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Abstract

Datasets serve as crucial training resources and model performance trackers. However, existing datasets
have exposed a plethora of problems, inducing biased models and unreliable evaluation results. In this
paper, we propose a model-agnostic dataset evaluation framework for automatic dataset quality evaluation.
We seek the statistical properties of the datasets and address three fundamental dimensions: reliability, dif-
ficulty, and validity, following a Classical Test Theory (CTT). Taking the named entity recognition (NER)
datasets as a case study, we introduce nine statistical metrics for a statistical dataset evaluation frame-
work. Specifically, we investigate the reliability of a NER dataset with three metrics, including Redundancy,
Accuracy, and Leakage Ratio. We assess the dataset difficulty through four metrics: Unseen Entity Ratio,
Entity Ambiguity Degree, Entity Density, and Model Differentiation. For validity, we introduce the Entity
Imbalance Degree and Entity-Null Rate to evaluate the effectiveness of the dataset in assessing language
model performance. Experimental results validate that our evaluation framework effectively assesses vari-
ous aspects of the dataset quality. Furthermore, we study how the dataset scores on our statistical metrics
affect the model performance and appeal for dataset quality evaluation or targeted dataset improvement
before training or testing models.

Keywords: Dataset evaluation framework; named entity recognition; reliability; difficulty; validity

1. Introduction

Recently, a large number of models have made breakthroughs in various datasets of natural lan-
guage processing (NLP) (Kenton and Toutanova 2019; Liu et al. 2019). Meanwhile, an increasing
number and variety of NLP datasets are proposed for model training and evaluation (Malmasi
et al. 2022; Yin et al. 2017; Srivastava et al. 2022).

However, despite datasets significantly impacting model development and assessment
(Bommasani et al. 2021), their quality is seldom systematically verified. Recent literature has indi-
cated various quality issues within NLP datasets, for example, label mistakes (Wang et al. 2019).
Datasets with quality issues frequently give rise to model shortcuts (Gururangan et al. 2022; Poliak
et al. 2018) or induce incorrect conclusions (Goyal et al. 2022; Rashkin ef al. 2023).

In this paper, we aim to answer two primary questions: (1) How to evaluate dataset quality
in a model-agnostic manner? A comprehensive dataset quality evaluation is crucial for selecting
adequate training resources. Furthermore, when there are discrepancies in model performance
across different datasets, an unbiased evaluation of dataset quality can serve as a reliable arbitrator.
(2) How do the statistical scores on dataset properties affect the model performance? The insights
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Figure 1. Our statistical dataset evaluation framework based on the Classical Testing Theory. We introduce nine quality eval-
uation metrics from three dimensions: reliability, difficulty, and validity. The dataset scores on the metrics have a significant
impact on the models (trained on this dataset) in many aspects, such as the average performance and the out-of-domain
robustness.

gained from this will guide improvements in dataset quality, which is crucial for developing
effective and unbiased models.

To this end, we introduce a dataset evaluation framework (Figure 1) and take the named entity
recognition (NER) datasets as a case study. Inspired by Classical Test Theory (CTT) (Novick 1966)
in psychometrics, our dataset evaluation framework includes three key dimensions: reliability,
difficulty, and validity. Reliability reflects how credible the dataset is, difficulty represents dataset
difficulty and differentiation for models, and validity means how well the dataset fits the motiva-
tion and goal of the task. Following this framework, we introduce nine metrics under the three
dimensions for the statistical properties of NER datasets and assess the quality of ten widely used
NER datasets.

Extensive experimental results validate that our evaluation metrics derived from the dataset
properties are highly correlated with the performance of NER models and human evaluation
results. The evaluation results enhance our comprehension of the datasets and bring some novel
insights. For example, one of the most widely used English NER datasets, CONLLO3 (Sang and
De Meulder 2003), is far less challenging (0.43, 0.30, and 2.63 points lower on the Unseen Entity
Ratio, Entity Ambiguity Degree, and Model Differentiation metrics, respectively) than WNUT16
(Strauss et al. 2016), which has received less attention previously. In addition, by controlled dataset
adjustment (Sec. 6.4), we find the dataset quality on the statistical metrics, including Unseen
Entity Ratio, Entity Ambiguity Degree, and Entity-Null Rate, affects the NER model performance
significantly.

We believe that statistical dataset evaluation provides a direct and comprehensive reflection
of the dataset quality. And we recommend dataset quality evaluation before training or testing
models for a better understanding of tasks and data for other tasks in NLP.

2. Related work
2.1 Issues in NLP datasets

Recent works have shown that NLP datasets have a number of quality problems, for example, label
mistakes (Wang et al. 2019), entity missing® (Tejaswin ef al. 2021), and unwanted biases resulting
from the annotation process (Kaushik and Lipton 2018; Nadeem et al. 2021). For instance, Wang
et al. (2019) identified a notable 5.38 percent rate of label mistakes in the CoNLL03 NER dataset,

#The target summary contains entities (names, dates, events, etc.) that are absent from the source.

https://doi.org/10.1017/nlp.2024.37 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.37

92 C. Wang et al.

a concerning figure for a widely used benchmark in NLP research. Tejaswin et al. (2021) manually
checked 600 randomly selected instances from three sources: CNN/DailyMail (Hermann et al.
2015; Nallapati et al. 2016), Gigaword (Rush et al. 2015), and XSum (Narayan et al. 2018), which
are datasets commonly used for text summarization tasks. Their analysis revealed a significant
proportion of instances with issues of Entity Missing and Evidence Missing® in these datasets.
This indicates that the target summaries often contained entities or concepts absent from the
source texts, raising questions about the accuracy of these datasets.

Furthermore, studies by Sugawara et al. (2020) and Gururangan et al. (2022) suggest that per-
formance metrics on certain machine reading comprehension and natural language inference
datasets might be artificially inflated. This is attributed to models exploiting spurious corre-
lations rather than truly understanding the underlying language structures, resulting in poor
generalization when applied to real-world scenarios.

