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Abstract
In this paper, we investigate an initial-boundary value problem of a reaction–diffusion equation in a bounded domain
with a Robin boundary condition and introduce some particular parameters to consider the non-zero flux on the
boundary. This problem arises in the study of mosquito populations under the intervention of the population replace-
ment method, where the boundary condition takes into account the inflow and outflow of individuals through the
boundary. Using phase plane analysis, the present paper studies the existence and properties of non-constant steady-
state solutions depending on several parameters. Then, we prove some sufficient conditions for their stability. We
show that the long-time efficiency of this control method depends strongly on the size of the treated zone and the
migration rate. To illustrate these theoretical results, we provide some numerical simulations in the framework of
mosquito population control.

1. Introduction

The study of scalar reaction–diffusion equations ∂tp −�p = f (p) with a given non-linearity f has a long
history. For suitable choices of f , this equation can be used to model some phenomena in biology such
as population dynamics (see e.g. [4, 16, 25]). To investigate the structure of the steady-state solutions,
the semilinear elliptic equation �p + f (p) = 0 has been studied extensively.

Many results about the multiplicity of positive solutions for the parametrised version�p + λf (p) = 0
in a bounded domain are known. Here, λ is a positive parameter. Various works investigated the number
of solutions and the global bifurcation diagrams of this equation according to different classes of the
non-linearity f and boundary conditions. For Dirichlet problems, in [15], Lions used many ‘bifurcation
diagrams’ to describe the solution set of this equation with several kinds of non-linearities f and gave
nearly optimal multiplicity results in each case. The exact number of solutions and the precise bifurcation
diagrams with cubic-like non-linearities f were given in the works of Korman et al. [13, 14], Ouyang and
Shi [18], and references therein. In these works, the authors developed a global bifurcation approach to
obtain the exact multiplicity of positive solutions. In the case of one-dimensional space with a two-point
boundary, Korman gave a survey of this approach in [12]. Another approach was given by Smoller
and Wasserman in [24] using phase plane analysis and the time mapping method. This method was
completed and applied in the works of Wang [28, 29]. While the bifurcation approach is convenient to
solve the problem with more general cubic non-linearities f , the phase plane method is more intuitive
and easier to compute.
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Figure 1. Sketch of the functions f and F.

Although many results were obtained concerning the number of solutions for Dirichlet problems,
relatively little seems to be known concerning the results for other kinds of boundary conditions. For the
Neumann problem, the works of Smoller and Wasserman [24], Schaaf [21], and Korman [11] dealt with
cubic-like non-linearities f in one dimension. Recently, more works have been done for Robin boundary
conditions (see e.g. [3, 22, 33]), Neumann–Robin boundary conditions (see e.g. [27]), or even non-
linear boundary conditions (see e.g. [6, 7] and references therein). However, those works only focused
on other types of non-linearities such as positive or monotone f . An analogous problem with advection
term was studied in [31, 30] for cubic-like non-linearities, but in these works, they used a homogeneous
non-symmetric Robin boundary condition to characterise the open or closed environment boundary.
To the best of our knowledge, the study of inhomogeneous symmetric Robin problems with cubic-like
non-linearities remains quite open.

In this paper, we study the steady-state solutions with values in [0, 1] of a reaction–diffusion equation
in one dimension with inhomogeneous Robin boundary conditions:

∂tp
0 − ∂xxp

0 = f (p0), (t, x) ∈ (0, T) ×�, (1.1a)
∂p0

∂ν
= −D(p0 − pext), (t, x) ∈ (0, T) × ∂�, (1.1b)

p0(0, x) = pinit(x), x ∈�, (1.1c)

where �= (−L, L) is a bounded domain in R, time T > 0. The steady-state solutions satisfy the
following elliptic boundary value problem:

−p′ ′(x) = f (p(x)), x ∈ (−L, L), (1.2a)
p′(L) = −D(p(L) − pext), (1.2b)

−p′(−L) = −D(p(−L) − pext), (1.2c)

where L> 0, D> 0 and pext ∈ (0, 1) are constants. The reaction term f : [0, 1] →R is of class C1, with
three roots {0, θ , 1} where 0< θ < 1 (see Figure 1(a)). The dynamics of (1.1) can be determined by the
structure of steady-state solutions which satisfy (1.2). Note that, by changing variable from x to y = x/L,
then (1.2) becomes p′ ′(y) + L2f (p(y)) = 0 on (−1, 1) with parameter L2. Thus, we study problem (1.2)
with three parameters L> 0, D> 0 and pext ∈ (0, 1).

The Robin boundary condition considered in (1.1) and (1.2) means that the flow across the boundary
points is proportional to the difference between the surrounding density and the density just inside the
interval. Here, we assume that pext does not depend on space variable x nor time variable t.

The existence of classical solutions for such problems was studied widely in the theory of elliptic
and parabolic differential equations (see, e.g. [19]). In our problem, due to difficulties caused by the
inhomogeneous Robin boundary condition and the variety of parameters, we cannot obtain the exact
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multiplicity of solutions. However, our main results in Theorems 2.2 and 2.3 show how the existence of
solutions and their ‘shapes’ depend on parameters D, pext and L. The idea of phase plane analysis and
time mapping method as in [24] are extended to prove these results.

Since the solutions of (1.2) are equilibria of (1.1), their stability and instability are the next problems
that we want to investigate. The stability analysis of the non-constant steady-state solutions is a deli-
cate problem, especially when the system under consideration has multiple steady-state solutions. In
Theorem 2.5, we use the principle of linearised stability to give some sufficient conditions for stability.
Finally, as a consequence of these theorems, we obtain Corollary 2.1 which provides a comprehensive
result about existence and stability of the steady-state solutions when the size L is small.

The main biological application of our results is the control of dengue vectors. Aedes mosquitoes are
vectors of many vector-borne diseases, including dengue. Recently, a biological control method using an
endosymbiotic bacterium called Wolbachia has gathered a lot of attention. Wolbachia helps reduce the
vectorial capacity of mosquitoes and can be passed to the next generation. Massive release of mosquitoes
carrying this bacterium in the field is thus considered as a possible method to replace wild mosquitoes
and prevent dengue epidemics. Reaction–diffusion equations have been used in previous works to model
this replacement strategy (see [1, 2, 26]). In this work, we introduce the Robin boundary condition to
describe the migration of mosquitoes through the boundary. Since inflows of wild mosquitoes and out-
flows of mosquitoes carrying Wolbachia may affect the efficiency of the method, the study of existence
and stability of steady-state solutions depending on parameters D, pext and L as in (1.2), (1.1) will pro-
vide necessary information to maintain the success of the control method using Wolbachia under the
effects of migration.

Problem (1.1) arises often in the study of population dynamics. p0 is usually considered as the relative
proportion of one population when there are two populations in competition. This is why, we only focus
on solutions with values that belong to the interval [0, 1]. Problem (1.1) is derived from the idea in
paper [26], where the authors reduce a reaction–diffusion system modelling the competition between
two populations n1 and n2 to a scalar equation on the proportion p = n1

n1+n2
. More precisely, they consider

two populations with a very high fecundity rate scaled by a parameter ε > 0 and propose the following
system depending on ε for t> 0, x ∈R

d:
∂tn

ε

1 −�nε1 = nε1 f1(nε1, nε2), (1.3a)
∂tn

ε

2 −�nε2 = nε2 f2(nε1, nε2). (1.3b)

The authors obtained that under some appropriate conditions, the proportion pε = nε1
nε1+nε2

converges
strongly in L2(0, T; L2(Rd)), and weakly in L2(0, T; H1(Rd)) to the solution p0 of the scalar reaction–
diffusion equation ∂tp0 −�p0 = f (p0) when ε→ 0, where f can be given explicitly from f1, f2. Now, in
order to describe and study the migration phenomenon, we aim here at considering system (1.3) in a
bounded domain � and introduce the boundary conditions to characterise the inflow and outflow of
individuals as follows;

∂nε1
∂ν

= −D(nε1 − next,ε
1 ), (t, x) ∈ (0, T) × ∂�, (1.4a)

∂nε2
∂ν

= −D(nε2 − next,ε
2 ), (t, x) ∈ (0, T) × ∂�, (1.4b)

where next,ε
1 , next,ε

2 depend on ε but do not depend on time t and position x. Equation (1.4) models the
tendency of the population to cross the boundary, with rates proportional to the difference between the
surrounding density and the density just inside �. Reusing the idea in [26], we prove in Section A that
the proportion pε = nε1

nε1+nε2
converges on any bounded time domain to the solution of (1.1) when ε goes to

zero. Hence, we can reduce the system (1.3) and (1.4) to a simpler setting as in (1.1). The proof is based
on a relative compactness argument that was also used in previous works about singular limits (e.g.
[8, 9, 26]), but here, the use of the trace theorem is necessary to prove the limit on the boundary.

The outline of this work is the following. In the next section, we present the setting of the problem
and the main results. In Section 3, we provide detailed proof of these results. Section 4 is devoted to an
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application to the biological control of mosquitoes. We also present numerical simulations to illustrate
the theoretical results we obtained. Section A is devoted to proving the asymptotic limit of a 2-by-2
reaction–diffusion system when the reaction rate goes to infinity. Finally, we end this article with a
conclusion and perspectives section.

2. Results on the steady-state solutions
2.1 Setting of the problem

In one-dimensional space, consider the system (1.1) in a bounded domain�= (−L, L) ⊂R. Let D> 0,
pext ∈ (0, 1) be some constant and pinit(x) ∈ [0, 1] for all x ∈ (−L, L). The reaction term f satisfies the
following assumptions:

Assumption 2.1 (bistability). Function f : [0, 1] →R is of class C1([0, 1]) and f (0) = f (θ ) = f (1) = 0

with θ ∈ (0, 1), f (q)< 0 for all q ∈ (0, θ ), and f (q)> 0 for all q ∈ (θ , 1). Moreover,
∫ 1

0

f (s)ds> 0.

