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Abstract

The field Q(
√

5) contains the infinite sequence of uniformly bounded continued fractions
[1, 4, 2, 3], [1, 1, 4, 2, 1, 3], [1, 1, 1, 4, 2, 1, 1, 3], . . . , and similar patterns can be found
in Q(

√
d) for any d > 0. This paper studies the broader structure underlying these

patterns, and develops related results and conjectures for closed geodesics on arithmetic
manifolds, packing constants of ideals, class numbers and heights.

1. Introduction

It is well-known that any periodic continued fraction defines a real number which is quadratic
over Q. Remarkably, it is also true that any fixed real quadratic field Q(

√
d) contains infinitely

many uniformly bounded periodic continued fractions. For example, Q(
√

5) contains the infinite
sequence of continued fractions

[1, 4, 2, 3], [1, 1, 4, 2, 1, 3], [1, 1, 1, 4, 2, 1, 1, 3], . . . , (1.1)

and similar patterns can be found for any d > 0 [Wil80] (see also [Woo78] and § 4 below).
In this paper we study the broader structure underlying these patterns, give a conceptual

construction of them, and develop related results and conjectures for closed geodesics on
arithmetic manifolds, packing constants of ideals, class numbers and heights on finite projective
spaces.

Continued fractions. Every real number x can be expressed uniquely as a continued fraction

x= [a0, a1, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
with ai ∈ Z and ai ≥ 1 for i≥ 1. If the continued fraction is periodic (ai+p = ai), we write
x= [a0, . . . , ap−1]. In § 2 we give a new proof of the following result of Wilson.

Theorem 1.1. Any real quadratic field Q(
√
d) contains infinitely many periodic continued

fractions x= [a0, . . . , ap−1] with 1≤ ai ≤Md.

Here Md denotes a constant that depends only on d; for example, by (1.1) we can take M5 = 4.
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C. T. McMullen

Figure 1. A long, bounded geodesic on H/ SL2(Z) defined over Q(
√

5).

Closed geodesics. Theorem 1.1 can be formulated geometrically as follows. Let L(γ) denote
the length of a closed geodesic γ on a Riemannian manifold (or orbifold) M . We say that γ is
fundamental if there is no shorter geodesic whose length divides L(γ).

Theorem 1.2. For any fundamental geodesic γ ⊂M = H/ SL2(Z), there is a compact subset of
M that contains infinitely many primitive, closed geodesics whose lengths are integral multiples
of L(γ).

(A geodesic is primitive if it is indivisible in π1(M).)

Measure-zero phenomena. To give some perspective on this result, fix a compact set
Z ⊂H/ SL2(Z). Then the complete geodesics that lie entirely in Z form a closed set G(Z)⊂ Z of
measure zero. On the other hand, the geodesics of length mL(γ) become uniformly distributed
on H/ SL2(Z) as m→∞ [Duk88] (see also [Lin68, ch. 7]).

Thus most geodesics whose lengths are multiples of L(γ) are not contained in Z. Theorem 1.2
shows that, nevertheless, there are infinitely many such geodesics once Z is sufficiently large.

It is also known that the Hausdorff dimension of G(Z) can be made arbitrarily close to 2 by
taking Z large enough [Jar28] (see also [Sch69] and [Hen96]). A corresponding conjecture on the
number of geodesics in G(Z) of length mL(γ) will be formulated (in terms of ideals) in § 6.

Dynamics and laminations. An example of Theorem 1.2 is provided by the closed geodesics
γm ⊂M = H/ SL2(Z) associated to the periodic continued fractions given by Equation (1.1).
The preimage of one such geodesic on H, for m� 0, is shown in Figure 1. As can be seen in the
figure, γm spends most of its time spiraling close to the golden mean geodesic ξ, defined by the
continued fraction [1, 1, 1, . . .]. This behavior is also apparent from the long strings of 1’s that
dominate the continued fraction expansion of xm. At the same time γm stays well away from the
cusp of M ; note the horoballs along the real axis that its lift avoids.
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As m→∞, γm converges to a compact, immersed lamination γ∞ consisting of the closed
geodesic ξ and two infinite geodesics spiraling towards it. Conversely, it follows from general
principles in dynamics that γ∞ can be approximated by a sequence of closed geodesics γm (see,
e.g., [Sma65]). What is unusual is that, in the case at hand, the geodesics γm can be chosen so
their lengths are all multiples of a single number.

Hyperbolic 3-manifolds. Theorem 1.2 also holds for the Bianchi groups SL2(Od), where
Od ⊂Q(

√
−d) is the ring of integers in a quadratic imaginary field; in § 5 we show the following

result.

Theorem 1.3. For any fundamental geodesic γ on the hyperbolic orbifold H3/ SL2(Od), there is
a compact set that contains infinitely many primitive closed geodesics whose lengths are integral
multiples of L(γ).

Ideals. To formulate a third variant of Theorem 1.1, let K/Q be a number field of degree d,
and let NK

Q and trKQ denote the norm and the trace to Q, respectively. Let I(K) denote the set
of lattices I ⊂K (meaning additive subgroups isomorphic to Zd), modulo rescaling by elements
of K∗. Every [I] ∈ I(K) represents an ideal class for some order in K [BS66, ch. 2.2].

Recall that the discriminant of I =
⊕

Zxi is given with respect to an integral basis by
disc(I) = det(trKQ xixj). We define the packing density of I by

δ(I) =
N∗(I)
det(I)

,

where det(I) =
√
|disc(I)| and

N∗(I) = min{|NK
Q (x)| : x ∈ I,NK

Q (x) 6= 0}.