An equally significant concern in NLP dataset construction is data leakage, particularly test-
train overlap, which poses substantial risks to model evaluation. Studies like Lewis et al. (2021)
reveal that a considerable portion of test data may mirror the training set, risking models’ over-
fitting to the data rather than generalizing, thus inflating performance scores. Larson et al. (2023)
echoes this sentiment, highlighting similar concerns in document classification realms. These
studies collectively call for improved dataset division methods and robust validation techniques
to mitigate data leakage and truly measure a model’s generalization capabilities on unseen data.

However, most works focus on a specific issue of the datasets, and most issues are highly related
to the model training process. Inspired by CTT, we built our dataset quality evaluation framework
from reliability, difficulty, and validity dimensions. And we developed metrics for assessing the
quality of datasets under the above three dimensions in conjunction with NER task characteristics
and experimentally validated the effectiveness of our metrics in dataset evaluation.

2.2 Data-centric Al

In the contemporary landscape of NLP and machine learning, the pivotal role of datasets has
increasingly been acknowledged. The seminal work by Ng et al. (2021) has galvanized the shift
toward a data-centric Al paradigm, underscoring the potential of enhancing data quality to
achieve superior model performance over merely refining algorithms. This approach dovetails
with the initiatives like the NHS’s Data Quality Maturity Index Methodology,® which provides a
structured framework to assess and improve the quality of data in healthcare, a sector that greatly
benefits from NLP technologies.

Simultaneously, the introduction of DataCLUE by Xu et al. (2021) marks a significant stride
in this domain, offering the first benchmark specifically tailored for evaluating data-centric
approaches in NLP. This benchmark aligns with tools such as the Data Quality for AT Tool
(Jariwala et al. 2022) provided by IBM, which facilitates exploratory data analysis through its API,
thereby enabling a more rigorous and systematic enhancement of datasets.

Moreover, a comprehensive review (Zha et al. 2023) offers a detailed exploration of the need
for data-centric Al, addressing the methodological pivot from a model-centric to a data-centric
perspective in Al research. This survey highlights the indispensable need for high-quality data
to train robust machine learning models, especially in domains where data are prone to noise,
sparsity, and bias.

In light of these developments, our proposed evaluation metrics aim to contribute to the ongo-
ing efforts of dataset quality improvement. These metrics are designed to facilitate both automatic
and semi-automatic enhancements of datasets, ensuring that the data used to train NLP models

bEvidence Missing: The target summary is based on concepts which are absent from the source.
“https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/data-quality/data-quality-maturity-
index-methodology
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are of the highest fidelity and thus capable of driving the performance of these models to new
heights. The systematic application of such metrics can significantly streamline the process of
data quality assurance, making it more tractable for researchers and practitioners to achieve data
excellence in Al systems.

The cumulative effect of these methodologies and tools signifies a transformative movement
in Al research, where data are no longer a passive element but a dynamic and critical component
of the AI development lifecycle. As this data-centric ethos permeates the field, it is anticipated
that future advancements in NLP will be increasingly driven by innovations in data quality
management, thereby catalyzing a new era of Al systems that are both powerful and reliable.

3. Classical Test Theory

Human tests or exams usually follow strict testing theories, such as CTT (Novick 1966), a statisti-
cal framework to measure the quality of the exams. According to CTT, a thorough and systematic
evaluation should consider three dimensions: reliability, difficulty, and validity.

In this paper, we introduce CTT for Dataset Evaluation. Adapting traditional CTT to dataset
evaluation, we specified the definitions of reliability, difficulty, and validity as follows:

« Reliability measures the trustworthiness of the evaluation dataset. For instance, datasets
with a high number of labeling errors lack sufficient confidence to evaluate the perfor-
mance of different models.

« Difficulty is used to assess how the dataset differentiates between various models and
human-machine performance in terms of difficulty.

« Validity aims to evaluate how well the dataset effectively measures the capability of models.

4, Dataset quality evaluation framework

Following CTT for Dataset Evaluation, we build our statistical dataset evaluation framework? and
apply it to NER datasets. It includes nine fundamental metrics of the statistic properties in the
NER datasets. In this section, we introduce the definitions and the mathematical formulations of
the proposed metrics.

For a dataset® D with # instances, let (x(), y(i)) represent the i-th instance (i=1,2,...,n). The
input sequence x'” consists of m® tokens, and the output sequence y consists of m® entity
values. Let € represent the entity types in D (including “Not an entity”), and each entity type
G € %,j€1,2,...,v, where v represents the total number of entity types. We use Te, T, De to
represent the test set, the training set, and the development set, respectively. The function e(yp)
is defined to obtain a set of entity values in the set of ' of D, y, and sometimes we omit D for
simplification.

4.1 Metrics under reliability

The metrics under reliability aim to evaluate how accurate and trustworthy a dataset is, includ-
ing Redundancy, Accuracy, and Leakage Ratio. Reliability metrics—Redundancy, Accuracy,
and Leakage Ratio—are key elements in assessing a dataset’s trustworthiness. The evaluation of

4Qur framework is fundamentally designed to be applicable at a macroscopic level across various NLP tasks by advocating
for dataset quality assessment through measures of reliability, validity, and difficulty. However, at a more granular level, it is

specifically optimized for sequence tagging tasks.
¢Usually, the dataset includes the training set, the development set, and the test set.
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Redundancy aims to uncover duplicate information within the dataset, which is crucial for ensur-
ing consistency in results as it aids in securing an unbiased representation of data. By manually
verifying Accuracy, we can assess the dataset’s capability in accurately reflecting real-world infor-
mation, a fundamental basis for reliable outcomes. The detection of the Leakage Ratio prevents
the spillover of knowledge from test data to training data, essential for measuring the model’s
true performance. Together, these metrics form the cornerstone of dataset reliability, ensuring the
effectiveness of NLP modeling.