Assumption 2.2 (convexity). There exist α1 ∈ (0, θ ) and α2 ∈ (θ , 1) such that f ′(α1) = f ′(α2) = 0,
f ′(q)< 0 for any q ∈ [0, α1) ∪ (α2, 1], and f ′(q)> 0 for q ∈ (α1, α2). Moreover, f is convex on (0, α1)
and concave on (α2, 1).

A function f satisfying Assumptions 2.1 and 2.2 is illustrated in Figure 1(a).

Remark 2.1.

(1) Due to Assumption 2.1 and the fact that pext ∈ (0, 1), pinit(x) ∈ [0, 1] for any x, one has that 0 and 1
are respectively sub- and super-solution of problem (1.1). Since f is Lipschitz continuous on (0, 1)
then by Theorem 4.1, Section 2.4 in [19], we obtain that problem (1.1) has a unique solution p0

that is in C1,2((0, T] ×�) with 0 ≤ p0(t, x) ≤ 1 for all x ∈ (−L, L), t> 0.
(2) Again by Assumption 2.1, 0 and 1 are respectively sub- and super-solutions of (1.2). For fixed

values of D, pext and L, we use the same method as in [19] to obtain that there exists a C2 solution
of (1.2) with values in [0, 1]. However, Assumptions 2.1 and 2.2 on f are not enough to conclude
the uniqueness of the solution. In the following section, we prove that the stationary problem (1.2)
may have multiple solutions and their existence depends on the values of the parameters.

The following proposition shows that solutions of system (1.2) always have at least one extreme value
in (−L, L).

Proposition 2.1. For any pext ∈ (0, 1) and pext 	= θ , system (1.2) does not have any non-constant
monotone solution on the whole interval (−L, L).

Proof . Assume that (1.2) admits an increasing solution p on (−L, L) (the case when p is decreasing on
(−L, L) is analogous). Thus, we have p′(x) ≥ 0 for all x ∈ [−L, L] and p(L)> p(−L). So thanks to the
boundary condition of (1.2), one has

Dpext = p′(L) + Dp(L) ≥ Dp(L)>Dp(−L) ≥ −p′(−L) + Dp(−L) = Dpext,

which is impossible. Therefore, we can deduce that the solutions of system (1.2) always admit at least
one local extremum on the open interval (−L, L).

To study system (1.2), we define function F (see Figure 1(b)) as follows:

F(q) =
∫ q

0

f (s)ds, (2.1)

then F′(q) = f (q) and F(0) = 0. From Assumption 2.1, F reaches the minimal value at q = θ and

the (locally) maximal values at q = 0 and q = 1. Since
∫ 1

0

f (s)ds> 0, then F(1)> F(0), it implies
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(a) (b)

Figure 2. Sketch of the symmetric steady-state solutions p.

that F(1) = max
[0,1]

F; F(θ ) = min
[0,1]

F. Moreover, since F(θ )< F(0) and function F is monotone in (θ , 1)

(F′(q) = f (q)> 0 for any q ∈ (θ , 1)). Thus, there exists a unique value β ∈ (θ , 1) such that

F(β) = F(0) = 0. (2.2)

The main results of the present work concern existence and stability of steady-state solutions of (1.1),
that is, solutions of (1.2).

2.2 Existence of steady-state solutions

In our result, we first focus on two types of steady-state solutions defined as follows:

Definition 2.1. Consider a steady-state solution p(x),
p is called a symmetric-decreasing (SD) solution when p is symmetric on (−L, L) with values in

[0, 1], decreasing on (0, L) and p′(0) = 0 (see Figure 2(a)).
Similarly, p is called a symmetric-increasing (SI) solution when p is symmetric on (−L, L) with

values in [0, 1], increasing on (0, L) and p′(0) = 0 (see Figure 2(b)).
Any solution which is either SD or SI is called a symmetric-monotone (SM) solution.

The following theorems present the main result of the existence of SM solutions depending on the
parameters. For each value of pext ∈ (0, 1) and D> 0, we find the critical values of L such that (1.2)
admits solutions.

Theorem 2.2. In a bounded domain �= (−L, L) ⊂R, consider the stationary problem (1.2). Assume
that the reaction term f satisfies Assumptions 2.1 and 2.2. Then, there exist two functions:

Md, Mi: (0, 1) × (0, +∞) −→ [0, +∞],

(pext, D) �−→ Md(pext, D), Mi(pext, D),
(2.3)

such that for any pext ∈ (0, 1), D> 0, problem (1.2) admits at least one SD solution (resp., SI solution) if
and only if L>Md(pext, D) (resp., L>Mi(pext, D)), and the values of these solutions are in [pext, 1] (resp.,
[0, pext]). More precisely,

(1) If 0< pext < θ , then for any D> 0, Mi(pext, D) = 0 and Md(pext, D) ∈ (0, +∞). Moreover, if pext ≤
α1, the SI solution is unique.

(2) If θ < pext < 1, then for any D> 0, Md(pext, D) = 0. If α2 ≤ pext, the SD solution is unique.
Moreover, consider β as in (2.2),

https://doi.org/10.1017/S0956792523000256 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000256


European Journal of Applied Mathematics 387

Table 1. The existence of steady-state solutions corresponding to values of parameters

0< pext < θ , D> 0

Parameters 0 = Mi < L<Md Md ≤ L<M∗ M∗ ≤ L<+∞
Types of solutions SI SI, SD SI, SD, non-SM

Parameters pext = θ , D> 0

0 = Md = Mi = M∗ < L

Types of solutions SD, SI, non-SM

Parameters θ < pext ≤ β, D> 0 or pext >β, 0<D<D∗

0 = Md < L<Mi Mi ≤ L<M∗ M∗ ≤ L<+∞
Types of solutions SD SI, SD SI, SD, non-SM

Parameters β < pext < 1, D>D∗

0 = Md < L<Mi = M∗ = +∞
Types of solutions SD

• if pext ≤ β, then Mi(pext, D) ∈ (0, +∞) for any D> 0;
• if pext >β, then there exists a constant D∗ > 0 such that Mi(pext, D) ∈ (0, +∞) for any D<D∗,

and Mi(pext, D) = +∞ for D ≥ D∗.
(3) If pext = θ , then Md(θ , D) = Mi(θ , D) = 0. Moreover, there exists a constant solution p ≡ θ .

In the statement of the above result, Mi = 0 means that for any L> 0, (1.2) always admits SI solutions.
Mi = +∞ means that there is no SI solution even when L is large. The same interpretation applies
for Md.

Besides, problem (1.2) can also admit solutions that are neither SD nor SI. The following theorem
provides an existence result for those solutions.

Theorem 2.3. In a bounded domain �= (−L, L) ⊂R, consider the stationary problem (1.2). Assume
that the reaction term f satisfies Assumptions 2.1 and 2.2. Then, there exists a function:

M∗: (0, 1) × (0, +∞) −→ [0, +∞],

(pext, D) �−→ M∗(pext, D),
(2.4)

such that for any pext ∈ (0, 1), D> 0, problem (1.2) admits at least one solution which is not SM if and
only if L ≥ M∗(pext, D). Moreover,

• If pext ≤ β, then for any D> 0, one has

0<Mi(p
ext, D) + Md(pext, D)<M∗(p

ext, D)<+∞. (2.5)

• If pext >β, then for any D<D∗, one has 0<Mi(pext, D)<M∗(pext, D)<+∞. Otherwise, for D ≥
D∗, M∗(pext, D) = +∞. Here, D∗ was defined in Theorem 2.2.

The construction of Mi, Md, M∗ will be done in the proof in Section 3. The idea of the proof is based on
a careful study of the phase portrait of (1.2). To make the results more reader-friendly, we present the
types of steady-state solutions corresponding to different parameters in Table 1.
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In the next section, we present a result about the stability and instability of steady-state solutions of
(1.2).

2.3 Stability of steady-state solutions

The definition of stability and instability used in the present work comes from Lyapunov stability

Definition 2.4. A steady-state solution p(x) of (1.1) is called stable if for any constant ε > 0, there exists
a constant δ > 0 such that when ||pinit − p||∞ < δ, one has

||p0(t, ·) − p||∞ < ε, for all t> 0 (2.6)

where p0(t, x) is the unique solution of (1.1). If, in addition,

lim
t→∞

||p0(t, ·) − p||∞ = 0, (2.7)

then p is called asymptotically stable. The steady-state solution p is called unstable if it is not stable.

The following theorem provides sufficient conditions for the stability of steady-state solutions given in
Section 2.2.

Theorem 2.5. In the bounded domain �= (−L, L) ⊂R, consider the problem (1.1) with the reaction
term satisfying Assumptions 2.1 and 2.2. There exists a constant λ1 ∈

(
0, π2

4L2

)
such that for any steady-

state solution p of (1.1),

• If f ′(p(x))>λ1 for all x ∈ (−L, L), then p is unstable.
• If f ′(p(x))<λ1 for all x ∈ (−L, L), then p is asymptotically stable.

More precisely, λ1 is the principal eigenvalue of the linear problem (2.8):

−φ ′ ′(x) = λφ(x) x ∈ (−L, L), (2.8a)
φ ′(L) = −Dφ(L), (2.8b)

φ ′(−L) = Dφ(−L), (2.8c)

where λ is an eigenvalue with associated eigenfunction φ. It may be proved that its value is the smallest
positive solution of equation

√
λ tan

(
L
√
λ
)

= D (see more details in Section 3).
Note that we cannot apply the first statement if sup

q∈(0,1)
f ′(q) ≤ λ1. However, due to the fact that λ1 ∈(

0, π2

4L2

)
, when L gets larger, the value of λ1 gets closer to zero and the inequality in the first statement

becomes valid.

Remark 2.2. By Assumption 2.2, f ′(q) ≤ 0<λ1 for all q ∈ [0, α1] ∪ [α2, 1], we can deduce that the
steady-state solutions with values smaller than α1 or larger than α2 are asymptotically stable.

As a consequence of Theorems 2.2, 2.3 and 2.5, the following important result provides complete
information about the existence and stability of steady-state solutions in some special cases.

