutuelle entre 'écoulement de la glace et sa thermodynamique puisque la loi
d’écoulement utilisée dans le modéle dépend de la température.

La croissance de la glace dans trois dimensions dépend de I'accumulation par les précipitations, des
pertes de glace dans les Océans et des lois de la continuité. On prend en compte les changements de phase
a la base de la glace. Le modéle a été appliqué a titre exploration au Groenland. On présente et on discute
les changements de forme et de température, Le défaut de base du modéle tel qu’il est présenté parait en
premier lieu da A la maille grossiére du systéme aux différences finies utilisé ainsi qu’a une approche peu
perfectionnée de la modélisation des limites de la glace.

ZUSAMMENFASSUNG. Ein dreidimensionales Modell fiir polare Eisdecken. Es wird ein dreidimensionales Modell
der Temperatur- und Geschwindigkeitsverteilung in einer beliebig geformten Eismasse beschrieben. Da das
im Modell benutate Fliessgesetz temperaturabhangig ist, besteht im Modell eine Wechselwirkung zwischen
dem Eisfluss und seiner Thermodynamik.

Die Zunahme des Eises in drei Dimensionen wird von der Massenakkumulation durch Niederschlag,
vom Massenverlust durch Kalbung in den Ozean und durch die Kontinuititsbedingung gesteuert. Phasen-
wechsel am Untergrund des Eises werden beriicksichtigt. Das Modell wurde versuchsweise auf das grin-
lindische Inlandeis angewandt. Anderungen der Form und der Temperatur des Eises werden dargelegt und
diskutiert. Der grundlegende Nachteil des Modells, wie es hier vorgestellt wird, scheint vor allem darin zu
liegen, dass ein grobes Netz der finiten Differenzen benutzt und der Eisrand nur mit einer einfachen
Anniherung erfasst wird.

1. INTRODUCGTION

Historically, the first attempts to model glaciers by computer concerned the temperature
distributions in polar ice sheets (Bogoslovskiy, 1958; Jenssen and Radok, 1961, 1963). In
these calculations, simple one-dimensional heat-conduction models were used to determine
steady-state vertical temperature profiles. Later studies retained the one-dimensional system
but introduced special transient states in which the velocities along a flow line were prescribed
or determined from mass conservation and defined changing boundary conditions of tempera-
ture and accumulation rate. This made it possible to deduce areas of melting and freezing
along the bedrock, trajectories of particles through the ice (and hence ages and residence
times), temperature-dependent absorption rates for radar signals, etc. Full details may be
found in Budd and others (1971).

A more recent development has been the computer modelling of glacier flow for the
isothermal case in which the ice deformation may be assumed in first approximation to
depend on stress alone, even though there is now ample experimental evidence that other
factors such as crystal orientation and size, impurities and melt water play at least comparable
roles. The first of these glacier-flow modelling calculations was carried out for a simple
dynamical system in three dimensions by Campbell and Rassmussen (1970) ; later Budd and
Jenssen ([1975]) developed a two-dimensional model which includes longitudinal strain-rate
differences in the balance of forces and deduces the flow velocity at any point from a theoreti-
cally based relationship in terms of the local ice thickness and surface slope which Budd and
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Allison ([1975]) showed to give a close approximation to the observed velocities of a number
of well-documented glaciers.

The model of the present paper represents a first attempt at combining these main strands
of glacier modelling by computer. It treats the mutual interaction of velocity and temperature
in a three-dimensional coordinate system with realistic boundaries resembling those of a large
polar ice sheet. The preliminary results are presented to test the model and identify com-
putational problems which must be solved before a full-scale modelling experiment can be
attempted on a large compnuter.

2, OUTLINE OF THE MODEL
2.1. The equations used
The core problem is that of integrating the three-dimensional heat-conduction equations:

3T
p.:iaT — Vk-VT—peV-VT+EV2T+peq. (1)

Here ¢ (units K s7*) is the heating within the ice due to friction, T (K) is the absolute tem-
perature of the ice, p (kg m~3) is the density, ¢ (J kg~* deg~1) is the specific heat capacity, k
(W m~* deg™') is the thermal conductivity, and V is the three-dimensional velocity.