Redundancy measures the proportion of duplicate instances in a dataset D. A lower
Redundancy value is better as it indicates fewer duplicates and, therefore, a higher diversity in
the data. It is calculated by dividing the number of instances appearing more than once by the
dataset’s total number of instances:

Yo Xy [(x@,yD) = (x1), y7)]

n

Red(D) = (1)

In the case of Accuracy, a higher value is preferred because it reflects the proportion of correctly
annotated instances, suggesting a more reliable dataset. Accuracy aims to evaluate the annotation
correctness of the dataset and can be calculated as follows:

o 1, ify?isaccurate for x®,
5 (x(’), y<’>) - Y (2a)
0, else
n (), 0
Acc(D) = 2z 36 (2b)

n

We recommend selecting 100 instances from each dataset split and inviting at least three pro-
fessional linguists to annotate the Accuracy. To evaluate inter-rater reliability, we compute the
Cohen Kappa coefficient (Cohen 1960) pairwise among three annotators, subsequently averag-
ing these values. A mean Kappa exceeding 0.75 indicates substantial rater agreement, ensuring
annotation reliability.

Leakage Ratio is a critical metric used to assess the extent of data leakage between different
dataset partitions, specifically how many instances in the test set (Te) have incorrectly appeared
in the training set (Tr) or development set (De). A lower Leakage Ratio is indicative of better
dataset partitioning as it suggests that there is minimal to no overlap between the sets, which is
essential for preventing models from merely memorizing specific instances instead of learning to
generalize. The Leakage Ratio is defined as:

Zliell [(Te(i) € Tr) or (Te(i) € De)|
| Te|

LeakR(D) = (3)

4.2 Metrics under difficulty

We propose four metrics under difficulty to assess how challenging the datasets are, including
three intrinsic metrics (Unseen Entity Ratio, Entity Ambiguity Degree, and Text Complexity)
and one extrinsic metric (Model Differentiation). These difficulty metrics assess a dataset’s chal-
lenge level for NLP models. Unseen Entity Ratio tests generalization by measuring novel entities,
pushing models beyond their training. Entity Ambiguity Degree and Text Complexity challenge
models with varied entity types and dense entity arrangements, requiring nuanced interpretation.
Model Differentiation shows a dataset’s power to separate model performances, testing robust-
ness. Together, they define the dataset’s challenge in terms of generalization, ambiguity, density,
and differentiation, fitting the difficulty dimension.
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The Unseen Entity Ratio quantifies the proportion of new entities in the test set labels that
are not present in the training set, promoting the model’s ability to generalize. A higher Unseen
Entity Ratio is desirable as it indicates a greater challenge for the model to recognize entities it has
not encountered during training. The calculation is as follows:

UnSeenEnR(D) = M @

le(yre)|

Entity Ambiguity Degree is mainly used to measure how many entities are labeled with more
than one kind of entities types. For example, if “apple” is labeled as “Fruit” in one instance
and labeled as “Company” in another instance, then there is a conflict in D. A higher Entity
Ambiguity Degree represents a more challenging dataset because it indicates more instances
where an entity is labeled with different types, thereby confusing NER models. We introduce
e*(D) to represent the number of conflict entities in dataset D and obtain the Entity Ambiguity
Degree by:

e*(D)
B n

EnAmb(D) =1 (5)

Text Complexity measures the average Entity Density in sentences within the dataset. Higher
Text Complexity signals a more difficult dataset because it implies that sentences are densely
packed with entities, requiring more nuanced understanding and recognition by the model. It
is formulated as:

n 4
le () |
EnDen(D) = E %

=

(6)

Model Differentiation evaluates the dataset’s ability to distinguish the performance of dif-
ferent models. A higher Model Differentiation value is better as it indicates that the dataset can
effectively reveal differences in model performances, making it a useful tool for benchmarking. It
is determined using the standard deviation of the scores of k different models:

ModDiff(D) = Std(61, 6, - - - , 1) %

We recommend using the top five model scores on the dataset’ for ModDiff calculation.

4.3 Metrics under validity

The metrics under validity, for example, Entity Imbalance Degree and Entity-Null Rate for NER
datasets, are mainly proposed to evaluate the effectiveness of the dataset in evaluating the model’s
ability on the specific task. Validity metrics like Entity Imbalance Degree and Entity-Null Rate
assess if a dataset can effectively evaluate a model’s task-specific abilities. Entity Imbalance Degree
checks for equal entity representation, ensuring models learn without bias—a key for valid evalua-
tions. Entity-Null Rate measures how rich the dataset is in entity examples, vital for testing model
learning depth. Both metrics directly contribute to assessing a dataset’s ability to provide a fair
and thorough evaluation of model performance, embodying the essence of validity.

Entity Imbalance Degree mainly measures the unevenness of the distribution of different enti-
ties in D. A lower Entity Imbalance Degree is better as it indicates a more balanced distribution of
entity types, which is desirable for ensuring that the model is equally exposed to all categories and
does not develop a bias toward the more frequent ones. Specifically, we use standard deviation to

fThe Paperswithcode website regularly updates the scores of leading models on benchmark NER datasets. We selected the
top five performing models based on their evaluation scores available on the site.
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Table 1. Statistical evaluation of ten NER datasets