Corollary 2.1. In the bounded domain �= (−L, L) ⊂R, consider the problem (1.1) with the reaction
term satisfying Assumptions 2.1 and 2.2. Then for any D> 0, we have

• If pext ≤ α1, for any L> 0, there exists exactly one SI steady-state solution p and it is asymptotically
stable. Moreover, if L<Md(pext, D), then p is the unique steady-state solution of (1.1).

• If pext ≥ α2, for any L> 0, there exists exactly one SD steady-state solution p and it is asymp-
totically stable. Moreover, if L<Mi(pext, D), then p is the unique steady-state solution of
(1.1).
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(a) (b)

Figure 3. Phase portraits of (1.2): straight lines illustrate the boundary conditions, and solid curves
show relations between p′ and p. Figure (a): curves T1, T2 and T3 correspond to orbits of SD, SI and
non-SM solutions, respectively. Figure (b): curve T4 corresponds to an orbit of a non-SM solution.

Remark 2.3. This corollary gives us a comprehensive view of the long-time behaviour of solutions of
(1.1) when the size L of the domain is small. In this case, the unique steady-state solution p is symmetric,
monotone on each half of � and asymptotically stable. Its values will be close to 0 if pext is small and
close to 1 if pext is large. We discuss an essential application of this result in Section 4.

3. Proof of the theorems
3.1 Proof of existence

In this section, we use phase plane analysis to prove the existence of both SM and non-SM steady-
state solutions depending on the parameters. The studies of SD and SI solutions will be presented,
respectively, in Sections 3.1.1 and 3.1.2. Then, using these results, we prove Theorem 2.2. The proof of
Theorem 2.3 will be presented after that using the same technique.

First, we introduce the following function:

E(p, p′) = (p′)2

2
+ F(p). (3.1)

Since d
dx

E(p, p′) = p′(p′ ′ + f (p)) = 0, then E(p, p′) is constant along the orbit of (1.2). From
Proposition 2.1, we can deduce that there exists an x0 ∈ (−L, L) such that p′(x0) = 0, thus one has

E(p(x0), 0) = E(p(x), p′(x)), (3.2)

for all x ∈ (−L, L). Therefore, the relation between p′ and p is as follows:

p′ = ±√
2F(p(x0)) − 2F(p). (3.3)

According to this relation, one has a phase plane as in Figure 3(a), in which the curves illustrate the
relation between p′(x) and p(x) in (3.3) with respect to different values of p(x0). We can see that some
curves do not end on the axis p = 0 but wrap around the point (θ , 0). This is dues to the fact that for any
p1 ∈ [θ , β], there exists a value p2 ∈ [0, θ ] such that F(p1) = F(p2). Thus, if the curve passes through the
point (p1, 0), it will also pass through the point (p2, 0) on the axis p′ = 0. Moreover, those curves only
exist if their intersection with the axis p′ = 0 has p-coordinate less than or equal to β. Besides, the two
straight lines show the relation between p′ and p at the boundary points. Solutions of (1.2) correspond to
those orbits that connect the intersection of the curves with the line p′ = D(p − pext) to the intersection
of the curves with the line p′ = −D(p − pext).
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In the phase plane in Figure 3(a), orbit T1 describes an SD solution, while orbit T2 corresponds to
an SI solution. On the other hand, the solid curve T3 shows the orbit of a steady-state solution that is
not SM.

Remark 3.1. (Graphical interpretation of D∗) The SI solutions (see Figure 2(b)) have orbit as T2 in
Figure 3(a). This type of orbits only exists when the lines p = ±D(p − pext) intersect the curves wrapping
around the point (θ , 0). In the case when pext >β, the constant D∗ > 0 in Theorem 2.2 is the slope of the
tangent line to the curve passing through (β, 0) as in Figure 3(b). Hence, if D>D∗, there exists no SI
solution. We construct explicitly the value of D∗ in Proposition 3.2 below.

Next, we establish some relations between the solution p and the parameters based on the phase portrait
above. For any x> x0, if p is monotone on (x0, x), we can invert x �→ p(x) into function p �→ X(p). We
obtain X′(p) = ±1√

2F(p(x0))−2F(p)
. By integrating this equation, we obtain that

x − x0 =
∫ p(x)

p(x0)

(−1)kds√
2F(p(x0)) − 2F(s)

, (3.4)

where k = 1 if p is decreasing and k = 2 if p is increasing on (x0, x). We can obtain the analogous formula
for x< x0.

First, we focus on SM solutions for which p′(0) = 0, then we analyse the integral in (3.4) with x =
L, x0 = 0. For any pext ∈ (0, 1), using (3.3), we have

F(p(0)) = F(p(L)) + 1

2
D2

(
p(L) − pext

)2 = G(p(L)), (3.5)

for F defined in (2.1) and

G(q) := F(q) + 1

2
D2(q − pext)2, (3.6)

and from (3.4) with x = L, x0 = 0, we have

L =
∫ p(L)

p(0)

(−1)kds√
2F(p(0)) − 2F(s)

, (3.7)

where k = 1 if p is decreasing on (0, L), k = 2 if p is increasing on (0, L).
Thus, the SM solution of (1.2) exists if there exist values p(L) and p(0) that satisfy (3.5) and (3.7).

When such values exist, we can assess the value of p(x) for any x in (−L, L) using (3.4).
Before proving the existence of such values of p(0) and p(L), we establish some useful properties of

the function G defined in (3.6). It is continuous in [0, 1] and G(q) ≥ F(q) for all q ∈ [0, 1]. Moreover, the
following lemma shows that G has a unique minimum point.

Lemma 3.1. For any pext ∈ (0, 1), there exists a unique value q ∈ (0, 1) such that G′(q) = 0, G′(q)< 0
for all q ∈ [0, q) and G′(q)> 0 for all q ∈ (q, 1]. Particularly, G(q) = min

[0,1]
G.

Proof . We have G′(q) = f (q) + D2(q − pext). We consider the following cases.
Case 1: When pext = θ , we have G′(pext) = G′(θ ) = f (θ ) = 0, G′(q)< 0 for all q ∈ (0, θ ) and G′(q)> 0

for all q ∈ (θ , 1). Thus q = θ = pext.
Case 2: When pext < θ , we have G′(q)< 0 for all q ∈ [0, pext] and G′(q)> 0 for all q ∈ [θ , 1]. So there

exists at least one value q ∈ (pext, θ ) such that G′(q) = 0.
For any q ∈ (pext, θ ) such that G′(q) = 0, we have f (q) + D2(q − pext) = 0 so that D2 = − f (q)

q−pext . We can
prove that G′ ′(q) is strictly positive. Indeed, from Assumption 2.2, we have that α1 is the unique value
in (0, θ ) such that f ′(α1) = 0, thus f (α1) = min

[0,θ]
f < 0.

If α1 ≤ q< θ then f ′(q) ≥ 0. One has G′ ′(q) = f ′(q) + D2 > 0.
If pext < q<α1, due to the fact that f is convex in (0, α1) one has f ′(q) ≥ f (q)−f (pext)

q−pext . Since f (pext)< 0,
one has G′ ′(q) = f ′(q) + D2 = f ′(q) − f (q)

q−pext > f ′(q) + f (pext)−f (q)
q−pext ≥ 0. One can deduce that q is the unique

value in (0, 1) such that G′(q) = 0 and G(q) = min
[0,1]

G, so it satisfies Lemma 3.1.
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Case 3: When pext > θ , the proof is analogous to case 2 but using the concavity of f in (α2, 1). We
obtain that there exists a unique value q in (θ , pext) that satisfies Lemma 3.1.

When pext = θ , it is easy to check that p ≡ θ is a solution of (1.2). We now analyse two types of SM
solutions (see Figure 2) in the following parts.

3.1.1 Existence of SD solutions
In this part, the solution p we study is symmetric on (−L, L) and decreasing on (0, L) (see Figure 2(a)).
So p(L)< p(x)< p(0) for any x ∈ (0, L). But from (3.3), we have that F(p(x)) ≤ F(p(0)), so F′(p(0)) ≥ 0.
It implies that p(0) ∈ [θ , 1]. Next, we use two steps to study the existence of SD solutions:

Step 1: Rewriting as a non-linear equation on p(L)
For any q ∈ (θ , 1), we have F′(q) = f (q)> 0 so F|(θ ,1) : (θ , 1) −→ (F(θ ), F(1)) is invertible. Define

F−1
1 := (F|(θ ,1))−1 : (F(θ ), F(1))−→ (θ , 1), and F−1

1 (F(θ )) = θ , F−1
1 (F(1)) = 1. Then, F−1

1 is continuous
in [F(θ ), F(1)]. For any y ∈ (F(θ ), F(1)), one has

(
F−1

1

) ′(y) = 1

F
′
(F−1

1 (y))
= 1

f(F−1
1 (y))

> 0, so F−1
1 is an

increasing function in (F(θ ), F(1)). From (3.5) and (3.7), since p is decreasing in (0, L), we have

L =
∫ p(0)

p(L)

ds√
2G(p(L)) − 2F(s)

. Denote

F1(q) :=
∫ F−1

1 (G(q))

q

ds√
2G(q) − 2F(s)

. (3.8)

Hence, an SD solution p of system (1.2) has p(0) = F−1
1 (G(p(L))), and p(L) satisfies

L =F1(p(L)). (3.9)
Moreover, one has p′(x) ≤ 0 for all x ∈ (0, L) thus −D(p(L) − pext) = p′(L) ≤ 0. One can deduce that

p(L) ≥ pext. (3.10)
Step 2: Solving (3.9) in [pext, 1]
The following proposition states the existence of a solution of (3.9).

Proposition 3.1. For any D> 0, pext ∈ (0, 1), we have

1. If 0< pext < θ , then there exists a constant M1 > 0 such that equation (3.9) has at least one solution
p(L) ≥ pext if and only if L ≥ M1.

2. If θ ≤ pext < 1, then equation (3.9) admits at least one solution p(L) ≥ pext for all L> 0. If pext ≥ α2,
then this solution is unique.