The packing density depends only on the class of I; in the case of a quadratic imaginary field, it
measures the quality of the sphere packing defined by the lattice I ⊂K ⊂ C.

In these terms, Theorem 1.1 is equivalent to the following theorem.

Theorem 1.4. In any real quadratic field K, there are infinitely many ideal classes with
δ(I)> δK > 0.

It is easy to verify that the same result holds for quadratic imaginary fields. More generally,
we propose the following result.

Conjecture 1.5. If K is a number field whose unit group O∗K has rank one, then there are
infinitely many ideal classes I whose packing density satisfies δ(I)> δK > 0.

The remaining cases are cubic fields with one complex place and quartic fields with two
complex places.1 Conjecture 1.5 is meant to complement the following.

Conjecture 1.6. Up to isomorphism, there are only finitely many totally real cubic fields K
and ideal classes [I] ∈ I(K) with δ(I)≥ δ > 0.

This conjecture was formulated in 1955 (in terms of products of linear forms) by Cassels and
Swinnerton-Dyer [CS55, Theorem 5]; it is open even whenK is fixed. A general rigidity conjecture
of Margulis [Mar00, Conjecture 9] implies Conjecture 1.6 (cf. [ELMV06, Conjecture 1.3]).

1 The special case of quartic fields with quadratic subfields follows from Theorems 1.2 and 1.3.
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Heights and densities. In § 6 we show that packing densities of ideals are related to heights on
finite projective spaces. This perspective suggests a quantitative lower bound on the number of
ideals with δ(I)> δ. It also connects the discussion to Zaremba’s conjecture on rationals that are
far from other rationals, and leads to a strategy for the cubic and quartic cases of Conjecture 1.5.

Arithmetic groups. As one final generalization Theorem 1.1, we propose the following.

Conjecture 1.7. Given U ∈GLN (Z), either:

(1) U has finite order;
(2) the characteristic polynomial of U is reducible in Z[x]; or
(3) there exists a compact, U -invariant subset of PGLN (R)/GLN (Z) containing U -periodic

points of arbitrarily large period.

(These alternatives are not mutually exclusive.) Theorem 1.2 establishes this conjecture for
N = 2. More generally, in § 5 we will show the following.

Theorem 1.8. Conjecture 1.7 holds if U is conjugate to U−1 in GLN (Q).

Notes and references. The classical theory of continued fractions is presented in [HW79]; for
the geometric approach see e.g. [Pol86, Ser91] and [KU07]. More on packing densities and the
geometry of numbers can be found in [GL87]. For a survey on bounded continued fractions,
see [Sha92].

Notation. The notation A=O(B) and A�B mean A< CB and B/C < A< CB, for an
implicit constant C > 0.

2. Lattices and quadratic fields

In this section we prove Theorem 1.1 and its variants for real quadratic fields.

Matrices. Let M2(R) denote the ring of 2× 2 real matrices with identity I. Let ‖x‖ denote the
Euclidean norm on R2, and let ‖A‖= sup ‖Ax‖/‖x‖ denote the operator norm on M2(R). There
is a unique involution A 7→A† such that A+A† = tr(A)I, given explicitly by

(
a b
c d

)† =
(
d −b
−c a

)
.

We have (AB)† =B†A† and AA† = (detA)I, which implies the useful identity

det(A+B) = det(A) + det(B) + tr(AB†). (2.1)

Lattices. Every lattice in R2 can be presented in the form Λ = L(Z2) with L ∈GL2(R).
The choice of L gives a basis for Λ, and multiplying L by a scalar changes Λ by a similarity.
Since any two bases for Z2 are related by GL2(Z), the moduli space of lattices up to similarity
is given by

PGL2(R)/GL2(Z).
We let [L] denote the point in moduli space represented by L. There is a natural left action of
GL2(R) on PGL2(R)/GL2(Z), sending [L] to [AL].

Real quadratic fields. Let ε ∈ R be an algebraic unit of degree two over Q, with ε > 1. Then
ε2 = tε− n, where t= trKQ (ε)> 0 and n= NK

Q (ε) =±1. The discriminant of the order Z[ε] in the
field K = Q(ε) is given by

D = t2 − 4n > 0.
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We will use (1, ε) as a basis for Z[ε]. The action of multiplication by ε with respect to this
basis is given by

U =
(

0 −n
1 t

)
. (2.2)

Similarly, the action of
√
D is given by

S = 2U − tI =
(
−t −2n
2 t

)
.

Traces. Galois conjugation in K stabilizes Z[ε] and will be denoted by x 7→ x′. We use the
same notation for Galois conjugation on the entries of vectors in K2 and matrices in M2(K). In
particular, we have an entrywise trace map

trKQ : M2(K)→M2(Q)

sending A to A+A′.

Eigenprojections. Note that v = (ε′,−1) and v′ = (ε,−1) are eigenvectors for U |K2 with
eigenvalues ε and ε′. The projections Ũ and Ũ ′ onto these eigenspaces are given by

Ũ =
1
2

(
I +

S√
D

)
and Ũ ′ =

1
2

(
I − S√

D

)
(2.3)

respectively; they satisfy Ũ Ũ ′ = Ũ ′Ũ = 0, Ũ + Ũ ′ = I, and Ũ † = Ũ ′. For any x ∈K, the matrix
trKQ (xŨ) gives the action of multiplication by x on K ∼= Q2 with respect to the basis (1, ε); in
particular, Um = trKQ (εmŨ).