V =iutjotkw = v-|Ekuw,

where , v and w are the components of velocity and i, j and k are unit vectors along x,» and z.

The coordinates for this equation are the common rectangular (x, 9, 2, t) system with 2
directed downwards from an origin at sea-level. Since the upper and lower boundaries of the
ice are not horizontal—inasmuch as the surface is assumed to have any arbitrary shape, as
does the bedrock beneath, and melting is a function of the computations—there will be parts
of these boundaries which cross the axes, leading to difficulties in the computational stage
when derivatives are replaced by finite differences. Furthermore, the changes in horizontal
and vertical disposition of the ice (as the ice mass changes shape in time) will mean that some
particular points of the finite-difference grid will sometimes be in air, sometimes in water,
sometimes in ice. Thus boundary errors may be quite large unless great care is taken,
generally by decreasing the grid size (and therefore the time step), and using highly accurate
finite differences near the edges of the ice.

On the other hand, this problem may be overcome quite simply by a change in the
vertical coordinate. The equations which result are considerably more complex than those
above, but since the number of points in the grid does not have to be increased, nor the time
step decreased, nor special finite differences applied near the boundaries, the computation is
considerably quicker and more accurate.

A new coordinate, {, is defined:

 2+M4F+D  E+z
= D =2 D » (2)
where M is the total melt beneath the ice, D is the depth of the ice, F is the bedrock height
and E the ice surface elevation (all measured above the arbitrary, fixed reference level: sea-
level). Tt is clear that all the ice is always contained between the levels { = o (the surface)
and { = 1 (the lower boundary between ice and water or ice and bedrock), and that as the
ice grows or shrinks, the vertical coordinate automatically expands or contracts.

This “mapping” of the (x,, z,t) system into a non-orthogonal set of axes (x,, {, t) is
quite analogous to the s-coordinate system developed by Phillips (1957) for numerical weather
forecasting. Both new systems share the relative disadvantage that simple derivatives become
transformed into much more complex forms. Techniques whereby these transformations may
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be developed will be omitted here, but may be found for example in Haltiner (1971). It
may be shown that:
1 07T

V.T = VCT—}—BEEE, (3a)
1 0T 1 0T 1 2T 1 6T Oe
VaT = VEZTfQG'V,: [Bﬁ] —|—Ba—c V-E+E£-a?e.€+ﬁa—€e.a_€, (3b)
and
1 0T 1 ok 1 0T ¢k
Vzk'VzT= Vck'VET—}—E E Vk‘E—I—E a_c (VgT' E) —*—E'&' ','(}'E €€, (SC)

where V, =i(2/¢x)+j(2/2y) +k(1/D)(2/2¢), € = V(E—{D), and the subscripts refer to the
coordinate systems. No subscript indicates independence of either set of axes.

The increased complexity of the terms of Equation (1) in the {-system involves only a
moderate increase in programming and computation time, which is far outweighed by the
very decided advantage of automatic removal of some of the more difficult boundary problems.

The following equations, needed to complete the model, will not be discussed in detail ;
their interpretation can be found in Budd and others (1971) and Budd and Jenssen ([1975]).

Heat input into the ice mass both from below and from internal viscous dissipation is
given, for basal heating only, by

oT peD
il = P s
|57, = 2 (r-22 oo vm)), ()
where g is the acceleration due to gravity, and I' is the geothermal heat flux. The second
term represents the contribution made to the base gradient by frictional warming, in which
vy and 7y, are the basal horizontal velocity and the base stress.
The heating by frictional dissipation inside the ice mass is
g ov
= = V(B b

where 9v/?{ has a number of analytic forms or is determined directly from the observed and
experimental data. In this latter case the lower boundary condition is best chosen to be not

Equation (4a) but rather
0
[%] = r'D. (4¢)

Thus heating in the general case results from viscous dissipation and from the input to the
base due to the geothermal heat flux.
When phase changes occur, Equations (4a) and (4¢) are replaced by

Tb == Tpm, (5)
as a lower boundary condition. The pressure melting temperature T, may be taken (sce,
for example, Dorsey, 1940) to be a simple function of depth: Ty = 273 K— (0.007 7 K/m) D.