Proof . Since F−1
1 is only defined in [F(θ ), F(1)], we need to find p(L) ∈ [pext, 1] such that G(p(L)) ∈

[F(θ ), F(1)].
For all q ∈ (0, 1), we have G(q) ≥ F(q) ≥ F(θ ) and from Lemma 3.1, there exists a value q ∈

(0, 1) such that min
[0,1]

G = G(q) ≤ G(pext) = F(pext)<max
[0,1]

F = F(1). Moreover, one has G(1)> F(1); thus,
there exists a value p∗ ∈ (pext, 1) such that G(p∗) = F(1). Then, for all q ∈ [pext, p∗], G(q) ∈ [F(θ ), F(1)]
and we will find p(L) in [pext, p∗]. Since F−1

1 increases in (F(θ ), F(1)), then p(0) = F−1
1 (G(p(L))) ≥

F−1
1 (F(p(L))) ≥ p(L).

Function F1 in (3.8) is well defined and continuous in [pext, p∗), F ≥ 0 in [pext, p∗). Moreover, since

F′(1) = 0, one has lim
p→p∗ F1(p) =

∫ 1

p∗

ds√
2F(1) − 2F(s)

= +∞.

Case 1: If 0< pext < θ , we will prove that F1 is strictly positive in [pext, p∗). Indeed, for any y ∈
[0, 1], if y< θ , by the definition of F−1

1 , we have F−1
1 (G(y)) ∈ [θ , 1] so F−1

1 (G(y))> y. If y ≥ θ > pext,
then G(y) = F(y) + 1

2
D2(y − pext)2 > F(y) so again F−1

1 (G(y))> y. Hence, F1(y)> 0 for all y ∈ [pext, p∗).
We have F1(p) → +∞ when p → p∗, so there exists p ∈ [pext, p∗) such that M1 := F1(p) = min

[pext,p∗]
F1 > 0,

and system (3.9) admits at least one solution if and only if L ≥ M1.
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Case 2: If θ ≤ pext < 1, one has G(pext) = F(pext), then F−1
1 (G(pext)) = pext so F1(pext) = 0. On the other

hand, F1(p) → +∞ when p → p∗. Thus, for any L> 0, there always exists at least one value p(L) ∈
(pext, p∗) such that F1(p(L)) = L.

Proof of uniqueness: When pext ≥ α2, we can prove that F1
′ > 0 on (pext, p∗). Indeed, denoting γ (q) =

F−1
1 (G(q)) and changing the variable from s to t such that s = tγ (q) + (1 − t)q, one has

F1(q) =
∫ 1

0

[γ (q) − q]dt√
2F(γ (q)) − 2F(tγ (q) + (1 − t)q)

.

To simplify, denote s(q) = tγ (q) + (1 − t)q. For any t ∈ (0, 1), one has q< s(q)< γ (q). Let us define
�F = F(γ (q)) − F(s(q)), then one has
√

2F1
′(q) =

∫ 1

0

(γ ′(q) − 1)(�F)−1/2dt − 1

2

∫ 1

0

(�F)−3/2(γ (q) − q)
d�F

dq
dt

=
∫ 1

0

(�F)−3/2

[
(γ ′(q) − 1)�F − 1

2
(γ (q) − q)(f (γ (q))γ ′(q) − f (s(q))s′(q))

]
.

Let P be the formula in the brackets, then

P = (γ ′ − 1)�F − 1
2
(γ − q)

[
f (γ )γ ′ − f (s)(tγ ′ + 1 − t)

]
= (γ ′ − 1)

[
�F − 1

2
(γ − q)f (γ ) + 1

2
(s − q)f (s)

] − 1
2
(γ − q)(f (γ ) − f (s)),

Define ψ(y) := F(y) − 1
2
f (y)(y − q) for any y ∈ [q, γ (q)], then one has ψ ′(y) = 1

2
[f (y) − f ′(y)(y −

q)] ≥ f (q)
2
> 0 since y ≥ q> pext ≥ α2 and f is concave in (α2, 1), f (q)> 0. Moreover, f is decreasing on

(α2, 1) so 0< f (γ (q))< f (s(q))< f (q), and γ ′(q) = G
′
(q)

f (F−1
1 (G(q)))

= f (q)+D2(q−pext)
f (γ (q))

> 1. Hence, we can deduce
that P = (γ ′ − 1)(ψ(γ ) −ψ(s)) − 1

2
(γ − q)(f (γ ) − f (s))> 0 for any t ∈ (0, 1). This proves that function

F1 is increasing on (pext, p∗), so the solution of equation (3.9) is unique.

3.1.2 Existence of SI solutions
In this case, the technique we use to prove the existence of SI solutions is analogous to SD solutions
except in the case when pext >β (case 3 below). Since the proof is not straightforward, it is worth to
re-establish this technique for SI solutions in two following steps:
Step 1: Rewriting as a non-linear equation on p(L)

Since now p is symmetric on (−L, L) and increasing in (0, L) (see Figure 2(b)), then p(0)< p(x)<
p(L) for any x ∈ (0, L). But from (3.3), we have that F(p(x)) ≤ F(p(0)), so F′(p(0)) ≤ 0. This implies that
p(0) ∈ [0, θ ].

For any q ∈ (0, θ ), we have F′(q) = f (q)< 0 so F|(0,θ) : (0, θ ) −→ (F(θ ), F(0)) is invertible. Define
F−1

2 := (F|(0,θ))−1 : (F(θ ), F(0))−→ (0, θ ), F−1
2 (F(θ )) = θ , F−1

2 (F(0)) = 0, and F−1
2 is continuous in

[F(θ ), F(0)]. For any y ∈ (F(θ ), F(0)),
(
F−1

2

) ′(y) = 1

F
′
(F−1

2 (y))
= 1

f(F−1
2 (y))

< 0, so F−1
2 is a decreasing

function in (F(θ ), F(0)). From (3.5) and (3.7), we have L =
∫ p(L)

p(0)

ds√
2G(p(L)) − 2F(s)

. Denote

F2(q) :=
∫ q

F−1
2 (G(q))

ds√
2G(q) − 2F(s)

. (3.11)

Hence, an SI solution of system (1.2) has p(0) = F−1
2 (G(p(L))), and p(L) satisfies

L =F2(p(L)), (3.12)

and in this case, one needs to find p(L) in [0, pext].
Step 2: Solving of (3.12) in [0, pext]

The following proposition states the existence of a solution of (3.12).
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Proposition 3.2. For any pext ∈ (0, 1), considering the value β as in (2.2), we have

1. If 0< pext ≤ θ , then equation (3.12) admits at least one solution p with p(L) ≤ pext for all L>
0, D> 0. If pext ≤ α1, this solution is unique.

2. If θ < pext ≤ β, then for all D> 0, there exists a constant M2 > 0 such that equation (3.12) has at
least one solution p with p(L) ≤ pext if and only if L ≥ M2.

3. If β < pext < 1, then there exists a constant D∗ > 0 such that when D ≥ D∗, equation (3.12) has
no solution. Otherwise, there exists a constant M3 > 0 such that equation (3.12) has at least one
solution p with p(L) ≤ pext if and only if L ≥ M3.

Proof . As we assume that F(0)< F(1) and F(θ )< F(0) then, due to the continuity of F, one can deduce
that there exists a value β ∈ (θ , 1) such that F(β) = F(0) = 0.

Since F−1
2 is only defined in [F(θ ), F(0)], we need to find p(L) ∈ [0, pext] such that G(p(L)) ∈

[F(θ ), F(0)]. For all q ∈ (0, 1), we have G(q) ≥ F(q) ≥ F(θ ), thus equation (3.12) has solutions if and only
if min

[0,1]
G< F(0). Even when min

[0,1]
G = G(q) = F(0), F2 is still not defined in [0, 1] since F2(q) = +∞.

One has the following cases:
Case 1: 0< pext ≤ θ :
We have min

[0,1]
G = G(q) ≤ G(pext) = F(pext)<max

[0,θ]
F = F(0), and G(0)> F(0) so there is a value p∗ ∈

(0, pext) such that G(p∗) = F(0). Moreover F′(0) = 0, then lim
p→p∗ F2(p) = +∞. Thus, function F2 is only

well defined and continuous in (p∗, pext].
When 0< pext ≤ θ , F−1

2 (G(pext)) = F−1
2 (F(pext)) = pext so F2(pext) = 0. We can deduce that for any L>

0, there always exists at least one value p(L) ∈ (p∗, pext) such that F2(p(L)) = L. When pext ≤ α1, arguing
analogously to the second case of Proposition 3.1, one has F2

′ < 0 on (p∗, pext), thus the solution is
unique.

Case 2: θ < pext ≤ β:
Since F increases on (θ , 1), then min

[0,1]
G = G(q)<G(pext) = F(pext) ≤ F(β) = F(0). Analogously to

the previous case, F2 is well defined and continuous in (p∗, pext], lim
p→p∗ F2(p) = +∞, and F2 is strictly

positive in (p∗, pext]. Therefore, there exists p ∈ (p∗, pext] such that

M2 := F2(p) = min
[p∗ ,pext]

F2 > 0, (3.13)

and system (3.12) admits as least one solution if and only if L ≥ M2.
Case 3: β < pext < 1:
Consider the function H(q) = F(q) + 1

2
f (q)(pext − q) defined in an interval [θ , pext]. For any θ < q<

pext, one can prove that H′(q) ≥ 0.
Indeed, if q ≤ α2, then f ′(q) ≥ 0, and f (q)> 0. One has H′(q) = 1

2
f (q) + 1

2
f ′(q)(pext − q)> 0. If q>α2,

from Assumption 2.2, the function f is concave in (α2, 1), and hence f ′(q)(pext − q) ≥ f (pext) − f (q).
Thus,

H′(q) = 1

2
(pext − q)

(
f ′(q) + f (q)

pext − q

)
>

1

2
(pext − q)

(
f ′(q) + f (q) − f (pext)

pext − q

)
≥ 0.

Therefore, function H increases in (θ , pext). Moreover, H(θ ) = F(θ )< F(0) and H(pext) = F(pext)>
F(β) = F(0), and so there exists a unique value p∗ ∈ (θ , pext) such that H(p∗) = F(0). Take D∗ > 0 such
that D2

∗ = f (p∗)
pext−p∗

. Then, for any D> 0, from Lemma 3.1, there is a unique value q ∈ (θ , pext) such that
G′(q) = 0, G(q) = min

[0,1]
G, and D2 = f (q)

pext−q
. If D<D∗, then f (q)

pext−q
<

f (p∗)
pext−p∗

.