Fibonacci numbers. The unit ε determines a generalized Fibonacci sequence by f0 = 0, f1 = 1
and

fm+1 = tfm − nfm−1

for m> 1. (For ε= (1 +
√

5)/2 we obtain the usual Fibonacci sequence.) One can check that

fm = trKQ (εm/
√
D); (2.4)

in particular, fm � εm for large m.
By induction we find εm = fmε− nfm−1, and hence the ring

Z[εm] = Z + fmZ[ε]

has discriminant f2
mD. Similarly, we have

Um = fmU − nfm−1I, (2.5)

and hence

Um =
(
−n 0
0 1

) (
fm−1 fm
fm fm+1

)
≡ fm+1

(
1 0
0 1

)
mod fm. (2.6)

These relations also hold for m< 0, and lead to the following useful fact.

Proposition 2.1. If L ∈M2(Z) satisfies det(L) =±fm, then the lattice [L] ∈ PGL2(R)/GL2(Z)
is fixed by Um.

Proof. Using the identity L−1 =±f−1
m L† and (2.5), we find UmL= LVm where

Vm = L−1UmL=±L†UL− nfm−1I

visibly lies in GL2(Z). 2
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Main construction. We can now explicitly construct lattices with uniformly bounded orbits
under the action of 〈U〉.

Theorem 2.2. Given A ∈GL2(Z) such that A2 = I, tr(A) = 0 and tr(A†U) =±1, let

Lm = Um + U−mA.

Then for all m≥ 0:

(i) |det(Lm)|= f2m is a generalized Fibonacci number;

(ii) the lattice [Lm] is fixed by U2m;

(iii) we have L−m = LmA;

(iv) for 0≤ i≤m we have

‖U iLmU−i‖, ‖U−iL−mU i‖ ≤ C
√
|det Lm|, (2.7)

where C depends only on A and U .

Proof. Our assumptions imply that det(A) =−1. Since UU † =±I and U2m = f2mU −
nf2m−1I, (2.5) gives

det(Lm) = det(Um) + det(U−mA) + tr(UmA†(U−m)†)
= ±tr(A†U2m) =±f2m

establishing part (i). By construction Lm is integral, so Proposition 2.1 implies part (ii). Since
A2 = I we have part (iii). For part (iv) first recall that fi � εi for i > 0; in particular, ‖U±i‖ ≤ εi
by (2.6). Thus for 0≤ i≤m we have

‖U iLmU−i‖= ‖Um + U i−mAU−i‖=O(εm) =O(
√
f2m) =O(

√
|det Lm|).

A similar bound holds for U iL−mU−i, which gives (iv). 2

Corollary 2.3. There is a compact subset of PGL2(R)/GL2(Z) which contains the lattices
[U iLm] for all i, m ∈ Z.

Proof. Since A, U ∈GL2(Z) and [U2mLm] = [Lm], the lattices [U iLm] are represented in GL2(R)
by the matrices

U iLmU
−i√

|det Lm|
and

U−iL−mU
i√

|det Lm|
with 0≤ i≤m. These matrices in turn lie in a compact subset of GL2(R), since they have
determinant±1 and their norms are uniformly bounded by (2.7). Projecting, we obtain a compact
set in PGL2(R)/GL2(Z) containing the lattices [U iLm]. 2

Theorem 2.4. The size of the orbit of [Lm] under 〈U〉 tends to infinity as m→∞.

Proof. Let Vm = L−1
m ULm. Then the size k(m) of the orbit of [Lm] under 〈U〉 is the same as the

least positive integer such that V k(m)
m ∈GL2(Z).

Replacing U by U2 if necessary, we can assume that det(U) = 1. Let Ũ and Ũ ′ (given by (2.3))
denote projection onto the ε and ε′ eigenspaces of U , spanned by v = (ε′,−1) and v′ = (ε,−1),
respectively. It then easy to see that

L= lim
m→∞

ε−mLm = Ũ + Ũ ′A, (2.8)
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and det(L) =±lim ε−2mf2m 6= 0. Consequently,

Vm→ V = L−1UL

in GL2(R). Since L−1 is a scalar multiple of L† = Ũ ′ −AŨ , an eigenbasis for V is given by

(w, w′) = (L†v, L†v′) = (−Av, v′).

Now suppose that V k ∈GL2(Z) for some k > 0. Then v′ and −A(v) are eigenvectors for V k

as well. Since V k is integral, v is also an eigenvector for V k, and hence −A(v) is scalar multiple
of v. But the eigenvalues of A are −1 and +1, so its eigenspaces are rational, contradicting the
fact v and v′ are linearly independent.

It follows that V k 6∈GL2(Z) for all k > 0, and hence k(m)→∞. 2

Existence. The matrix

A=
(

1 t− 1
0 −1

)
(2.9)

satisfies the conditions of Theorem 2.2 with tr(A†U) = 1. Thus lattices Lm of the type just
described exist for any unit ε > 1. For example, when N(ε) = 1 this value of A gives

Lm =
(
fm+1 − fm−1 fm+2 − fm+1 − fm

0 fm

)
·

It is now straightforward to establish Theorem 1.1 and its variants, Theorems 1.2 and 1.4.

Geodesics: Proof of Theorem 1.2. Let γ ⊂M = H/ SL2(Z) be a fundamental geodesic,
corresponding to an element U ∈ SL2(Z). Since U and −U represent the same geodesic, we
may assume that the largest eigenvalue of U is a quadratic unit ε > 1 with norm one. Changing
γ to another geodesic of equal length, we can also assume that U is given by (2.2).

Since U is semisimple, its centralizer H in PSL2(R) is conjugate to the subgroup of diagonal
matrices. Thus we can identify the unit tangent bundle T1(M) with PSL2(R)/ SL2(Z) in such a
way that H represents the geodesic flow, and the compact orbit H · [I]∼=H/〈U〉 projects to γ.