It may be shown quite readily (see Budd and others, 1971) that the amount of melt is
simply proportional to the difference between the computed temperature gradient [27/8(]¢
(using Equation (5)) and the basal heat input. Thus

k 0T cT
’”UTD{[i]r[a—f]c}- ©)

Here L is the latent heat of fusion, and [67]¢{]p is given by either Equation (4c) for
generalized flow, or is given by Equation (4a) for columnar motion. The quantity on the
right-hand side of Equation (6) is a positive quantity for melting, and negative for freezing.
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Continuity of mass for the local element, for the entire ice flowing through a column
above the bedrock, and for the amount of melt water is governed by the equation

-~

v ow

V::V=0 or DVgV+€'a—C T (7)
(note that here w = dz/dt and not d{/dt) and
oD
%:A—mfvz (vadc), 8)

where m is the instantaneous amount of melt, m = 2M/2t, and A is the surface rate of accretion
(or ablation) of matter.
The total amount of melt at any location above the bedrock is simply:

M = (md, (9)

where m is found from Equation (6).

Finally, as described by Budd and Jenssen ([1975]) the horizontal velocity at any point
within the ice mass is found by integrating the shear strain-rate 8v/?{ using a table of empirical
values of that quantity as a function of temperature and stress. With the stress defined by:

r = pglDV(D+H), (10)
the table look-up is easily effected and leads to:

v=DJ.;—EdC+vb. (11)

Here vy, is the velocity at the lower ice boundary, and, for no slip, is zero.
With the horizontal velocity known, the vertical component of motion is found using the
equation of continuity for an element of the ice (Equation (7)) and integrating vertically:

wg = — f (Dvg-v—ﬁ—e-?—z) dl+wp, (12)

where wp (= vy VH) is the vertical velocity at the base of the ice and w, is the (x,, 2, 1)
vertical velocity at { = a. Once again it must be remembered that w = dz/d? and not d{/dz.

2.2, The flow law used

As mentioned above, the horizontal velocity is determined by integration of the shear
strain-rate, which is in turn a function of temperature and stress. The relation used is an
empirical one, based on laboratory and field measurements, and presented in graphical form
by Budd (1969) in his figure 2.2. For the model, the curves of that diagram were transformed
into tabular form (Table I).

With stress computed by Equation (10) and temperature computed through Equation (1),
the Table allows strain-rate to be found for any point. Integration along a vertical in the
mass (Equation (11)) will give the horizontal velocity v which is broken into its x and »
components.

2.9. Temperature conduction of bedrock

Over long periods of time, the temperature profile in the underlying bedrock will vary
with time in what may in all probability be a complex interaction with the temperature
profile of the ice mass above. Since this pilot model was to be used to test its feasibility, and
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TaBLE I. LOGARITHM OF STRAIN-RATE IN s~ AS A FUNCTION OF STRESS AND TEMPERATURE

Logarithm of octahedral shear stress in bars

Temperature

°C —1.0 —o0.8 —0.6 —0.4 -0 0.0 0.2 0.4
0 —0.22 —B8.96 —8.70 —8.43 —8.12 —17.69 —7.07 —6.23
—5 —9.08 —9.78 —0.56 —9.28 —9-97 —8.62 —8.14 —7.66
- 10 —10.28 —10.08 —0.86 —9.63 —q.38 —9.10 —8.71 —8.29
—20 —10.77 —10.56 —10.35 —10.12 —0.84 —9.56 —9.23 —8.82
—30 —I1.23  —I110o0o —10.80 —10.59 —10.37 —10.12 —0.82 —9.42
—40 —11.70 —11.50 —11.30 —II.10 —10.86  —10.60 —10.31 — 10.00
—50 —12.16 —11.96 —11L.75 —1L.56 —11.36  —11.16 —10.87 -10.53
—bo —12.55 —12.35 —12.15 —11.95 —I1L75 —1L.55 — 11.35 —11.00
—70 —12.87 —12.67 -12.47 —12.27 —12.03 = —I'L:75 — 11.4T