Reliability Difficulty Validity

Red| Acct LeakR| UnSeenEnR4t EnAmb4 EnDent ModDifft EnlmBaD| EnNullR|

CLUENER 0.00 0.86 0.00 0.37 0.80 0.26 4.58 0.04 0.00
OntoNotes4 0.02 0.98 0.04 0.47 2.54 1.02 - 0.13 0.46
MSRA 0.00 0.99 0.00 0.28 1.16 0.17 0.38 0.11 0.41
PeopleDaily  0.00 0.96 0.00 0.22 173 0.65 - 0.11 0.40
Resume 0.00 1.00 0.01 0.46 0.29 0.25 0.41 0.17 0.17
Weibo 0.05 0.98 0.17 0.56 0.92 0.55 0.90 0.27 0.44
WikiAnn 0.03 0.89 0.13 0.55 1.53 0.74 - 0.02 0.00
CoNLLO03 0.05 0.96 0.03 0.46 0.35 0.28 0.24 0.06 0.20
WNUT16 0.01 0.97 0.00 0.89 0.65 0.51 2.87 0.08 0.56
OntoNotes5 0.01 0.91 0.03 0.28 0.76 0.36 0.64 0.06 0.55

~indicates that the dataset and evaluation model scores have not been found on the Paperswithcode website, so the model discrimination of this
dataset cannot be calculated. The upper rows are Chinese NER datasets, and the lower rows are English NER datasets. indicates that the larger the
value, the better the quality of the dataset on this metric. Vindicates that the lower the value, the better the quality of the dataset on this metric.

quantify the degree of dispersion of the distribution of all the different types of entities % in the
dataset:8

EnlmBaD(2)=5td (Py,(c1), Py, (c2), - - - Py (cy)) (8)

Entity-Null Rate evaluates the proportion of instances in the dataset that do not contain any
entity. A lower Entity-Null Rate is preferred because it suggests that the dataset contains a richer
set of examples for the model to learn from, with more instances that include entity information.
The Entity-Null Rate is defined as:

1, if y(i) has no entity,

() = (92)

0, else

SrL o)
n

EnNullR(D) = (9b)

5. Statistical dataset evaluation for NER

To validate our statistical dataset evaluation methods, we assess the quality of ten widely used
NER datasets, including three English NER datasets and seven Chinese NER datasets. The evalu-
ation results for ten NER datasets are shown in Table 1. Figure 2 presents the evaluation results of
WNUT16, CONLLO03, Resume, and MSRA under different dimensions and metrics.

5.1 Datasets
We provide the basic information about the datasets in Table 2.

8Each ¢j€ 6,j€ 1,2,...,v represents a specific entity type, and P);,(c;) denotes the probability that ¢; appears within all
output entities in dataset D. This probability is computed by dividing the frequency of ¢; in yp by the total entity count in yp.
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Table 2. Standard named entity recognition dataset statistics.

Dataset Lang #Tags Source
CLUENER Zh 10 THUCNEWS
OntoNotes 4 Zh 4 News, Broadcast etc.
MSRA Zh 3 News

PeopleDaily Zh 3 News

Resume Zh 8 Sina Finance

Weibo Zh 4 Sina microblog
WikiAnn Zh 3 Wikipedia

CoNLLO3 En 4 Reuters News
WNUT16 En 10 User-generated web text
OntoNotes 5 En 18 Broadcast etc.

Zh and En mean Chinese and English, respectively. It is important to note that
OntoNotes 4 has four common tags in the Chinese dataset, although OntoNotes 4
has a total of eighteen tags (for the English dataset).

@ WwNUT16 CoNLLO3 """ Resume @ MSRA

Red
N
- WNUT16
Difficulty e Acg, EnNullR
! CoNLLO3
| ®
: Resume | %
E i ® MSRA LeakR o = EnimBaD
1 L
(. 1/ Reliability
V1
Validity Y EnAmb ModDiff
________________ '
UnSeenEnR

Figure 2. Evaluation results of WNUT16, CoNLLO3, Resume, and MSRA under different dimensions and metrics. The
abbreviations and corresponding full names of the metrics are presented in Sec. 4.

English NER datasets include the following: CONLL03 NER (Sang and De Meulder 2003) is a
classical NER evaluation dataset consisting of 1,393 English news articles. WNUT16 NER (Strauss
et al. 2016) is provided by the second shared task at WNUT-2016 and consists of social media
data from Twitter. OntoNotes5 (Weischedel et al. 2013) is a multi-genre NER dataset collected
from broadcast news, broadcast conversation, weblogs, and magazine genre, which is a widely
cited English NER dataset.

Chinese NER datasets consist of the following: CLUENER (Xu et al. 2020), a well-defined NER
dataset, includes finer-grained entity types beyond standard ones (person, organization, and loca-
tion), such as Company, Game, and Book. OntoNotes4 (Weischedel ef al. 2011) is copyrighted by
Linguistic Data Consortium® (LDC), a large manual annotated database containing various fields
with structural information and shallow semantics. MSRA (Levow 2006) is a large NER dataset

P https://www.ldc.upenn.edu/
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in the field of news, containing distinctive text structure characteristics. PeopleDaily NER! is a
very classic benchmark dataset to evaluate different NER models. Resume NER (Zhang and Yang
2018) features resumes of senior executives from Chinese stock market companies, with a high
annotator agreement of 97.1 percent. It includes 1027 randomly selected summaries annotated
for 8 entity types using the YEDDA system (Yang et al. 2018). They randomly select 1027 resume
summaries and manually annotate 8 types of named entities with YEDDA system (Yang et al.
2018). The inter-annotator agreement is 97.1 percent. Weibo NER (Peng and Dredze 2015; He
and Sun 2017) is sourced from the Sina Weibo social media platform. WikiAnn (Pan et al. 2017)
is a Chinese part of a multilingual NER dataset from Wikipedia articles.

5.2 Settings

According to the metrics we proposed in Sec. 4, we calculate the statistical scores for each dataset.
Specifically, we average the scores of the training, the development, and the test split of the
datasets for Redundancy, Accuracy, Entity Ambiguity Degree, Entity Density, Entity Imbalance
Degree, and Entity-Null Rate, respectively. For Leakage Ratio, Unseen Entity Ratio, and Model
Differentiation, we only calculate the scores on the specific splits involved according to Sec. 4.1
and Sec. 4.2.