Now let [Lm] be the sequence of lattices furnished by Theorem 2.2, e.g. with A given by (2.9).
Normalize so that det(Lm) = 1. Let vm ∈ T1(M) be the corresponding unit vectors, which lie in
a compact, U -invariant set Z ⊂ T1(M). Since H/〈U〉 is compact, we can also assume that Z is
H-invariant.

By Theorem 2.4, the orbit of vm under U has length k(m)→∞. Since U is fundamental, the
stabilizer of vm inH is generated by Uk(m) (else ε > 1 would be a power of a smaller, norm one unit
η > 1 in K). Thus Hvm ⊂ T1(M) projects to a closed geodesic γm ⊂M with L(γm) = k(m)L(γ),
and all these geodesics lie in the compact set obtained by projecting Z ⊂ T1(M) to M . 2

Continued fractions: Proof of Theorem 1.1. Let K ⊂ R be a real quadratic field. By
Dirichlet’s theorem, K = Q(ε) for some unit ε > 1 which arises as an eigenvalue of a matrix
U ∈ SL2(Z). The previous argument then gives an infinite sequence of bounded geodesics
γm ⊂H/ SL2(Z) with lifts γ̃m ⊂H stabilized by conjugates of powers of U in SL2(Q). It follows
that the endpoints ξ, ξ′ of γ̃ in R are in fact a pair of Galois conjugate points in K.

Since the geodesic defined by |z|= 1 cuts H/ SL2(Z) into simply-connected pieces, the lifts
γ̃m can be chosen so they cross it; that is, we can assume that |ξm|> 1 and |ξ′m|< 1. The group
SL2(Z) is normalized by

(
0 1
1 0

)
, so we can also assume that ξm > 1. With this normalization,

ξm is a ‘reduced’ quadratic number, and hence its continued fraction expansion [a0, a1, a2, . . .]
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is periodic (e.g. by [Ser91, Theorem 5.23]); and the partial quotients ai are uniformly bounded
since

⋃
γm is compact. 2

Ideals: Proof of Theorem 1.4. Let ‖a+ bε‖2 = (a2 + b2) be the Euclidean norm on K ∼= Q2

with respect to the basis 〈1, ε〉. Then it is easy to check that for all x ∈K we have

|NK
Q (x)| � inf{‖εix‖2 : i ∈ Z}. (2.10)

Let U be given by (2.2) and let Lm ∈M2(Z) be the matrices furnished by Theorem 2.2. Then
we can regard

Im = Lm(Z)⊂ Z2 ∼= Z⊕ Zε
as fractional ideals in K. The smallest power k(m) of ε stabilizing Im tends to infinity with m,
and hence the sequence [Im] ∈ I(K) ranges through infinitely many different ideal classes.

By (2.7), the norm squared ‖v‖2 of the shortest nonzero vector v ∈ U iLm(Z2) is comparable
to |det(Lm)|. By (2.10) this implies N∗(Im)� |det(Lm)|. But it is easy to see that det(Im)�
|det(Lm)|, and hence

δ(Im) =
N∗(Im)
det(Im)

� 1

for all m> 0. In particular, the packing constants of the ideal classes Im are uniformly bounded
away from zero. 2

Remark: Poincaré’s periodic portrait. The iterates of a picture of Poincaré under the ergodic
toral automorphism U =

(
0 1
1 1

)
appear in the popular article [CFPS86]; the portrait becomes

highly distorted, but then returns nearly to its original form after 240 iterates. This near-return
illustrates not Poincaré recurrence, but rather the case m= 120 of the identity U2m =±I mod fm
(which follows from (2.6), using the fact that f2

m+1 =±1 mod fm). See [DF92] and [Ghy94] for
more details.

3. Loop generators

Next we develop a more flexible mechanism for producing lattices with bounded orbits.

Definition. A matrix L̃ ∈M2(K) is a loop generator for ε if

Lm = trKQ (εmL̃) ∈M2(Q)

is invertible for all m> 0, and the collection of all lattices of the form

[U iLm] ∈ PGL2(R)/ PGL2(Z),

i ∈ Z, m> 0, has compact closure. In this section we show the following.

Theorem 3.1. Let L̃=X +
√
DY where X, Y ∈M2(Q) have determinant zero. Suppose that

det(L̃) 6= 0 and det(X + SY ) 6= 0. Then L̃ is a loop generator.

(Recall from § 2 that the matrix S = 2U − tI represents multiplication by
√
D on Z[ε].)

Example. The matrix L̃=
(

1/
√
D 0

0 1

)
is a loop generator; the corresponding sequence of lattices

is defined for m> 0 by

Lm =
(
fm 0
0 fm+1 − nfm−1

)
. (3.1)
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Hecke correspondences. Given an integer ` > 0, the multivalued Hecke correspondence

T` : PGL2(R)/ PGL2(Z)→ PGL2(R)/ PGL2(Z)

sends a lattice to its sublattices of index `. In terms of matrices, we have

T`([L]) = {[LA] :A ∈M2(Z), det(A) = `}.

Since Z2 has only finitely many subgroups of index `, T` sends compact sets to compact sets.
A key property of the Hecke correspondence is that it commutes with the left action of

GL2(R); in particular, we have

T`([UL]) = U(T`([L]))

for all L ∈GL2(R). It is also easy to see that [L] ∈ T 2
` ([L]).

Proposition 3.2. If L̃ ∈M2(K) is a loop generator, then so is L̃A for any A ∈GL2(Q).