Let h(q) = f (q)
pext−q

, then h′(q) = 1
pext−q

(
f ′(q) + f (q)

pext−q

)
> 0 for q ∈ (θ , pext). So function h is increasing

in (θ , pext), and we can deduce that q< p∗. Hence, min
[0,1]

G = G(q) = F(q) + 1

2
D2(pext − q)2 = F(q) +

1

2
f (q)(pext − q) = H(q)<H(p∗) = F(0).
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Moreover, G(pext) = F(pext)> F(β) = F(0), G(0)> F(0). Thus, there exists a maximal interval
(q∗, q∗) ⊂ [0, pext] such that G(q) ∈ (F(θ ), F(0)) for all q ∈ (q∗, q∗). We have 0< q∗ < q< q∗ < pext and
G(q∗) = G(q∗) = F(0). Therefore, F2 is well defined and continuous in (q∗, q∗), and lim

p→q∗ F2(p) =
lim
p→q∗

F2(p) = +∞. Reasoning like in the previous case, (3.12) admits solution if and only if L ≥ M3,
where

M3 := min
[q∗ ,q∗]

F2 > 0, (3.14)

On the other hand, if D ≥ D∗, min
[0,1]

G ≥ F(0), and equation (3.12) has no solution.

Proof of Theorem 2.2. As we showed in Section 3.1.1, the SD steady-state solution p of (1.2) has
p(L) satisfying equation (3.9). From Proposition 3.1, we can deduce that for fixed pext ∈ (0, 1), D>
0, Md(pext, D) = min

q
F1(q). Thus, we obtain the results for SD steady-state solutions of (1.2) in

Theorem 2.2.
Similarly, Proposition 3.2 provides that for fixed pext ∈ (0, 1), D> 0, we have Mi(pext, D) = min

q
F2(q)

when pext ≤ β or D<D∗. Otherwise, Mi(pext, D) = +∞.

3.1.3 Existence of non-SM solutions
As we can see in the phase portrait in Figure 3, there exist some solutions of (1.2) which are neither SD
nor SI. These solutions can be non-symmetric or can have more than one (local) extremum. By studying
these cases, we prove Theorem 2.3 as follows

Proof of Theorem 2.3. We can see from Figure 3(a) that for fixed pext ≤ β, D> 0, the non-SM
solutions p of (1.2) have more than one (local) extreme value because their orbits have at least two
intersections with the axis p′ = 0 (see e.g. T3). Those solutions have the same local minimum values,
denoted pmin, and the same maximum values, denoted pmax. Moreover, we have pmin < θ < pmax, and
F(pmin) = F(pmax).

Since the orbits make a round trip of distance 2L, then the more extreme values a solution has, the
larger L is. Hence, to find the minimal value M∗, we study the case when p has one local minimum and
one local maximum with orbit as T3 in Figure 3(a). Then, we have

G(p(−L)) = G(p(L)) = F(pmin) = F(pmax), (3.15)

and by using (3.4), we obtain

2L =F1((p(−L)) +
∫ pmax

pmin

ds√
2F(pmin) − 2F(s)

+F2(p(L))

= 2
[F1(p(−L)) +F2(p(L))

] +
∫ p(−L)

p(L)

ds√
2G(p(L)) − 2F(s)

.

Using the same idea as above, we can show that L depends continuously on p(L). Moreover, we know
that Md = min F1, Mi = min F2; therefore, there exists a constant M∗ such that (1.2) admits at least one
non-SM solution p if and only if L ≥ M∗ >Md + Mi.

On the other hand, for fixed pext >β, D<D∗, it is possible that (1.2) admits a non-symmetric solution
with only one minimum. The orbit of this solution is as T4 in Figure 3(b). In this case, we have G(p(L)) =
G(p(−L)) = F(pmin) with p(−L)< p(L) and

2L =F2(p(−L)) +F2(p(L))> 2Mi.

Hence, we only need M∗ >Mi.
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3.2 Stability analysis

We first study the principal eigenvalue and eigenfunction for the linear problem. Then by using these
eigenelements, we construct the super- and sub-solution of (1.1) and prove the stability and instability
corresponding to each case in Theorem 2.5.

Proof of Theorem 2.5. Consider the corresponding linear eigenvalue problem (2.8). We can see that
φ = cos

(√
λx

)
is an eigenfunction iff

√
λ tan

(
L
√
λ
)

= D. Denote λ1 the smallest positive value of λ

which satisfies this equality, thus L
√
λ1 ∈ (

0, π
2

)
. Hence, λ1 ∈

(
0, π2

4L2

)
. Moreover, for any x ∈ (−L, L),

the corresponding eigenfunction φ1(x) = cos
(√
λ1x

)
takes values in (0, 1).

Proof of stability: Now let p be a steady-state solution of (1.1) governed by (1.2). First, we prove
that if f ′(p(x))<λ1 for any x ∈ (−L, L), then p is asymptotically stable. Indeed, since f ′(p(x))<λ1, there
exist positive constants δ, γ with γ < λ1 such that for any η ∈ [0, δ],

f (p + η) − f (p) ≤ (λ1 − γ )η, f (p) − f (p − η) ≤ (λ1 − γ )η, (3.16)

on (−L, L). Now consider

p(t, x) = p(x) + δe−γ tφ1(x), p(t, x) = p(x) − δe−γ tφ1(x).

Assume that pinit(x) ≤ p(x) + δφ1(x). Then by (3.16), we have that p is a super-solution of (1.1) because

∂tp − ∂xxp = (λ1 − γ )δe−γ tφ1(x) + f (p) ≥ f (p + δe−γ tφ1(x)) = f (p),

due to the fact that 0< δe−γ tφ1(x)< δ for any t> 0, x ∈ (−L, L). Moreover, at the boundary points one
has ∂p

∂ν
+ D(p − pext) = ∂p

∂ν
+ D(p − pext) = 0.

Similarly, if we have pinit(x) ≥ p(x) − δφ1(x), and so p is a sub-solution of (1.1). Then, by the
method of super- and sub-solution (see e.g. [19]), the solution p0 of (1.1) satisfies p ≤ p0 ≤ p. Hence,
|p0(t, x) − p(x)| ≤ δe−γ tφ1(x). Therefore, we can conclude that, whenever |pinit(x) − p(x)| ≤ δφ1(x) for any
x ∈ (−L, L), the solution p0 of (1.1) converges to the steady-state p when t → +∞. This shows the
stability of p.

Proof of instability: In the case when f ′(p(x))>λ1, there exist positive constants δ, γ , with γ < λ1,
such that for any η ∈ [0, δ],

f (p + η) − f (p) ≥ (λ1 + γ )η, (3.17)

on (−L, L).
For any pinit > p, there exists a positive constant σ < 1 such that pinit ≥ p + δ(1 − σ ). Then p̃(t, x) =

p(x) + δ(1 − σe−γ ′
t)φ1(x), with γ ′ < γ small enough, is a sub-solution of (1.1). Indeed, by applying

(3.17) with η= δ(1 − σe−γ ′
t)φ1(x) ∈ [0, δ] for any x ∈ (−L, L), we have

∂t̃p − ∂xx̃p = γ ′δσe−γ ′
tφ1(x) + λ1δ(1 − σe−γ ′

t)φ1(x) + f (p) ≤ f (p + δ(1 − σe−γ ′
t)φ1(x))

if γ ≥ γ
′
σe−γ ′ t

1−σe−γ ′ t
= γ

′
σ

eγ
′
t−σ

for any t ≥ 0. This inequality holds when we choose γ ′ ≤ γ (1−σ )
σ

. Now, we have
that p̃ is a sub-solution of (1.1), thus for any t ≥ 0, x ∈ (−L, L), the corresponding solution p0 satisfies

p0(t, x) − p(x) ≥ p̃(t, x) − p(x) ≥ δ(1 − σe−γ ′
t)φ1(x).

Hence, for a given positive ε < δ min
x
φ1(x), when t → +∞, solution p0 cannot remain in the ε-

neighbourhood of p even if pinit − p is small. This implies the instability of p.

Proof of Corollary 2.1. For pext ≤ α1 < θ , D> 0, from Theorem 2.2, the SI steady-state solution p
exists for any L> 0 and is unique, p(x) ≤ pext ≤ α1 for all x ∈ (−L, L). Moreover, from Assumption 2.2,
the reaction term f has f ′(q)< 0, for any q ∈ (0, α1). Then, for any x ∈ (−L, L), f ′(p(x)) ≤ 0<λ1. Hence,
p is asymptotically stable.
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Besides, from Theorems 2.2 and 2.3, for any L> 0 such that L<Md(pext, D)<M∗(pext, D), (1.1) has
neither SD nor non-SM steady-state solutions. So the SI steady-state solution is the unique steady-state
solution.

Using a similar argument for the case pext ≥ α2, we obtain Corollary 2.1.

4. Application to the control of dengue vectors by the introduction of the bacterium Wolbachia
4.1 Model

In this section, we show an application of our model to the control of mosquitoes using Wolbachia.
Mosquitoes of genus Aedes are the vector of many dangerous arboviruses, such as dengue, zika, chikun-
gunya and others. There exists neither effective treatment nor vaccine for these vector-borne diseases,
and in such conditions, the main method to control them is to control the vector population. A bio-
logical control method using a bacterium called Wolbachia (see [10]) was discovered and developed
with this purpose. Besides reducing the ability of mosquitoes to transmit viruses, Wolbachia also causes
an important phenomenon called cytoplasmic incompatibility (CI) on mosquitoes. More precisely, if a
wild female mosquito is fertilised by a male carrying Wolbachia, its eggs almost cannot hatch. For more
details about CI, we refer to [32]. In the case of Aedes mosquitoes, Wolbachia reduces lifespan, changes
fecundity, and blocks the development of the virus. However, it does not influence the way mosquitoes
move.