was to be used only for short periods of time (less than 5000 years), heat conduction in the
bedrock was ignored. There was, then, the further assumption that this effect was a second-
order one. On the practical side, inclusion of points in the bedrock would increase either (or
both) the time of the computation or the number of points in the grid. Since both time and
space of the computer used were being stretched simply by the basic model, the refinement of
bedrock conduction was not added.

3. COMPUTATIONAL DETAILS

3.1. The basic procedure

The use of the heat-conduction and continuity equations on a computer requires addi-
tional theory, amendment and information. The exact derivatives must be replaced by
finite differences (so that a three-dimensional mesh must be chosen to cover the area of
interest) ; the time step of the integration procedure must be consistent with the mesh intervals
in order to avoid computational instability; and suitable boundary and initial conditions
must be chosen. In addition, and with the object of saving computer time, the integration for
this particular model does not proceed at the same pace for all grid points: some regions will
have many integrative steps, with a small time interval, whilst others will have few steps, but
with a large time interval.

The skeleton of the computational procedure is as follows:

(i) Assuming that temperatures everywhere within the grid are known (see below), the
velocity distribution (both horizontal and vertical) is computed.

(i) With a value for the time step involved in the integration correctly chosen so as to
satisfy the stability criterion at the given location (see below), the temperature changes within
the ice are found and hence the new temperature distribution is determined. The heat-
conduction equation used for this step is a modified and simplified form of Equation (1) in the
{-coordinate system.

(iii) The continuity equations for depth and melt are then satisfied, and any base tem-
peratures in need of correction are adjusted.

(iv) ‘The ancillary computation of trajectory locations is made.

(v) Steps (i) to (iv) are repeated until the integration time is some arbitrary amount.

(vi) The ancillary computation of dielectric absorption, both per unit depth and through-
out the entire ice depth, is made.

(vii) Relevant parameters are then printed out. These include the two-dimensional
fields: surface and basal temperature distribution; minimum temperatures at all verticals
within the ice, and the depth at which these low values occur; the surface and basal computed
temperature gradients; distribution of melt water; the mean temperature of the ice in any
vertical; the effective ““mean absorption temperature”, that is the temperature a column
would have to have, if, when isothermal, the dielectric absorption were to be the same
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as that computed at that location; the surface horizontal streamlines; and the vertical velocity
distribution. See Budd and others (1971) for a further discussion of these quantities.
Another important output statistic is the mass budget for the entire ice mass—and this
includes accumulation and ablation areas, loss due to melting, and loss of ice at the horizontal
edges of the ice due to “calving”. Local mass budgets for regions of particular interest are also
made. Floating ice, attached to the main mass, is followed until calving occurs.
(viii) The process recycles back to step (i) until the full computation time has been reached.

The computational problems involved in this procedure are discussed in detail in a separate
report (to be published by D. Jenssen). The main problems concern the stability of the
finite-difference algorithms and the parameterization of the spread of the ice sheet over the
oceans.