Proof. Since [L] = [λL] for any λ ∈ R∗, we can assume that A has integer entries. Let `= det(A).
By assumption, the lattices [U iLm] range in a compact subset Z ⊂ PGL2(R)/GL2(Z). Thus the
lattices [U iLmA] ∈ T`([U iLm]) lie in the compact set T`(Z). Since LmA= trKQ (εmL̃A), this shows
that L̃A is a loop generator. 2

Proof of Theorem 3.1. Since the set of loop generators is invariant under the right action
of GL2(Q), we are free to replace (X, Y ) with (Xg, Y g) where g = (X + SY )−1; thus we can
assume that X + SY = I. A calculation (using (2.3)) then shows that

L̃= Ũ + Ũ ′A, (3.2)

where A=X − SY . This implies, by the determinant identity (2.1), that

det(A) =−tr(XY †S†) =−det(X + SY ) =−1,

and hence A ∈GL2(Q). Letting

Lm = trKQ (εmL̃) = trKQ (εm)X + trKQ (εm
√
D)Y,

we find

det(Lm) = trKQ (εm) trKQ (εm
√
D) tr(X†Y ) =Df2m tr(X†Y ), (3.3)

using (2.4) and the fact that trKQ (x) trKQ (x
√
D) = trKQ (x2

√
D). By assumption, det(L̃) =√

D tr(X†Y ) 6= 0, so Lm is invertible for all m> 0.
By (3.2) for m> 0 we can also write

Lm = Um + nmU−mA

where n=N(ε), and hence obtain the bound

‖U iLmU−i‖=O(εm)

for 0≤ i≤m, just as in the proof of Theorem 2.2. Similarly, if we define

L−m = LmA
−1 = UmA−1 + nmU−m,

then we have

‖U−iL−mU i‖=O(εm)
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as well. Since |det(Lm)| � ε2m by (3.3), we find that there is a compact set Z ⊂ PGL2(R)/GL2(Z)
containing

[U iLm] and [U−iL−m]

for all m> 0 and 0≤ i≤m.
Unfortunately, the period of [Lm] under U might be greater than 2m, and we need not

have [L−m] = [Lm]. However, since L−m = LmA
−1 and A is a fixed rational matrix, there is an

` > 0 such that [L−m] ∈ T`([Lm]) for all m. Similarly, increasing ` if necessary, the fact that
det(Lm) is a fixed rational multiple of f2m implies there are integral matrices [Mm] ∈ T`(Lm)
with det(Mm) = f2m on the nose.

We claim the orbit of [Mm] under 〈U〉 is contained in T`(Z) ∪ T 2
` (Z). Indeed, for 0≤ i≤m

we have

[U iMm] ∈ T`([U iLm])⊂ T`(Z),

and

[U−iMm] ∈ T`([U−iLm])⊂ T`(U−iT`([L−m])) = T 2
` (U−iL−m)⊂ T 2

` (Z),

and these lattices comprise the full orbit of [Mm] since [U2mMm] = [Mm] (Proposition 2.1).
It follows that the orbit of [Lm] ∈ T`([Mm]) under 〈U〉 is contained in the compact set
T 2
` (Z) ∪ T 3

` (Z), which is independent of m. 2

Special case. We note that if A ∈GL2(Z) and its eigenvalues are −1 and +1, then

L̃= Ũ + Ũ ′A=
1
2

(A+ I) +
√
D

2D
S(I −A)

clearly has the form X +
√
DY with det(X) = det(Y ) = 0 and X + SY = I. If tr(A†U) 6= 0 then

det(L̃) 6= 0, and thus L̃ is a loop generator by Theorem 3.1. The corresponding sequence of
lattices is given by

Lm = trKQ (εmL̃) = Um + nmU−mA

where n=N(ε). Thus the construction of lattices with bounded orbits given in Theorem 2.2 is a
special case of the loop-generator construction. In this case Vm = L−1

m U2mLm can also be given
by the trace expression

Vm = trKQ (ε2mL̃−1Ũ L̃) + nm(A+ S).

4. Patterns of continued fractions

In this section we give a second, short proof of Theorem 1.1. It is based on the following
proposition, which is readily verified by induction.

Proposition 4.1. For any s > 0, the periodic continued fractions

xm = [(1, s)m, 1, s+ 1, s− 1, (1, s)m, 1, s+ 1, s+ 3] (4.1)

lie in Q(
√
s2 + 4s) for all m≥ 0.

(Here (1, s)m indicates that the pattern 1, s is repeated m times.) Similar patterns appear
in [Wil80] and [Woo78].
Direct Proof of Theorem 1.1. Let K be a real quadratic field. By Dirichlet’s theorem, there
exists a unit ε ∈K with norm 1 and trace t > 3 (namely a suitable power of a fundamental unit).
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Then K = Q(
√
t2 − 4) = Q(

√
s2 + 4s) where s= t− 2> 1, and the sequence xm above provides

infinitely many periodic continued fractions in K with 1≤ ai ≤ s+ 3. 2

This pattern of continued fractions can be connected to the loop generator L̃=
(

1/
√
D 0

0 1

)
, as

follows.

Proposition 4.2. For any quadratic unit ε > 1, the numbers defined by

ym =
(
fm+1 − nfm−1

fm

)
ε

for m> 0 have uniformly bounded continued fraction expansions.

(Here fm is defined by (2.4) and n= NK
Q (ε).)

Proof. Let Lm, given by (3.1), be the sequence of diagonal matrices determined by the loop
generator L̃. Then in terms of the usual action of PGL2(R) on P1(R) by A(z) = (az + b)/(cz + d),
we have ym = L−1

m (ε). Since −(ε, ε′) are the fixed points of U(z) =−n/(z + t), the geodesics
γ̃m joining ym to y′m lie over a compact subset of γm ⊂H/ SL2(Z). Since lim ym 6= lim y′m, this
compactness implies a uniform bound on the continued fraction expansion of ym. 2

See [Woo78], which treats the case Q(
√

5). Evaluating the continued fraction expansion of
ym quickly suggests (4.1); for example, when ε= (3 +

√
5)/2 and m= 10 we have

ym =
15 127(3 +

√
5)

13 530
= [5, 1, 5, 1, 5, 1, 5, 1, 6, 8, 1, 5, 1, 5, 1, 5, 1, 6, 4].