In [26], models (1.3) and (1.4) were considered with n1 = ni the density of the mosquitoes which are
infected by Wolbachia and n2 = nu the density of wild uninfected mosquitoes. Consider the following
positive parameters:

• du, δdu: death rate of, respectively, uninfected mosquitoes and infected mosquitoes, δ > 1 since
Wolbachia reduces the lifespan of the mosquitoes;

• bu, (1 − sf )bu: birth rate of, respectively, uninfected mosquitoes and infected ones. Here, sf ∈ [0, 1)
characterises the fecundity decrease;

• sh ∈ (0, 1]: the fraction of uninfected females’ eggs fertilised by infected males that do not hatch
due to the CI;

• K: carrying capacity, A: diffusion coefficient.

Parameters δ, sf , sh have been estimated in several cases and can be found in the literature (see [1]
and references therein). We always assume that sf < sh (in practice, sf is close to 0 while sh is close
to 1).

Several models have been proposed using these parameters. In the present study, a system of Lotka–
Volterra type is proposed, where the parameter ε > 0 is used to characterise the high fertility as follows:

∂tn
ε

i − A∂xxn
ε

i = (1 − sf )
bu

ε
nεi

(
1 − nεi + nεu

K

)
− δdunεi , (4.1a)

∂tn
ε

u − A∂xxn
ε

u = bu

ε
nεu

(
1 − sh

ni

nεi + nεu

) (
1 − nεi + nεu

K

)
− dunεu, (4.1b)

where the reaction term describes birth and death. The factor
(

1 − sh
nεi

nεi +nεu

)
characterises the CI. Indeed,

when sh = 1, no egg of uninfected females fertilised by infected males can hatch, that is, there is com-
plete CI. The factor becomes nεu

nεi +nεu
which means the birth rate of uninfected mosquitoes depends on the

proportion of uninfected parents because only an uninfected couple can lay uninfected eggs. Whereas,
sh = 0 means that all the eggs of uninfected females hatch. In this case, the factor

(
1 − sh

nεi
nεi +nεu

)
becomes

1, so the growth rate of uninfected population is not altered by the pressure of the infected one.
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In paper [26], the same model was studied in the entire space R. In that case, the system (4.1) has
exactly two stable equilibria, namely the Wolbachia invasion steady state and the Wolbachia extinc-
tion steady state. In this paper, the authors show that when ε→ 0 and the reaction terms satisfy some
appropriate conditions, the proportion pε = nεi

nεi +nεu
converges to the solution p0 of the scalar equation

∂tp0 − A∂xxp0 = f (p0), with the reaction term:

f (p) = δdush

p(1 − p)(p − θ )

shp2 − (sf + sh)p + 1
, (4.2)

with θ = sf +δ−1

δsh
. We will always assume that sf + δ(1 − sh)< 1, so θ ∈ (0, 1), and f is a bistable function

on (0, 1). The two stable steady states 1 and 0 of (1.1) correspond to the success or failure of the biological
control using Wolbachia.

4.2 Mosquito population in presence of migration

In this study, the migration of mosquitoes is taken into account. Typically, the inflow of wild unin-
fected mosquitoes and the outflow of the infected ones may influence the efficiency of the method using
Wolbachia. Here, to model this effect, system (4.1) is considered in a bounded domain with appropriate
boundary conditions to characterise the migration of mosquitoes. In one-dimensional space, we consider
�= (−L, L) and Robin boundary conditions as in (1.4) at points x = −L, and x = L:

∂nεi
∂ν

= − D(nεi − next,ε
i ), (4.3a)

∂nεu
∂ν

= − D(nεu − next,ε
u ), (4.3b)

where next,ε
i , next,ε

u do not depend on t and x but depend on parameter ε > 0. Denote pε = nεi
nεi +nεu

, nε =
1
ε

(
1 − nεi +nεu

K

)
. In Section A, we prove that when ε→ 0, up to extraction of subsequences, nε converges

weakly to n0 = h(p0) for some explicit function h, and pε converges strongly towards solution p0 of (1.1)
where pext is the limit of next,ε

i

next,ε
i +next,ε

u
when ε→ 0, and the reaction term f as in (4.2). Function f satisfies

Assumptions 2.1 and 2.2, so the results in Theorems 2.2 and 2.5 can be applied to this problem. By
changing the spatial scale, we can normalise the diffusion coefficient into A = 1.

In this application, the parameters L, D, pext correspond to the size of �, the migration rate of
mosquitoes and the proportion of infected mosquitoes surrounding the boundary. The main results in
the present paper give information about the existence and stability of equilibria depending on different
conditions for these parameters. Especially, from Corollary 2.1, we obtain that when the size L of the
domain is small, there exists a unique equilibrium for this problem and its values depend on the propor-
tion of mosquitoes carrying Wolbachia outside the domain (pext). More precisely, when pext is small (i.e.
pext ≤ α1), the solution of (1.1) converges to the steady-state solution close to 0, which corresponds to
the extinction of mosquitoes carrying Wolbachia. Therefore, in this situation, the replacement strategy
fails because of the migration through the boundary. Otherwise, when the proportion outside the domain
is high (i.e. pext ≥ α2), then the long-time behaviour of solutions of (1.1) has values close to 1, which
means that the mosquitoes carrying Wolbachia can invade the whole population.

4.3 Numerical illustration

In this section, we present the numerical illustration for the above results. Parameters are fixed according
to biologically relevant data (adapted from [5]). Time unit is the day, and parameters per day are in
Table 2.
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Table 2. Parameters for the numerical illustration

Parameters bu du δ σ sf sh

Values 1.12 0.27 10
9

1 0.1 0.8

(a) (b)

(c)

Figure 4. Convergence of pε to p0 as ε goes to zero. The solid lines represent the solution p0(t, x) of
(1.1) at t = 50 days. The dashed lines represent the proportion pε = nεi

nεi +nεu
of solution nεi , nεu of system

(4.1) and (4.3) at t = 50.

Then, the reaction term f in (4.2) has θ = 0.2375, β ≈ 0.3633, α1 ≈ 0.12, α2 ≈ 0.7. As proposed in
Section 3 of the modelling article [17], we may pick the value 830 m2 per day for the diffusivity of Aedes
mosquitoes. Choose A = 1, so the x-axis unit in the simulation corresponds to

√
830/1 ≈ 29 m.

In the following parts, we check the convergence of pε when ε→ 0 in Section 4.3.1. In Section 4.3.2,
corresponding to different parameters, we compute numerically the solutions of (1.1) and (1.2) to check
their existence and stability.
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(a) (b)

(c)

Figure 5. The blue and red solid lines represent, respectively, functions F1 and F2 of p(L).

4.3.1 Convergence to the scalar equation
Consider a mosquito population with a large fecundity rate, that is, ε� 1. Model (4.1) with boundary
condition in (4.3) takes into account the migration of mosquitoes.

Fix D = 0.05, pext = 0.1 and L = 2, the system (4.1) and (4.3) are solved numerically thanks to a semi-
implicit finite difference scheme with three different values of the parameters ε. The initial data are
chosen such that nεi (t = 0) = nεu(t = 0), that is, pinit = 0.5. In Figure 4, at time t = 50 days, the numerical
solutions of (1.1) are plotted with blue solid lines, and the proportions pε = nεi

nεi +nεu
are plotted with dashed

lines. We observe that when ε goes to 0, the proportion pε converges to the solution p0 of system (1.1).

4.3.2 Steady-state solutions
For the different values of pext, the values of the integralsF1 andF2 as functions of p(L) in (3.8) and (3.11)
are plotted in Figure 5. For fixed values of D and pext, Figure 5 can play the role of bifurcation diagrams
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(a) (b) (c)

Figure 6. Case pext = 0.1, D = 0.05: the solid lines illustrate the steady-state solutions. The dotted
lines show the initial data of problem (1.1). The dashed lines represent the solution p0(t, x) with
t ∈ {10, 20, 40, 60, 100}. The colour of the dashed lines corresponds to the colour of the equilibrium
that they converge to.

that show the relation between the value p(L) of symmetric solutions p and parameter L. Then, we can
obtain the critical values of parameter L. Next, we compute numerically the SM steady-state solutions
of (1.1) with different values of L> 0, D> 0, pext ∈ (0, 1).
Numerical method: To approximate the SM steady-state solution, we use the Newton method to solve
non-linear equations and follow these steps:

◦ Step 1: Solve L =Fi(p(L)) for i = 1 or 2, and obtain the values of p(L).
◦ Step 2: Find p(0) by solving (3.5).

◦ Step 3: For each x in (0, L), interpolate p(x) by solving x =
∫ p(x)

p(0)

(−1)kds√
2F(p(0)) − 2F(s)

due to (3.4)

with k = 1 if p is decreasing and k = 2 if p is increasing on (0, x).

The construction of a non-SM steady-state solution is more sophisticated, since it is hard to find p(L)
for a fixed L like in step 1. We presented a numerical non-SM equilibrium in Figure 6(c) where we first
fixed a value p(L). Then similarly to step 2, we solved (3.15) to find all the extreme values of p. Finally,
we applied step 3 with p(0) replaced by pmin or pmax.

We also plot the time dynamics of the solution p0(t, x) of (1.1) at t = 10, 20, 40, 60, 100 to verify the
asymptotic stability of steady-state solutions. Next, we consider different values of pext and present our
observation in each case.

• Case 1: pext = 0.1<α1.

For D = 0.05 fixed, we observe in Figure 5(a) that for any L> 0, equation F2(p(L)) = L always
admits exactly one solution. Thus, there always exists one SI steady-state solution with small values.
We approximate that
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(a) (b) (c)

Figure 7. Case pext = 0.8: The solid lines illustrate the steady-state solutions. The dotted lines show the
initial data of problem (1.1). The dashed lines represent the solution p0(t, x) with t ∈ {10, 20, 40, 60, 100}.
The colour of the dashed lines corresponds to the colour of the equilibrium that they converge to.

Md(0.1, 0.05) = M1 ≈ 0.8819, M∗(0.1, 0.05) ≈ 8.625.