3.2. Computational stability

For the simple one-dimensional case, it can be shown that in order to preserve stability

and to damp errors, preventing thzir exponential growth, the time and space increments
must satisfy the following relation:

DAL 2k
A < 5in [3—81{—‘5271—21 . (13)

The non-linearity, and three-dimensional nature, of Equation (1) make the determination
of its stability criterion very much more difficult. However, if it is realized that the time step
depends on the smallest grid spacing, which is the vertical, then Inequality (13) must be a
good approximation to the true stability criterion. (The horizontal spacing is measured in
tens of kilometres, the vertical in tens of metres.) The non-linearity of the heat-conduction
equation will probably reduce the maximum time step slightly, if at all. Pragmatically,
Inequality (13) has been used in the preliminary three-dimensional model calculations to
determine the maximum time step which can safely be used, and no evidence of computa-
tional instability has been found. With Inequality (13) violated, however, forward time
integration did in fact very quickly Jead to the meaningless results typical of computational
instability.

Now examine the stability criterion (1) in more detail. Since the number of points in
the vertical is the same for all points of the grid, A{ is constant, and thus the time step, At, is
roughly proportional to the square of the ice thickness. It would appear that to avoid com-
putational instability, the choice of the time step is governed by the thinnest ice which will be
encountered in the grid which has been arbitrarily set at 50 m. If, say 509, of the ice is of
reasonable thickness, then a large time step (100 years or so) may be used. For the thinnest
ice, which probably will not occupy more than a maximum of 10%, of the grid, the time step
must be less than 1 year—and may even drop to 0.1 years. Thus if the same value of Al is
used over the entire mesh, gross inefficiency in computation time will result: the heat con-
duction equation for the points of thick ice will be integrated perhaps a thousand times when
in fact one integration with a value of At a thousand times larger would have produced the
same temperatures.

To avoid this inefficiency, different values of the time step were used in regions of different
ice thickness, so that if the largest time step permissible anywhere in the grid is Af,,,, then at
any arbitrary point the time step At is such that At = NAt, where N is an integer. This
means that while the integration proceeds at different paces in different spots, every Af,..
all these independent integrations “mesh” together. Of course, none of the At used violate
the stability criterion, so that not only is computational stability preserved, but also the
computation of temperatures proceeds everywhere at an optimum speed.
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3.3. Changes in horizontal extent of the grid

During the course of the computation, as the ice grows or shrinks horizontally, or as it
flows over the ocean, the type of material at a grid point may change, so that the computations
performed there will change in frequency and nature, and “shocks” at the boundary may be
set up. The coarser the grid, the more severe will be these shocks, unless special “tracking”
procedures (equivalent to having a very fine grid along the boundaries of the more coarse one)
are utilized.

For any complete study, the ice flow past the grid boundaries must be treated from time
step to time step, much in the same manner as the glacier snout was followed computationally
in the model of Budd and Jenssen ([1975]). For the present preliminary three-dimensional
computations, however, no such treatment has been made. The discussion of the results
obtained (see below) will show the effect of neglecting this.

3-4. Ice shelves and calving icebergs

As mentioned earlier, the minimum ice depth considered has been about 50 m. Any
thinner ice results in so small a time step that computation time becomes prohibitively large —
especially when it is noted that total integration times of the order of hundreds of thousands of
years may be required.

"This restriction can of course be varied according to the size of the ice sheet, and with the
times over which an integration is to be performed. It has the advantage of allowing calving
to be treated in a very simple manner. Whenever the depth becomes smaller than the cut-off
value chosen, all ice at that point is removed from the grid (provided that the point is in the
ocean and that at least one of its eight closest neighbours is also in the ocean, and has a depth
less than the minimum figure). The ice removed in this manner is thought of as a detached
iceberg, and is no longer treated.

If the ice depth is less than 50 m but the point is over the bedrock, or if all its neighbouring
points have ice thicker than this minimum figure, the point in question merely represents a
local deep depression, and cannot possibly calve away from the main ice mass. Such special
points are tagged, and either arbitrary temperature distributions assigned to them (of a
steady-state nature) or they are given temperatures which are weighted averages of the
surrounding ice temperatures. Thus velocities may be computed for these anomalous points,
and continuity requirements may be satisfied as well. In this manner ice may grow over the
bedrock, or extend, without calving, over the oceans to form ice shelvcs.