5.3 Dataset reliability
5.3.1 Annotation Accuracy
Accuracy scores quantitatively inform us that we cannot take it for granted that all benchmark
datasets are reliable.

We observe that CLUENER has the lowest Accuracy score. In particular, it has 0.17 (17 percent)
errors in its development set (shown in Table 3). Conversely, the other datasets (e.g., Resume and
WNUT16) have a relatively high Accuracy score for both Chinese and English NER datasets.

5.3.2 Leakage Ratio
The dataset’s shortcomings (under the reliability dimension) can be effectively revealed by the
Leakage Ratio. Given the Leakage Ratio results, we are surprised to find that Weibo and WikiAnn
have serious data leakage issues.

As shown in Table 1 and Fig. 3, 0.17 (17 percent) and 0.13 (13 percent) of the instances in the
test set of Weibo and WikiAnn have appeared in their corresponding training or development sets,
respectively.

5.3.3 Overall reliability
Combining several metrics under the reliability dimension in Table 1, we can conclude that
Resume and MSRA maintain high reliability.

In specific, there is no data redundancy in Resume and MSRA. That is to say, the instances
of each part of the dataset are unique and non-repeating. Additionally, they achieve the highest
Accuracy scores and hardly show data leakage problems, with a Leakage Ratio of 0.01 (1 percent)
and 0.00 (0 percent), respectively.

5.4 Dataset difficulty
5.4.1 Unseen Entity Ratio
Results on Unseen Entity Ratio (UnSeenEnR) demonstrate the generalization ability of NER
models on unseen entities.

The evaluation results show that Weibo and WNUTI6 are more difficult in terms of
UnSeenEnR because their test sets have a 0.56 (56 percent) and a 0.89 (89 percent) ratio of entities

ihttps://github.com/zjy-ucas/ChineseNER

https://doi.org/10.1017/nlp.2024.37 Published online by Cambridge University Press


https://www.wikipedia.org/
https://github.com/zjy-ucas/ChineseNER
https://doi.org/10.1017/nlp.2024.37

Natural Language Processing 99

Table 3. Results of metrics (except Leakage Ratio) under the reliability
dimension of the NER datasets.

Dataset Lang Split Red Acc
CLUENER Zh train 0.00 0.89
dev 0.00 0.83
OntoNotes4 Zh train 0.02 0.98
dev 0.03 0.97
test 0.01 0.98
MSRA Zh train 0.00 0.99
test 0.00 1.00
PeopleDaily Zh train 0.00 0.96
dev 0.00 0.94
test 0.00 0.97
Resume Zh train 0.00 1.00
dev 0.00 1.00
test 0.00 1.00
Weibo Zh train 0.08 0.96
dev 0.03 0.98
test 0.03 0.99
WikiAnn Zh train 0.04 0.90
dev 0.03 0.88
test 0.03 0.90
CoNLLO03 En train 0.06 0.93
dev 0.03 0.96
test 0.05 0.98
WNUT16 En train 0.04 0.95
dev 0.00 0.98
test 0.00 0.97
OntoNotes5 En train 0.01 0.90
dev 0.01 0.88
test 0.01 0.95

Red and Acc denote Redundancy and Accuracy, respectively. Zh and En mean Chinese
and English, respectively.

that have not appeared in training, respectively. WikiAnn is the Chinese dataset only second to
Weibo that can better evaluate the generalization ability of NER Models. Conversely, PeopleDaily
NER and OntoNotes5 are suboptimal for evaluating model generalization ability. Our experimen-
tal results in Sec. 6.5 reveals that model trained on them are more likely to perform better on seen
entities compared to those that have not appeared in the training set.
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13% of test instances 17% of test instances
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Figure 3. Leakage Ratio values of WikiAnn and Weibo. It is observed that 0.13 (13 percent) and 0.17 (17 percent) of the
instances in the test set of WikiAnn and Weibo, respectively, appear in their corresponding training or development sets.

5.4.2 Entity Ambiguity Degree
Entity Ambiguity Degree (EnAmb) captures observable variation in the information complexity
of datasets.

Given our findings, OntoNotes 4 and WNUT16 are the Chinese and English NER datasets with
the highest Entity Ambiguity Degree, respectively, which means that they are more difficult for
models to accurately predict entity types. Consistent with our conclusion (in Sec. 6.5), Bernier-
Colborne and Langlais (2020) also argue that SOTA models cannot (or are not able) deal well with
the entities labeled differently in different contexts.

5.4.3 Model Differentiation
Extrinsic evaluation metrics, such as Model Differentiation, are also necessary for evaluating the
difficulty of datasets.

Unlike those intrinsic evaluation metrics (e.g., Entity Ambiguity Degree), Model
Discrimination (ModDiff) aims to assess the dispersion of model scores on a unified benchmark
dataset. That is to say, a more difficult dataset should have a clear distinction between models
with different abilities. As shown in Table 1, CLUENER and WNUT16 are Chinese and English
datasets that can better distinguish model performance, respectively.

5.4.4 Overall difficulty
WNUTI6 is a more difficult benchmark for English NER as a whole.

Although WNUTI6 has fewer citations than CoNLL03 and OntoNotes5, as demonstrated in
Table 1, WNUT16 has a higher Entity Ambiguity Degree and Unseen Entity Ratio than the other
two English NER datasets. Meanwhile, we find that the model performance gap on WNUT16
is large, indicating that it is more difficult and can effectively distinguish models with different
performances.

5.5 Dataset validity

5.5.1 Entity Imbalace Degree

Datasets with uneven distribution of entity types may not effectively evaluate the ability of models
on the long-tailed instances.

Intuitively, the model does not perform as well on those long-tailed entity types as other enti-
ties. We observe that Weibo achieves the highest Entity Imbalance Degree (EnImBaD) by a large
margin, indicating that its distribution of entity types is heavily uneven. Therefore, datasets with
severely uneven distribution of entity types can only evaluate the performance of the models on a
large number of distributed entity types.