Also from Figure 5(a), we observe that when L = M1, a bifurcation occurs and (1.1) admits an SD steady-
state solution, and when L>M1 one can obtain two SD solutions. Moreover, when L ≥ M∗, there exist
non-symmetric steady-state solutions. We do numerical simulations for two values of L as follows.

For L = 0.5<M1, the unique equilibrium p21 is SI and has values close to 0 (see Figure 6(a)). Solution
p0 of (1.1) with any initial data converges to p21. This simulation is coherent with the asymptotic stability
that we proved in Corollary 2.1.

For L = 8.96>M∗ >M1, together with p21, there exist two more SD steady-state solutions, namely
p11 and p12 (see Figure 6(b)). This plot shows that these steady-state solutions are ordered, and the
time-dependent solutions converge to either the largest one p11 or the smallest one p21, while p12 with
intermediate values is not an attractor. In Figure 6(c), we find numerically a non-symmetric solution p
of (1.2) corresponding to orbit T3 as in Figure 3(a). Let the initial value pinit ≡ p, then we observe from
Figure 6(c) that p0 still converges to the symmetric equilibrium p21.
Moreover, the value λ1 of Theorem 2.5 in this case is approximately equal to 0.0063. We also obtain
that for any x ∈ (−L, L),

f ′(p11(x))< 0, f ′(p21(x))< 0, f ′(p12(x))> 0.0462, f ′(p(x))> 0.022.

Therefore, by applying Theorem 2.5, we deduce that the steady-state solutions p11, p21 are asymptotically
stable, p12 and the non-symmetric equilibrium p are unstable. Thus, the numerical simulations in Figure 6
are coherent to the theoretical results that we proved.

• Case 2: pext = 0.8>α2 >β.
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In this case, we obtain D∗ ≈ 0.16. We present numerical illustrations for two cases: D = 0.05<D∗
and D = 0.5>D∗.

◦ For D = 0.05<D∗, we have Mi(0.8, 0.05) = M2 ≈ 10.3646 (see Figure 5(b)).

For L = 2<M2, the unique equilibrium p11 is SD and has values close to 1 (see Figure 7(a)). The
time-dependent solution p0 of (1.1) with any initial data converges to p11. This simulation is coherent to
the asymptotic stability we obtained in Corollary 2.1.

For L = 12>M2, together with p11, there exist two more SI steady-state solutions, namely p21 and
p22, and they are ordered (see Figure 7(b)). In this case, we obtain approximately that λ1 ≈ 0.0063 and
for any x ∈ (−L, L), one has

f ′(p11(x))< 0, f ′(p21(x)) ∈ (−0.0398, 0.0368), f ′(p22(x)) ∈ (−0.0195, 0.0673).

By sufficient conditions in Theorem 2.5, we obtain that p11 is asymptotically stable but we cannot con-
clude the stability for p21 and p22. The time dynamics of p0 in Figure 7(b) suggests that the smallest
steady-state solution p21 is asymptotically stable and p22 seems to be unstable.

◦ For D = 0.5>D∗, function F2 is not defined (see Figure 5(c)), so problem (1.2) admits only one
SD steady-solution, and we obtain that it is unique and asymptotically stable (see Figure 7(c)).

5. Conclusion and perspectives

We have studied the existence and stability of steady-state solutions with values in [0, 1] of a reaction–
diffusion equation:

∂tp − ∂xxp = f (p)

on an interval (−L, L) with cubic non-linearity f and inhomogeneous Robin boundary conditions:
∂p

∂ν
= D(p − pext),

where constant pext ∈ (0, 1) is an analogue of p and constant D> 0. We have shown how the analysis of
this problem depends on the parameters pext, D and L. More precisely, the main results say that there
always exists a symmetric steady-state solution that is monotone on each half of the domain. For pext

large, the value of this steady-state solution is close to 1; otherwise, it is close to 0. Besides, the larger
value of L, the more steady-state solutions this problem admits. We have found the critical values of L
so that when the parameters surpass these critical values, the number of steady-state solutions increases.
We also provided some sufficient conditions for the stability and instability of the steady-state solutions.

We presented an application of our results on the control of dengue vector using Wolbachia bac-
terium that can be transmitted maternally. Since Wolbachia can help reduce vectorial capacity of
the mosquitoes, the main goal of this method is to replace wild mosquitoes by mosquitoes carrying
Wolbachia. In this application, we considered p as the proportion of mosquitoes carrying Wolbachia
and used the equation above to model the dynamic of the mosquito population. The boundary condition
describes the migration through the border of the domain. This replacement method only works when p
can reach an equilibrium close to 1. Therefore, the study of the existence and stability of the steady-state
solution close to 1 is meaningful and depends strongly on the parameters pext, D and L. In realistic situa-
tions, the proportion pext of mosquitoes carrying Wolbachia outside the domain is usually low. Using the
theoretical results proved in this article, one sees that, to have major chances of success, one should try
to treat large regions (L large), well isolated (D small) and possibly applying a population replacement
method in a zone outside � (to increase pext by reducing its denominator).

As a natural continuation of the present work, higher dimension problems and more general bound-
ary conditions can be studied. In more realistic cases, pext can be considered to depend on space and
the periodic solutions can be the next problem for our study. Besides, when an equilibrium close to 1
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exists and is stable, one may consider multiple strategies using multiple releases of mosquitoes carry-
ing Wolbachia. To optimise the number of mosquitoes released to guarantee the success of this method
under the difficulties enlightened by this paper is an interesting problem for future works.
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A. Asymptotic limit of reaction–diffusion systems

In [26], the authors reduced a 2-by-2 reaction–diffusion system of Lotka–Volterra type modelling two
biological populations to a scalar equation as in (1.1) when the fecundity rate is very large. This limit
problem was first proved in the whole domain. In the present study, we prove the limit for a system in a
bounded domain with inhomogeneous Robin boundary conditions. In the following part, we recall the
necessary assumptions and present results about this problem.

Although the main result of the paper is in one-dimensional space, the following result holds in any
dimension d. Let �⊂R

d be a bounded domain and consider the initial-boundary value problem (A1)
depending on parameter ε > 0:

∂tn
ε

1 −�nε1 = nε1f ε1 (nε1, nε2), (t, x) ∈ (0, T) ×�, (A1a)
∂tn

ε

2 −�nε2 = nε2f ε2 (nε1, nε2), (t, x) ∈ (0, T) ×�, (A1b)
nε1(0, x) = ninit,ε

1 (x), nε2(0, x) = ninit,ε
2 (x), x ∈�, (A1c)

∂nε1
∂ν

= −D(nε1 − next,ε
1 ),

∂nε2
∂ν

= −D(nε2 − next,ε
2 ), (t, x) ∈ (0, T) × ∂�, (A1d)

where we assume that f ε1 , f ε2 are smooth enough to guarantee existence and uniqueness of a classical
solution for fixed ε. More precisely, the following assumptions are made:

Assumption A.1. (Initial and boundary conditions). Assume that ninit,ε
1 , ninit,ε

2 ∈ L∞(�) with ninit,ε
1 , ninit,ε

2 ≥
0 and ninit,ε

2 is not identical to 0.
D> 0 is constant, next,ε

1 ≥ 0, next,ε
2 > 0 do not depend on time t and position x.

To study the limit problem, we define the “rescaled total population” nε and proportion pε by:

nε := 1

ε
− nε1 − nε2, pε := nε1

nε1 + nε2
.

Next, we recall some assumptions that were proposed in [26] on the families of functions (f ε1 , f ε2 )ε>0 to
study the convergence of pε when ε→ 0

Assumption A.2. Function f ε1 , f ε2 are of class C2(R2
+{0}), and for i ∈ {1, 2} there exists Fi ∈ C2(R2)

(independent of ε) such that

f εi (nε1, nε2) = Fi(n
ε , pε). (A2)

That is, we may write f εi (nε1, nε2) = Fi

(
1
ε
− nε1 − nε2, nε1

nε1+nε2

)
for i ∈ {1, 2}.

Then, we can deduce that pε and nε satisfy system (A3) as follows:
In (0, T) ×�, we have
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∂tn
ε −�nε = −

(
1

ε
− nε

) [
pεF1(n

ε , pε) + (1 − pε)F2(nε , pε)
]

, (A3a)

∂tp
ε −�pε + 2εA

1 − εnε
∇pε · ∇nε = pε(1 − pε)(F1 − F2)(n

ε , pε), (A3b)

on the boundary (0, T) × ∂�, we have
∂nε

∂ν
= −D(nε − next,ε),

∂pε

∂ν
= −D(pε − pext,ε)

1 − εnext,ε

1 − εnε
, (A3c)

at time t = 0, for any x ∈�, the initial data read

nε(0, x) = ninit,ε(x), pε(0, x) = pinit,ε(x), (A3d)

where (F1 − F2)(nε , pε) = F1(nε , pε) − F2(nε , pε), and

ninit,ε := 1

ε
− ninit,ε

1 − ninit,ε
2 , pinit,ε := ninit,ε

1

ninit,ε
1 + ninit,ε

2

,

next,ε := 1

ε
− next,ε

1 − next,ε
2 , pext,ε := next,ε

1

next,ε
1 + next,ε

2

.

Let us denote H(n, p) = −pF1(n, p) − (1 − p)F2(n, p). The following assumption guarantees existence
of zeros of H given by (n, p) = (h(p), p) for each p ∈ [0, 1].

Assumption A.3. In addition to Assumption A.2,

(i) There exists B> 0 such that for all n ≥ 0, p ∈ [0, 1], ∂nH(n, p) ≤ −B,
(ii) For all p> 0, H(0, p)> 0.

Conditions (i) and (ii) imply that for all p ∈ [0, 1], there exists a unique n =: h(p) ∈R
∗
+ such that

H(n, p) = 0. We have H ∈ C2(R2
+) (from Assumption A.2) thus h ∈ C2(0, 1), with H(h(p), p) = 0 for all

p ∈ [0, 1].
The following assumptions are made for the initial data and boundary conditions

Assumption A.4. There exists a function pinit ∈ L2(�) such that pinit,ε ⇀
ε→0

pinit weakly in L2(�). Function
ninit,ε − h(0) ∈ L2 ∩ L∞(�) is uniformly bounded in ε > 0.