Many other patterns can be produced by varying the choice of the loop generator L̃.

5. More general quadratic extensions

In this section we show that the construction of § 2 can be applied to U ∈ SL2(Od) and, more
generally, to U ∈GLN (Z) whenever U is conjugate to U−1 in GLN (Q).

SL2(Od): Proof of Theorem 1.3. Choosing a particular complex embedding of k = Q(
√
−d)⊂

C, we can regard SL2(Od) as a discrete subgroup of SL2(C). Let U ∈ SL2(Od) be a hyperbolic
element corresponding to a fundamental geodesic γ, with eigenvalues ε±1. We may assume that
|ε|> 1. Then K = k(ε) is a quadratic extension of k, and up to conjugation in GL2(k) we can
assume that U is given by (2.2), where t= trKk (ε) and n= NK

k (ε) = det(U) = 1. (By a Hecke
correspondence argument similar to the proof of Proposition 3.2, conjugating U by an element
GL2(k) does not affect the conclusions of the theorem.)

Given m> 0, let Lm = Um + U−mA with A ∈GL2(Od) given by (2.9), and let fm =
trKk (εm

√
D). Then we have |fm| � |ε|m, |det(Lm)| � |ε|2m and ‖U−m‖, ‖Um‖=O(|ε|m) so the

bounds (2.7) still hold; and [U2mLm] = [Lm] by the same proof as before. Thus [U iLm], i ∈ Z,
ranges in a compact subset of PGL2(C)/ SL2(Od). The periods of these orbits go to infinity by an
immediate generalization of Theorem 2.4, and hence elements L−1

m U2mLm ∈ SL2(Od) correspond
to an bounded, infinite sequence of geodesics γm ⊂H3/ SL2(Od) whose lengths are multiples of
L(γ). 2

GLN(Z): Proof of Theorem 1.8. This case has an additional twist, since for N > 2 the
eigenvalues of U outside the unit circle may have different absolute values.

Let U ∈GLN (Z) be an element of infinite order with irreducible characteristic polynomial,
such that U is conjugate to U−1 in GLN (Q). Then the algebra K ∼= Q(U)⊂MN (Q) is a field. Let
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k = Q(U + U−1)⊂K and let d= deg(k/Q). Since U 6= U−1, K/k is a quadratic field extension
and hence N = 2d.

The ring of integers Ok ⊂ k embeds as a lattice in Rr × Cs, where r + 2s= d and r and s
denote the number of real and complex places of k. Similarly we obtain a discrete subgroup

Γ = GL2(Ok)⊂G= GL2(R)r ×GL2(C)s.

The projection of Γ to PG=G/R∗ is a lattice.
Choosing an integral basis for Ok, we obtain an embedding GL2(Ok)→GL2d(Z) whose image

contains U . Thus we can regard U as an element of GL2(Ok), with eigenvalues ε±1 ∈K. Let
t= trKk (ε) and note that n= NK

k (ε) = 1. After conjugation by an element of GL2(k) (which does
not affect the conclusions of the theorem), we can assume that U =

(
0 −n
1 t

)
∈GL2(Ok).

We will show that Lm = Um + U−mA, m> 0, defines a sequence [Lm] ∈ PG/Γ providing
infinitely many 〈U〉-orbits ranging in a fixed compact set Z.

Let |x|v denote the absolute value on k associated to the place v (using |z|2 at the complex
places), and let dv = 1 or 2 according to whether v is real or complex. Then

∑
dv = d, and

‖x‖= max |x|1/dv
v

defines a norm on k whose completion is Rr × Cs. Similarly we obtain a norm on k2 and an
operator norm on M2(k). Given L ∈M2(k), we let Det (L) = Nk

Q(det L). Clearly, for any C > 0,
the set of lattices

Z(C) = {[L] : ‖L‖2d ≤ C|Det L|} ⊂ PG/Γ
is compact.

Extend each valuation v to K in such a way that |ε|v ≥ 1; then the definition of ‖x‖ also
extends to K.

Let M(ε) =
∏
|εi|≥1 |εi| denote the Mahler measure of ε: the product of its conjugates outside

the unit circle. Let fm = trKk (εm/
√
D) as before. We then have

|Nk
Q(fm)| �

∏
|εm|v =M(ε)m.

As before, we have det(Lm) = f2
m, and thus |Det Lm| �M(ε)2m. We also have ‖Lm‖=O(‖Um‖).

Since ‖ε‖ gives a spectral radius of U (the size of the largest eigenvalue of U acting on Rr × Cs),
we have

‖Um‖d � ‖ε‖md.
But in general we only have the inequality

‖ε‖d = (max |ε|1/dv
v )d ≥

∏
|ε|v =M(ε).

In other words, ‖Lm‖2d may be much larger than |Det (Lm)| because some eigenvalues of U are
much larger than others.

To remedy this, we correct [Lm] by units in Ok. By Dirichlet’s theorem [BS66, § 2.4.3], the
quotient

Rr+s
0 /O∗k =

{
(xv) :

∑
xv = 0

}/
{log |η|v : η ∈ O∗k}

is compact. Thus we can find a unit η ∈ O∗k such that

|ηεm|1/dv
v �M(ε)m/d

838

https://doi.org/10.1112/S0010437X09004102 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004102


Uniformly Diophantine numbers in a fixed real quadratic field

for all v. Then
‖ηεm‖d =O(M(ε)m).