5.5.2 Entity-Null Rate
Surprisingly, there are a large number of instances without any entities in many datasets such as
OntoNotes4, MSRA, WNUT16, and OntoNotes5.
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Although certain naturally distributed texts will contain some sentences without named enti-
ties, a high number of entity-free samples in a NER dataset makes it impossible to give a sufficient
number of instances for NER model validation.

5.5.3 Overall validity

In general, CoONLLO3 is the English NER dataset with the highest validity. As shown in Table 1,
CoNLLO03 has the lowest Entity-Null Rate (EnNullR), indicating that it can intensively test the
entity recognition capabilities of NER models.

6. How do dataset properties affect model performance?

To validate the metrics and results under our statistical evaluation framework’ and to further
investigate how the statistical metric scores on dataset properties affect the model performance,
we conduct controlled dataset adjustment in this section.

6.1 Models

For experiments on Chinese NER datasets, we use three models: 1) Lattice-LSTM (Zhang and
Yang 2018), based on LSTM networks (Chiu and Nichols 2016), which automatically identifies
key words from the context; 2) Flat-Lattice (Li et al. 2020), which converts the lattice structure
into a flat structure; and 3) Roberta (Liu ef al. 2019), a transformer-based pretrained model which
removes the next sentence predict task in BERT.

For the English datasets, we also take three models, including: 1) LSTM CRF (Lample et al.
2016), a traditional model based on the bidirectional LSTM with conditional random fields (CRF);
2) LUKE (Yamada et al. 2020), which provides new pretrained contextualized representations of
words and entities by predicting masked words and entities in entity-annotated corpus based on
the bidirectional transformer (Vaswani et al. 2017); and 3) W2NER (Li et al. 2020), which con-
verts NER to word-word relationship classification and models the neighboring relations between
entity words with Next-Neighboring-Word (NNW) and Tail-Head-Word (THW) relations.

6.2 Experiment settings

All the experiments are done on the NVIDIA RTX 2080 GPU and 3090 GPU and evaluated by
seqeval X Specifically, we utilize Micro F1 scores to measure the performance of the NER model.
For the experiment with Train-Dev Dataset Adjustment (Sec. 6.4), we report the averaged results
and variances over three random seeds.

6.2.1 Hyperparameters

In our research, we concentrated on refining model parameters and embedding techniques to
boost performance. We chose a non-BERT variant of the Flat-Lattice model, which we enhanced
with a CRF layer on Roberta. We also utilized the most effective version of LSTM CRE, notable for
its use of pretrained word embeddings, character-level word modeling, and an optimized dropout
rate.

Consistent with observations by Lample et al. (2016), we found that models using pre-
trained word embeddings typically surpass those with randomly initialized embeddings. Thus,
we experimented with various word embedding methods to cover a broad range of approaches, as
elaborated in 6.2.2.

JWe provide additional validation details of the metrics within our statistical evaluation framework in the supplementary
appendix document.
Khttps://github.com/chakki-works/seqeval
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Table 4. Chinese NER model replication results.

Lattice-LSTM Flat-Lattice Roberta
ori. repro. ori. repro. ori. repro.
MSRA 93.18 93.12 94.35 94.06 - 94.57
OntoNotes4 73.88 73.43 75.70 75.84 - 80.30
Resume 94.46 94.46 94.93 95.11 - 96.19
Weibo 58.79 56.49 63.42 57.92 - 67.92

repro. denotes reproduction. - denotes that the authors of the literature we cited did not experiment on that
dataset. And ori. denotes original paper results.

Our study utilized various optimization algorithms. For instance, AdamW optimizer
(Loshchilov and Hutter 2017) was used for models like W2NER, Roberta, and LUKE. In con-
trast, models such as Lattice-LSTM, LSTM CRE, and Flat-Lattice were fine-tuned using stochastic
gradient descent (SGD). Notably, both LUKE and W2NER models were further improved by com-
bining AdamW with a learning rate warmup and linear decay strategy. LUKE also incorporated
early stopping based on the development set performance. The specific hyperparameters for these
models can be found in Appendix.

6.2.2 Word embeddings

« Static Word Embeddings: In the realm of static word embeddings, Lattice-LSTM uti-
lizes its unique word,' character, and character bigram embeddings.™ However, since
LSTM CRF’s own pretrained embedding was unavailable, we opted for common-crawl
vectors from FastText." Similarly, Flat-Lattice employed the same pretrained embeddings
as Lattice-LSTM.

« Dynamic Word Embeddings: Dynamic word embeddings represent a significant advance-
ment over static embeddings, as they are context-sensitive and capable of capturing varying
meanings of words in different contexts. Our approach prominently featured BERT-based
embeddings, known for their extensive integration of grammatical, lexical, and semantic
information. LUKE, for instance, introduced new pretrained contextualized representa-
tions of words and entities using Roberta. W2NER used bert-large-cased for English
datasets and bert-base-chinese for Chinese datasets, taking advantage of Roberta’s refined
capabilities as an optimized version of BERT.

6.3 Model replication results

We replicated six NER models in accordance with the experimental setup, and the results of the
model replication are presented in Table 4 and 5.

6.4 Controlled dataset adjustment

To investigate how statistical properties affect model performance, we conducted controlled
dataset adjustments: 1) we modified the test set to create two new sets (of the same size) with
distinct statistical values for specific metrics (i.e., Test Dataset Adjustment). 2) Similarly, we

Ihttps://github.com/jiesutd/RichWordSegmentor
https://github.com/jiesutd/LatticeLSTM
"https://fasttext.cc/docs/en/english-vectors.html
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Table 5. English NER model replication results.