Assumption A.5. There exists positive constants ε̃ > 0, K̃ > 0 such that for any ε ∈ (0, ε̃), we have
|next,ε|< K̃.

There exists a constant pext ∈ (0, 1) not depending on ε such that pext,ε →
ε→0

pext

Convergence result. For fixed ε > 0, existence of solutions of (A3) is classical (see, e.g. [20]). Following
the idea in [26], we present the asymptotic limit of the proportion pε and nε in the following theorem.

Theorem A.1. Assume that Assumptions A.1–A.5 are satisfied and consider the solution (nε , pε) of (A3).
Then, for all T > 0, we have the convergence:⎧⎨

⎩
pε −−→

ε→0
p0 strongly in L2(0, T; L2(�)), weakly in L2(0, T; H1(�)),

nε − h(pε) −−→
ε→0

0 strongly in L2(0, T; L2(�)), weakly in L2(0, T; H1(�)),

where p0 is the unique solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tp0 −�p0 = p0(1 − p0)(F1 − F2)(h(p0), p0), in (0, T) ×�,

p0(0, ·) = pinit in �
∂p0

∂ν
= −D(p0 − pext) on (0, T) × ∂�.
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We recall the apriori estimates of [26] without proof and present some bounds on the boundary
in Appendix A.1. Then we use the Aubin–Lions lemma and trace theorem to prove the limit in
Appendix A.2.

A.1 Uniform a priori estimates

First, we establish the uniform bound with respect to ε in L∞ in the following lemma

Lemma A.1. Under Assumptions A.1–A.5, for a given value ε > 0, let (nε , pε) be the unique solution of
(A3). Then, for any T > 0, 0 ≤ pε ≤ 1 in [0, T] ×� for all ε > 0. Also, there exists ε0 > 0, K0 > 0 such
that for any ε ∈ (0, ε0), ||nε||L∞([0,T]×�) ≤ K0.

Moreover, nε is uniformly bounded on [0, T] × ∂�.

Proof . Using the same method as in Lemma 5 of [26], we obtain the uniform bounds for pε in [0, T] ×�,
and for nε in L∞([0, T] ×�).

Moreover, for any x ∈ ∂�, let ν be the normal outward vector through x. Then, for δ > 0
small enough, x − δν ∈�. From the boundary condition for nε in (A3), one has for t ∈ [0, T],

lim
δ→0+

nε(t, x) − nε(t, x − δν)

δ
= −D(nε(t, x) − next,ε).

So for any η > 0, there exists δ > 0 small such that∣∣∣∣nε(t, x) − nε(t, x − δν)

δ
+ D(nε(t, x) − next,ε)

∣∣∣∣ ≤ η

Thus, nε(t, x)(1 + δD) ≤ nε(t, x − δν) + δDnext,ε + δη, then for η and δ small enough, for any ε <
ε0, t ∈ [0, T], x ∈ ∂�, since x − δν ∈�, one has |nε(t, x)| ≤ K0 + δDK̃ + δη <K1. Then nε is uniformly
bounded on [0, T] × ∂� and ||nε||L∞([0,T]×∂�) ≤ K1.

The following lemmas can be proved analogously to the proof in [26].

Lemma A.2. Under Assumptions A.1–A.5, for ε > 0 small enough, let (nε , pε) be the unique solution of
(A3). We have the following uniform estimates:

ε

∫ T

0

∫
�

|∇nε|2dxdt ≤ C0,
∫ T

0

∫
�

|∇pε|2dxdt ≤ C, (A4)

for some positive constants C0 and C.

Denote Mε := nε − h(pε) where h is defined in Assumption A.3. The following provide the conver-
gence of Mε .

Lemma A.3. Let T > 0, under Assumptions A.1–A.5, one has Mε → 0 in L2(0, T; L2(�)) when ε→ 0.
Now, we provide a uniform estimate for ∂tpε with respect to ε in the following lemma.

Lemma A.4. Under Assumptions A.1–A.5, for ε > 0 small enough, ∂tpε is uniformly bounded in
L2(0, T; X′) with respect to ε, where X = H1(�) ∩ L∞(�).

A.2 Proof of convergence

The idea to prove Theorem A.1 is relied on the relative compactness obtained from the Aubin–Lions
lemma below (see [23])

Lemma A.5 (Aubin–Lions). Let T > 0, q ∈ (1, ∞), and (ψn)n a bounded sequence in Lq(0, T; B), where
B is a Banach space. If (ψn) is bounded in Lq(0, T; X) and X embeds compactly in B, and if (∂tψn)n is
bounded in Lq(0, T; X′) uniformly with respect to n, then (ψn)n is relatively compact in Lq(0, T; B).
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Proof of Theorem A.1. We use three steps to proof Theorem A.1. First, we obtain the relative
compactness of (pε) by applying Aubin–Lions lemma and prove that there exists (up to extracting subse-
quences) a limit function. Then, we study its behaviour on the boundary using the trace theorem. Finally,
thanks to our uniform bounds, we show that the limit function satisfies a problem whose solution is
unique.

Step 1: In our problem, we need to apply the Lions–Aubin lemma with q = 2, B = L2(�) and X =
H1(�) ∩ L∞(�) to (ψε) = (pε)ε . The compact embedding from X to B is valid by the Rellich–Kondrachov
theorem. In the previous section, we have already obtained uniform estimates that are sufficient to apply
the Aubin–Lions lemma. The sequence (pε)ε is bounded in L2(0, T; L2(�)) due to Lemma A.1:

||pε||2
L2(0,T; L2(�)) =

∫ T

0

∫
�

|pε|2dxdt ≤ ||pε||2
L∞(0,T; L2(�))meas(�)T <∞,

for ε < ε0 small enough. Then, due to Lemma A.2, this sequence is bounded in L2(0, T; X). The sequence
(∂tpε)ε is bounded in L2(0, T; X′) by Lemma A.4. Thus, we can apply Aubin–Lions lemma and deduce
that (pε)ε is strongly relatively compact in L2(0, T; L2(�)). Therefore, there exists p0 ∈ L2(0, T; H1(�))
such that, up to extraction of subsequences, we have pε → p0 strongly in L2((0, T) ×�) and almost
everywhere, ∇pε ⇀∇p0 weakly in L2((0, T) ×�).

Moreover, by the triangle inequality we have |nε − h(p0)| ≤ |nε − h(pε)| + |h(pε) − h(p0)| ≤ |nε −
h(pε)| + ||h′||L∞([0,1])|pε − p0|. From the strong convergence of pε and Mε in Lemma A.3 when ε→ 0,
we can deduce the following strong convergence in L2(0, T; L2(�)):

nε → n0 := h(p0) (A5)

Step 2: Now, let us focus on the behaviour on the boundary of the domain. Let the linear operator γ
be the trace operator on the boundary (0, T) × ∂�. For any ε ∈ (0, ε0) small enough, we have γ (pε) =
pε |(0,T)×∂�, then by the trace theorem, one has

||γ (pε)||L2(0,T; L2(∂�)) ≤ C||pε||L2(0,T; H1(�))

where the constant C only depends on �. Then

||γ (pε)||2
L2(0,T; L2(∂�)) ≤ C2

∫ T

0

∫
�

|pε|2dxdt + C2

∫ T

0

∫
�

|∇pε(t, ·)|2dxdt<∞,

due to Lemmas A.1 and A.2. Hence, we can deduce that γ (pε) is weakly convergent in L2((0, T) × ∂�).
Let γ 0 := lim

ε→0
γ (pε). For any function ψ ∈ C1(�), and for i = 1, . . . , d, by Green’s formula one has

∫
�

∂ip
εψdx = −

∫
�

pε∂iψ +
∫
∂�

ψγ (pε)νidS.

Since pε converges weakly to p0 in H1(�), when ε→ 0, one has∫
�

∂ip
0ψdx = −

∫
�

p0∂iψ +
∫
∂�

ψγ 0νidS.

We can deduce that γ 0 = γ (p0).
Step 3: We pass to the limit in the weak formulation of (A3), for any test function ψ such that

ψ ∈ C2([0, T] ×�),ψ(T , ·) = 0 in �, one has
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−
∫ T

0

∫
�

pε∂tψdxdt︸ ︷︷ ︸
strong convergence

+ A
∫ T

0

∫
�

∇pε · ∇ψdxdt︸ ︷︷ ︸
weak convergence

=
∫
�

pinit,εψ(0, ·)dx︸ ︷︷ ︸
weak convergence

− 2εA
∫ T

0

∫
�

ψ

1 − εnε
∇pε∇nεdxdt︸ ︷︷ ︸

bounded as ε→0

+
∫ T

0

∫
�

ψpε(1 − pε)(F1 − F2)(nε , pε)dxdt︸ ︷︷ ︸
strong convergence

− DA
∫ T

0

∫
∂�

(pε − pext,ε)
1 − εnext,ε

1 − εnε
dS︸ ︷︷ ︸

weak convergence

.

The weak convergence of the last term on the boundary is obtained from Lemma A.1 and
Assumption A.5. When ε < ε0, we have next,ε , nε are uniformly bounded on (0, T) ×� with respect to ε,
then 1−εnext,ε

1−εnε
converges strongly to 1 when ε→ 0. From the previous step, one has pε|∂� = γ (pε)⇀γ (p0)

weakly in L2((0, T) × ∂�). Passing to the limit, we obtain that p0 ∈ L2(0, T; H1(�)) is a weak solution
of the following problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tp0 − A�p0 = p0(1 − p0)(F1 − F2)(n0, p0) in (0, T) ×�,

p0(0, ·) = pinit in �
∂p0

∂ν
= −D(p0 − pext) on (0, T) × ∂�.

Using (A5), we can deduce that this problem is a self-contained initial-boundary value problem.
Moreover, since 0 and 1 are, respectively, sub- and super-solutions of this problem, it admits a unique
classical solution with values in [0, 1]. Hence, all the extracted subsequences converge to the same limit
p0 and p0|∂� = γ (p0).
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