For the ice over the land, the temperature and velocity are not computed by the main
equations of the model until the thickness exceeds 50 m. Over the sea, ice velocity and tem-
perature are always weighted averages of the surroundings, This simplistic approach to
ice-shelf dynamics and thermodynamics is one feature of the model which must be treated
more realistically in any larger-scale study.

4. REsvurTs
4.1. Grid, time steps, initial conditions

"The model outlined above has been tested by means of a coarse representation on the
Greenland ice sheet. For this pilot study an IBM 7044 machine was used. Its restricted
capacity imposed the choice of a 12 % 12 % 10 (vertical) point grid; the east-west grid spacing
was 100 km, the north-south spacing 200 km, while the vertical spacing varied from 5 to
300 m.

The boundary of this grid is shown in Figure 1. Also shown in this figure is the land
extent of the grid: any points between the interior and exterior boundaries were considered to
be oceanic. This is obviously not true for those points midway on the east coast of Greenland,
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but the main purpose of this preliminary study was a thorough testing of the model and of
the program based on it. The uneven land boundary on eastern Greenland was deliberately
chosen to examine the effects of various backward finite-difference operators on the calcula-
tions. Note the almost isolated point seven rows from the northern boundary: a similarly
isolated point exists at the southernmost land point of the Greenland grid.

Another feature of Figure 1 is that those grid points which initially had no ice (thickness
less than 50 m) are shown as open circles. Figure 1 also shows isochrones of the initial time
step (which changed with the ice thickness during the integration). In order to speed up the
computation, points with less than 50 m of ice and with local time-step values less than 19
of the maximum permissible for the grid were assigned steady-state temperatures or the average
of the surrounding temperatures, and treated only in the continuity equation, until both the
ice thickness exceeded 50 m and the local time step had become larger than 19, of the
permissible grid maximum.

‘The surface accumulation, based on Mock (1967) is shown in Figure 2. Oceanic values were
assumed to be zero in the pilot calculation; this produced strong accumulation gradients
along the western and south-castern coasts and had important effects on the calculations.

Figure 3 shows the bedrock (broken lines) and surface elevation contours (solid lines) used
in this study. These are based on data from Bader (1961) and Holtzscherer and Bauer
([1956]). The corresponding ice thickness distribution is given in Figure 4 as the dashed lines:
the solid lines are computational results, and are discussed below.

Surface temperature is a boundary condition ; values of this parameter are given in Figure
5, based on data in Mock and Weeks (1965). However the full temperature field must
initially be prescribed, and this distribution should be consistent with the model equations,
in order to avoid spurious rates of temperature change which may amplify during the time
integration (especially in view of the velocity/temperature feedback) to produce eventually
small but significant variations in the temperature and motion fields.

To prevent this from happening, the initial temperatures were computed with the one-
dimensional steady-state model of Budd and others (1971), and used as a first guess to the
true temperatures by inputting them to the three-dimensional model. The surface tempera-
ture was forced to be constant in time, and, as well, no change in the shape, extent, or thickness
of the ice field was allowed. Mass outflow from the edge of the ice was permitted, however.
With these restrictions, the temperature distribution adjusted so that 87/¢t at any point
decreased in magnitude and approached zero, that is reached a steady state. Since the
velocity distribution was still being calculated (and used as a source of frictional heating), it
remained consistent with the temperature pattern.

"This computational approach to the steady state is rather slow: for the present case, some
120 000 years of simulated time were required to have a rate of change in temperature
everywhere of less than o.01 deg/100 years.

It is not feasible to show graphically the entire three-dimensional temperature field, but a
sensitive parameter which has been extensively used in previous studies is the basal tempera-
ture. This is shown in Figure 6, and, for comparison, the initial basal temperatures of the
one-dimensional steady-state model are given in Figure 7. Considerable differences in the
extent of basal melting are indicated between the (assumed) initial and (computed) steady
states; these are due almost entirely to the coarse nature of the vertical grid which could not
cope adequately with the rapidly changing temperature gradients, and hence heat fluxes,
near the base of the ice. Even so the actual temperature differences are only of the order of a
few degrees and readily reducible (though not completely removable), by increasing the
vertical resolution.