LSTM CRF W2NER LUKE
ori. repro. ori. repro. ori. repro.
CoNLLO03 83.63 83.61 93.07 92.02 94.30 94.2
WNUT16 - 26.04 - 45.81 - 56.99
OntoNotes5 - 80.14 90.50 84.92 - 87.27

repro. denotes reproduction. - denotes that the authors of the literature we cited did not experiment on that
dataset. And ori. denotes original paper results.

adjusted the training and development sets to form new sets (of the same size) with distinguishable
metrics values (i.e., Train-Dev Dataset Adjustment).

6.4.1 Test Dataset Adjustment

We adjusted the test set for three metrics: Leakage Ratio, Unseen Entity Ratio, and Entity
Ambiguity Degree. This led to two new test sets with distinct statistical values for these metrics.
For example, as for the Unseen Entity Ratio, we adjusted the test set to construct two new test sets,
one with an Unseen Entity Ratio of 0.80 (80 percent) and the other with an Unseen Entity Ratio of
0.20 (20 percent), while ensuring that the two newly constructed test sets have the same number
of instances.

6.4.2 Train-Dev Dataset Adjustment
Initially, we chose datasets with a high Entity-Null Rate (WNUT1I6, OntoNotes5 for English;
Weibo, OntoNotes4 for Chinese). We then filtered the training and development sets to adjust the
Entity-Null Rate to 0.20 (20 percent) and 0.80 (80 percent), ensuring equal numbers of instances
in these subsets. Finally, we trained the data with various models before testing and comparing
the results with the same test set.

6.5 Experiment results and analysis

« Datasets with high Unseen Entity Ratio are more difficult for NER models: Intuitively,
those entities that were seen during training are less challenging for NER models compared
to those that did not appear in the training set. Figure 4 supports our intuition. Models
perform better on datasets with a lower proportion of unseen entities than on datasets
with a relatively high proportion of unseen entities.

« Entities with strong Entity Ambiguity Degree are indeed more likely to confuse the
model: We can infer from Figure 5 that datasets with a high Entity Ambiguity Degree are
more challenging for the model. As for models tested on Chinese datasets, their average
performance is 6.42 (F1) points higher on datasets with low entity ambiguity rates than
on datasets with high entity ambiguity rates. The English NER model is more likely to be
confused by entities with a high entity ambiguity rate and make wrong decisions.

o The models exhibit improved performance with increased test set leakage, highlight-
ing the necessity for enhanced generalization in NER models: As shown in Table 6,
three models (i.e., Lattice-LSTM, Flat-Lattice, and Roberta) consistently achieve better
performance when the leakage rate of the test set is 0.80 (80 percent) than when it is 0.20
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Figure 4. Model performance on NER datasets when the proportion of unseen entities (UnSeenEn) in the test set is 0.80
(UnSeenEn_8) and 0.20 (UnSeenEn_2), respectively.
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Figure 5. Model performance on NER datasets when the proportion of ambiguous entities in the test set is 0.80 (EnAmb_8)
and 0.20 (EnAmb_2), respectively.
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Table 6. Model performance when the proportion of leaked samples in the
test set is 80 percent and 20 percent, respectively.

Dataset Test LSTM Flat-Lattice Roberta
Weibo Leakage (80%) 73.68 74.24 78.52
Leakage (20%) 64.86 48.65 70.40

LSTM represents Lattice-LSTM.

Table 7. Model performance on English datasets when the proportion of samples
without entities in the training set and development set is 0.80 (80 percent), 0.20 (20
percent), 0.00 (0 percent), and original, respectively.

W2NER LSTM CRF

Dataset Train & Dev avg. std. avg. std.
OntoNotes5 EnNullR (0.80) 68.99 0.6663 64.80 0.0031
EnNUllR (020)  77.96 00134 7501 00354
EnNuuR(ooo) . 7641 s 02037 I 7475 I 00440
. o”g.nal . 8599 e 00672 e 8091 e 985%
WNUT16 EnNullR (0.80) 49.66 1.3646 25.26 0.1722
EnNullR (0.20) 54.22 0.5449 36.99 0.9092
EnNullR (0.00) 52.36 0.3577 36.04 1.3302
Original 55.49 2.1829 36.89 0.0900

(20 percent). In particular, we found that the performance of Flat-Lattice on the Weibo test
set with a Leakage Ratio of 0.80 (80 percent) outperformed the 0.20 (20 percent) by a large
margin, that is, 25.69 percent. We speculate that because the model has seen the leaked
data in the test set during training, it performs better on the test set with a relatively high
data leakage rate. Looking at the experimental results from another perspective, researchers
need to pay more attention to improving the NER model’s generalization ability.

« Entity-Null Rate plays a small difference: As shown in Tables 7 and 8, the F1 score of
the training set and development set with EnNullR of 0.20 (20 percent) is better than 0.80
(80 percent). Therefore, we conclude that the contribution of instances without entities to
the model is less than the instances with entities during training. However, are instances
without any entities completely useless for model training? We delete all these instances
and show the results in Tables 7 and 8. The performance of models trained on such datasets
decreases, which indicates that the instances without entity are necessary, as they keep the
distribution of the test set and training set relatively consistent.

7. Discussion

Our statistical evaluation framework can be used to analyze the factors that affect the dataset’s
quality and, furthermore, to build a higher-quality dataset in a targeted manner or augment the
data with statistical improvement guidance. In this section, we take an initial step to analyze how
the dataset construction process affects the statistical properties of datasets.
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Table 8. Model performance on Chinese datasets when the proportion of samples
without entities in the training set and development set is 0.80 (80 percent), 0.20 (20
percent), 0.00 (0 percent), and original, respectively.

Lattice-LSTM Flat-Lattice
Dataset Train & Dev avg. std. avg. std.
Weibo EnNullR (0.80) 29.26 5.0456 30.96 0.3409
e ongma[ [ 5504 S 10192 S 5792 e
MSRA EnNullR (0.80) 80.51 0.0750 83.26 0.0157
EnNUlR(0.00) 9194 00001 9360 00097
. o”gma[ [ 9250 S 0...02.7.3... 9406 e

Table 9. Standard named entity recognition dataset construc-

tion method.