By examining the eigenspaces of U , we find that the same bound holds for ‖ηU±m‖. Since η is
a unit, ηI belongs to Γ = GL2(Ok), and thus we have

[Lm] = [ηUm + ηU−mA]

in PG/Γ; and since

‖ηUm + ηU−mA‖2d =O(M(ε)2m) =O(|Det Lm|),

[Lm] now ranges in a compact subset of the form Z(C)⊂ PG/Γ. A similar argument shows that
[U iLm] and [U−iLm] range in a compact set for all m> 0 and 0≤ i≤m.

Noting that Proposition 2.1 and Theorem 2.4 generalize immediately to this setting, we
conclude that the full 〈U〉-orbit of [Lm] is contained in Z and that the length k(m) of this orbit
tends to infinity. Finally reduction of scalars provides a finite-to-one projection

π : PG/Γ→ PGLN (R)/GLN (Z),

and the proof is completed by taking the images of [Lm] under this projection. 2

6. Class numbers and heights on P1

Let PicOD denote the group of invertible ideal classes for the quadratic order of discriminant
D, and let h(D) = |PicOD| denote the corresponding class number.

In this section we relate the packing densities of ideals to heights on P1(Z/f) and the
computation of h(f2D). This perspective suggests the following strengthening of Theorem 1.4.
As usual, suppose that ε > 1 is a quadratic unit and f2

mD is the discriminant of Z[εm].

Conjecture 6.1. Given α > 0, there is a δ > 0 such that

|{I ∈ PicOf2
mD

: δ(I)> δ}| ≥ f1−α
m (6.1)

for all m sufficiently large.

It also connects our results to Zaremba’s conjecture, and provides an approach to
Conjecture 1.5 for cubic and quartic fields.

The projective line. Given f > 0, we define the projective line over Z/f in terms of lattices in
Z2 by

P1(Z/f) = {L⊂ Z2 : Z2/L∼= Z/f}.
Given a, b ∈ Z with gcd(a, b, f) = 1, we use [a : b] as shorthand for the lattice

L[a:b] = Z(a, b) + fZ2 ⊂ Z2.

The number of points on P1(Z/f) is given by f
∏
p|f (1 + 1/p).

Heights. We define the height of a point on P1(Z/f) by

H(L) = inf{‖x‖2 : x ∈ L, x 6= 0}. (6.2)

Since vol(R2/L) = f we have H(L)/f ≤ 2/
√

3 (the maximum comes from an hexagonal lattice),
and H(L)/f is small ⇐⇒ [L] is near infinity in PGL2(R)/ PGL2(Z). It easy to see that the
proportion of L ∈ P1(Z/f) with H(L)/f > δ > 0 tends to 1 (uniformly in f) as δ→ 0.
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In the case where f is prime, the height also satisfies

H(L) = inf{|a|2 + |b|2 : L= L[a:b]};

thus it measures the minimal complexity of an arithmetic description of L. (A somewhat different
height is considered in [NS08].)

Ideals. Now let ε > 1 be a quadratic unit, and identify Z[ε] with Z2 using the basis (1, ε) as
before. We will denote the order Z[fε]⊂ Z[ε]⊂K = Q(ε) by Of2D, since its discriminant is f2D.

Given f > 0, every x ∈ OD determines an ideal

I(x, f) = Zx+ f OD
for the order Of2D. Clearly I(x, f) only depends on the class [x] of x in (OD /f OD). Let

I(f) = {I(x, f) :OD /I(x, f)∼= Z/f},

and let

I∗(f) = {I(x, f) : [x] ∈ (OD /f OD)∗}.
It can be shown that I∗(f) consists of the ideals I ∈ I(f) which are invertible as Of2D-modules.

The basis (1, ε) for OD determines a bijection

π : I(f)→ P1(Z/f)

sending I(a+ bε, f) to [a : b]. The matrix U given by (2.2) acts naturally on P1(Z/f), and we
have

π(ε · I(x, f)) = U · π(I(x, f)).

Density and height. For I ∈ I(f) with L= π(I), we have det(I) = f
√
D and

N∗(I) = inf{|NK
Q (x)| : x ∈ I,NK

Q (x) 6= 0} � inf{H(U iL) : i ∈ Z},

by the same reasoning as in the proof of Theorem 1.4. Thus the packing density of I satisfies

δ(I) =N∗(I)/ det(I)� inf
i∈Z

H(U iL)/f, (6.3)

where the implicit constants depend only on U .

Class numbers. To put this discussion in context, we recall the calculation of h(f2D)
(cf. [Lan87, San91]).

It is known that the natural map PicOf2D→ PicOD is surjective, and that every ideal class
in the kernel has a representative in I∗(f). Moreover, I, J ∈ I∗(f) represent the same ideal class if
and only if I = ηJ for some unit η ∈ OD. In other words, we have an exact sequence

0→ (OD /f OD)∗/((Z/f)∗ O∗D)→ PicOf2D→ PicOD→ 0

whose second term is in bijection with the orbits of

π(I∗(f))⊂ P1(Z/f)

under the action of 〈U〉. It follows that the class number of Of2D is given by

h(f2D) =
h(D)

[O∗D :O∗f2D]
|I∗(f)|= h(D)R(D)

R(f2D)
|I∗(f)|,

where R(D) denotes the regulator of OD.
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When D is a fundamental discriminant, one can compute |I∗(f)| in terms of primes dividing
f to obtain the formula

h(f2D) =
h(D)R(D)f
R(f2D)

∏
p|f

(
1−

(
K

p

)
1
p

)
;

see [Lan87, ch. 8.1, Theorem 7]. (Here (K/p) = 1 if p splits in K, 0 if it ramifies and −1 if it
remains prime.)