"T'he zelocity distribution corresponding to the computed temperatures is shown in Figure 8;
broken lines give the initial value and full lines those developing subsequently. For compari-.
son Figure g gives the velocities deduced from assuming a balanced mass flow over Greenland..
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Both patterns show a region of very high velocity near the west coast with quite low velocities
over the central and part of the eastern portion of Greenland. The computer model is unable
to match velocities along the east coast because the ice there is so thin that it is excluded from
the velocity computations.

Apart from this difference there remain enough discrepancies between Figures 8 and g to
suggest that the ice velocity distribution in the Greenland ice sheet is not consistent with the
assumption of balanced flow. This is further underlined by the results of a transient one-
dimensional temperature and velocity calculation along the lines described by Budd and
others (1971). The resulting velocities are reproduced in Figure 10 and (disregarding
magnitudes which involve a simple adjustable parameter) the general pattern is very close to
that of the computed steady-state velocities in Figure 8.

4.2. Resulls of a 1 000 year calculation

With the grid initial inputs and time steps of Section 4.1, the integration of the basic
equations (Section 2) allows temperatures, velocities, ice shape, and ice extent to be computed
at any future time.

L1 B8 BO® 72° 84" 56°48740°32024%14* 8° O° L.Ad 6=
r 7
JBe
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b

| eae

58* 52* 48 44° 40" 38 32= 28° 24°

Fig. 11. Base temperatures after 1 000 years. The basal temperalures (°C) obtained by a forward time integration of 1 000
years. These are consistent with the ice thickness data of Figure 4, and the isotach pattern of Figure 8. Hatched area
indicates basal temperatures greater than the pressure melting point.
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The full lines in Figure 4 show the ice thicknesses which have developed after 1 000 years
of unrestricted low. The 3 000 m contour has enlarged, and the maximum thickness of the ice
has shifted slightly towards the west, where all ice thicknesses have increased markedly.
Growth of the ice to the east has not been nearly so pronounced, due to the thinner and colder
ice there, which will lead to much smaller velocities—see also F igure 8. A very rapid build-up
of ice has occurred to the west at about lat. 68° where a small pocket of depths greater than
3 000 m can be observed. This points out a deficiency in the present model associated with
the very coarse grid used (100 km west to east and 200 km north to south): in the integration
of the continuity equation, the large distances over which the finite differences are taken tend
to produce a smoothing effect, and to reduce the mass flow at any particular point. Near the
edges of Greenland, in spite of allowing mass transfer to the oceans, this will produce the
bank-up of material of Figure 4.

The base temperatures (Fig. 11) show an interesting phenomenon over the west of Green-
land; due to the increased ice thicknesses and higher surface elevations, the consequent
decrease in surface temperatures has produced a marked decrease in base temperature, and
contracted basal melting to a much narrower region. In fact on the west coast the tempera-
tures have fallen to below —5°C. The velocities at 1 000 years (full lines in Figure 8) show a
general increase over most of Greenland and a somewhat more complex pattern with the
formation of a region of high speeds to the south-west, The areas of greatest velocity near the
coast also correspond to the growth of oceanic ice shelves.

5. Discussion

Since Figure 11 shows that the base of the ice has cooled near the western extremitics, the
velocity increases there must be due to the greater ice thickness with the consequent increased
surface slopes.

On the other hand the rapid decrease of velocity between these maxima and the edge of
the grid arises directly from the colder ice temperatures. This slowing down of the ice flow
will also contribute to the banking-up of the ice near the coast.