Dataset Construction method
CLUENER Distant supervision + human
OntoNotes4 Human annotation

MSRA Human annotation
PeopleDaily Human annotation

Resume Human annotation

Weibo Human annotation

WikiAnn Cross-lingual name tagging framework
CoNLLO03 Human annotation

WNUT16 Human annotation
OntoNotes5 Human annotation

As shown in Table 9, based on an overview of the literature that presented the ten NER datasets,
we provide a summary of how they were built. We can see that all datasets were created manually,
with the exception of CLUENER and WikiAnn. As for CLUENER, Xu et al. (2020) prelabel their
dataset using the distant-supervised approach with a vocabulary and then manually check and
modify some labels. WikiAnn is constructed using a cross-lingual name tagging framework based
on a series of new Knowledge Base (KB) mining methods (Pan et al. 2017).

We observe from Table 1 that only two of the ten NER datasets, CLUENER and WikiAnn, had
Acc scores below 0.90 (90 percent), indicating that the NER dataset, which was not totally created
manually, will have a significant number of annotation errors (shown in Figure 6).

8. Conclusion and future work

In this paper, we investigate various statistical properties of the NER datasets and propose
a comprehensive dataset evaluation framework with nine statistical metrics. We implement a
fine-grained evaluation of ten widely used NER datasets and provide a fair comparison of the
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F 27 {company}& 3 [E F N KL X LAY Scrabble{game}hi
B # -

Mattel{company} is the owner of the Scrabble {game} rights
outside the US and Canada.

25 17 FOUL S {scene}h T &I B W& M X {address}, =7 i it
Z 12 UL {position}, & 4 [ fh Bt
Chuosijia Guanyin Temple {scene} is located in Guanyingiao
District{address}, Jinchuan County. The four-armed Guanyin

{position} is enshrined in the temple. It is a famous
holy place of Tibetan Buddhism.

Figure 6. Mislabeled Examples of randomly selected samples from CLUNER. Red indicates missing entities not assigned
entity labels. Green indicates the entity with the wrong labeled entity type.

existing datasets from three dimensions: reliability, difficulty, and validity. We further explore
how the statistical properties of the training dataset influence the model performance and how
dataset construction methods affect the dataset quality. In the future, we hope more works dive
into dataset quality evaluation from a broader and more general perspective.
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Appendix A. Validation details of the metrics under our statistical evaluation
framework

We justify and clarify those metrics under our evaluation framework that we have not discussed
further in the main text.

« Redundancy: International data standards® demand that data be unique. NLP dataset is a
particular data type that must adhere to the same criteria as other data types.

o Accuracy: Numerous research have demonstrated that flaws in datasets will negatively
impact the model’s performance (Zhu et al. 2003; Tejaswin et al. 2021; Gupta and Gupta
2019). The model’s performance will increase to some extent after these mistakes are fixed
(Zeng et al. 2021).

o Text Complexity: Several experiments of Fu et al. (2020) on English NER datasets sup-
ported our use of Entity Density as a valid metric of the difficulty of the dataset. Their
experiments showed that NER models are negatively correlated with Entity Density.

« Model Differentiation: This extrinsic metric aims to assess the dispersion of model scores
on a unified benchmark dataset. As long as enough models are evaluated on the dataset,
we can measure the differentiation of a dataset by calculating the dispersion of the scores
of different models.

« Entity Imbalance Degree: There are category imbalances in many NLP tasks that can seri-
ously affect the model’s performance on the long-tail instances (Blevins and Zettlemoyer
2020; Zhang et al. 2023; Wang et al. 2020). Therefore, the Entity Imbalance Degree of the
NER dataset is necessary and practical.

Chttps://is025000.com/index.php/en/iso-25000-standards/iso-25012
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Appendix B. Details of manually checking data accuracy

We recommend selecting 100 instances from each dataset split and inviting at least three pro-
fessional linguists who are volunteers to annotate the accuracy. Before the formal work, we
conducted face-to-face training, such as introducing the standards of data proofreading.

Appendix C. Specific hyperparameters for our selected evaluation models

Table 10. Hyperparameter settings for various NER models.

Cite this article: Wang C, Dong Q, Wang X and Sui Z (2025). Statistical dataset evaluation: A case study on named entity

W2NER

LSTM CRF

Flat-Lattice

dist_emb_size: 20

type_emb_size: 20

bert_hid_size: [768, 1024]

conv_hid_size: [96, 64]
Istm_hid_size: [768, 512]

dropout: 0.5

learning rate (BERT): [1e-5, 5e-6]

learning rate (others): 1e-3
batch size: [2, 4, 8]

gradient clipping: 5.0

layer dimension: 100

LSTM layer: 1

dropout: 0.5
char_dim: 25
char_lstm_dim: 25
word_dim: 300

word_lstm_dim: 100

learning rate: 0.01

decay: —0.05
momentum: —0.9

FFN_size: 480

head: [8, 4, 12]

d_head: [16, 20]
d_model: head x d_head
embed dropout: 0.5
output dropout: 0.3
learning rate: [1e-3, 8e-4]
warmup: [10, 1, 5] epoch
batch size: [10, 8]

Lattice-LSTM

Roberta

LUKE

embedding size: 50
LSTM hidden: 200
batchsize: 1

learning rate: 0.015
dropout: 0.5

leafning rate: Sve—5” v

batch size: 32
max sentence length: 300
weight decay rate: 0.1

warmup: 100(step)

batch size: [4, 8]
adam $;:0.9
adam $,:0.98
adame: le-6
dropout: 0.1

warmup ratio: 0.06

weight decay: 0.01

maximum word length: 512

learning rate: 1e-5

gradient clipping: none
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