We have therefore the following sequence of events for this particular case: due largely, it
is thought, to the coarse grid, but also to the accumulation distribution and possibly the flow
law used, the ice grew rapidly near the west coast; the surface slope increased and so therefore
did the velocity; at the coast, however, the increased surface elevation led to colder tempera-
tures and lower velocities—the ice flow was impeded; the ice depth increased and the surface
slope increased; and so forth. Thus the velocities near the coast became larger rapidly, whilst
those at the coast did not increase so quickly, and mass accumulated at the western edge of
Greenland.

Restated, in computational terms for the inadequate form of the model here considered:

(i) The coarse vertical spacing leads to incorrect lower temperatures, with the implica-
tion of large heat inputs: this, in turn, will lead to a spuriously high velocity distribution.

(ii) The coarse horizontal spacing leads to smoothing out of features inland with a
consequent lowering of velocity there.

(iii) The coarse horizontal spacing near the coast exaggerates the surface slope, and hence
the velocity, creating a large mass flow. This is prevented from leaving the grid because

(iv) the coarse horizontal spacing at the coast, coupled with the inferior method of
allowing for floating ice shelves cannot transport mass away from the central land mass.

(v) The coarse horizontal spacing also contributes to the mass barrier on the west
because it implies a large horizontal gradient of accumulation near the coast,

These deficiencies of the model interact with each other in an unstable feed-back
mechanism so that mass builds up excessively on the western coast ever more quickly. Shortly
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after 1 000 years, in fact, the surface slopes computed within the model became so large that the
concomitant base stresses exceeded the maximum allowed for in the table, and the computa-
tion was terminated.

On the credit side it may be claimed that the equations of the model are realistic since they
lead to three-dimensional distributions of temperature and velocity consistent with those
obtained from two other, independent, one-dimensional models (the steady and transient state
models of Budd and others (1971)). Differences between these three models are merely
those to be expected when a basic model is successively made more realistic and hence more
complex.

For the first time, velocity and temperature have been made mutually interactive for a
three-dimensional ice mass, and their distributions at any time are consistent in regard to
temperature, motion, continuity, ice thickness, and mass flow. Moreover the model permits
the generation of floating ice to be followed, as well as mass loss by calving.

6. OuTLOOK

The non-realistic character of the results presented has been found to be directly attribut-
able to the coarse grid used in the study—this in turn being dictated by the computer which
was employed. Clearly future calculations must use a very much finer grid, both horizontally
and vertically, together with the corresponding smaller time steps and superior forms of finite
difference analogues.

Once the troubles arising from the coarse grid are removed, there still remains much
experimental and exploratory work in order to determine the effects of various parameters.
The results of the calculations may be found to be critically sensitive to changes in values of
some of these, not so to others. Experimentation will determine those whose value must be
specified accurately, and may show how the computations could be simplified for those which
have only secondary effects on the results. In this area, the following must be studied:

(i) the heat input: integrations with both basal and layer frictional heating;

(ii) phase changes: incorporated, parameterized, or ignored;

(iii) horizontal derivatives: all incorporated, some incorporated, or all ignored;

(iv) continuity: used at every time step, or only once every time step;

(v) geothermal heat flux: constant everywhere, or point variable;

(vi) carrying the computation into the bedrock: changes in the bedrock/ice interface
temperature will of course affect the heat influx, and over long periods can lead to
significant changes in the boundary ice temperature;

(vii) treatment of the flow of the melt water;

(viii) lubrication of the ice by melt water: the decreased basal stress which results.

These are purely physical considerations; computational experimentation must include:

(i) stability: is relaxation of the criterion possible? If so, by how much?
(ii) the minimum ice thickness: what should this be?

Once this exploration has been accomplished, computational procedures clarified, and
some parameterization formulated (if this is possible), the flow law must be thoroughly
studied. The values of its parameters must be changed and the resulting distributions analysed.
Its form also may need modification. Over the oceans, various flow models, of increasing
subtlety, must be treated. Clearly a good deal of ground remains to be covered before the
behaviour of the polar ice sheets can be adequately modelled.

MS. received 1 July 1974 and in revised form g3 March 1977
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