For f > 1 the product on the right, and its reciprocal, are both O(log f). Thus the class
number is controlled primarily by the regulator of Of2D: it satisfies

C1f

R(f2D) log f
≤ h(f2D)≤ C2f log f

R(f2D)
,

where C1, C2 > 0 depend only on D. (A bound of this type holds whether D is fundamental or
not.)

Fibonacci orders. As an example, note that the orders Z[εm] =Of2
mD

satisfy R(f2
mD) =mR(D)

and fm � εm, and hence
h(f2

mD)≥ C3fm/(log fm)2. (6.4)
In other words, the orders generated by powers of ε have large class numbers.2

Arithmetic independence. It is now straightforward to give a rationale for Conjecture 6.1.
Consider the uniform probability measure on P1(Z/fm), assigning equal mass to each point.

Fix a small δ > 0; then the probability p that the height of a random L ∈ P1(Z/fm) satisfies
H(L)> δfm is close to one. Suppose that the events H(L)> δfm, H(UL)> δfm, H(U2L)> δfm,
etc. are essentially independent. Since U |P1(Z/fm) has period m, the probability that all these
events occur is roughly pm. But m is comparable to log fm, so pm is comparable to f−αm for some
small α > 0. Since |P1(Z/fm)| ≥ fm, the total number of L ∈ P1(Z/fm) with inf H(U iL)/fm > δ
is at least f1−α

m , where α→ 0 as δ→ 0.
By (6.3), the same type of estimate holds for the number of ideals I ∈ I(fm) with δ(I)> δ.

The probability that a random ideal lies in I∗(fm) is roughly 1/ log fm; assuming independence
again, this introduces a negligible correction, and we now obtain ideal classes in PicOf2

mD
. At

most m� log fm ideals in I∗(fm) map to the same class, so we again obtain on the order of f1−α
m

distinct ideal classes with δ(I)> δ.

Counting geodesics. Let L= log ε2 denote the length of the closed geodesic represented
by U ∈ SL2(Z). Then Conjecture 6.1 implies that, for any α > 0, there is a compact set
Z ⊂H/ SL2(Z) that contains at least exp((1/2− α)mL) primitive geodesics of length mL for
all m� 0. (For comparison, the total number of geodesics of length ` is Oη(exp((1/2 + η)`))
for all η > 0, and the number of length ≤ ` is ∼ exp(`)/`; cf. [Sar82, § 2].)

Orders in Q×Q. Similar phenomena can be studied for the algebra K = Q×Q, whose orders
are

Of2 = {(a, b) ∈ Z2 : a≡ bmod f}.
With the trace and norm given by a+ b and ab, the packing density can be defined just as for
a quadratic field, and one can also formulate the following.

2 Orders with small class numbers can also be exhibited, e.g. h(52m+1) = 1 for all m; cf. [Lag80, Lemma A-1].
This fact is compatible with (6.4) because, for m > 1, 5m is not a Fibonacci number.
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Conjecture 6.2. Given any α > 0, there is a δ > 0 such that

|{I ∈ PicOf2 : δ(I)> δ}| ≥ f1−α (6.5)

for all f sufficiently large.

(Since O∗1 is finite, all orders should behave equally well.)

This conjecture implies the following.

Conjecture 6.3 (Zaremba). There exists an N > 0 such that every f > 0 arises as the
denominator of a rational number a/f = [a0, a1, . . . , an] with 1≤ ai ≤N .

Zaremba’s conjecture is stated in [Zar72]; it is plausible that it holds for N = 5, and even
for N = 2 if finitely many f are excluded (see [Hen96, § 3, Conjecture 3]). Explicit constructions
show that one can take N = 3 when f is a power of 2 or 3 [Nie86].

To see that Conjecture 6.2 implies Zaremba’s conjecture, observe that Pic(Of2) is in bijection
with (Z/f)∗ via the map

a 7→ Ia = {(q, r) ∈ Z2 : r = aq mod f} ⊂ Z× Z.

Since det(Ia) = f , the condition δ(Ia)> δ is equivalent to

N∗(Ia) = inf{|q| · |aq − pf | : q 6= 0, aq − pf 6= 0}> δf,

which means exactly that ∣∣∣∣af − p

q

∣∣∣∣> δ

q2

whenever p/q 6= a/f . This Diophantine condition implies that the continued fraction of a/f
satisfies ai =O(1/δ), and hence the ideals furnished by Conjecture 6.2 (say with α= 1/2)
determine the numerators required for Zaremba’s conjecture.

Question. In Theorem 1.1, can one take Md = 2 for all d? That is, does every real quadratic
field contain infinitely many periodic continued fractions with 1≤ ai ≤ 2?

Cubic fields. The same approach can be applied to fields of higher degree. For concreteness,
suppose that K is a cubic field generated by a unit ε > 1 whose conjugates are complex. The
discriminant of the ring Z[εm] can be expressed in the form

Df2
m = det trKQ

 1 εm ε2m

εm ε2m ε3m

ε2m ε3m ε4m

,
with f1 = 1.

As before, the matrix U ∈GL3(Z) for multiplication by ε acts on the projective space
P2(Z/fm). In the cubic case, however, Um|P2(Z/fm) need not be the identity. As a substitute, we
know that the resultant of the minimal polynomial pm(x) for εm is divisible by fm. For simplicity,
suppose that fm is prime; then we have a factorization pm(x) = (x− a)2(x− b) mod fm, and
Ker(Um − aI) determines a U -invariant line Pm ⊂ P2(Z/fm) such that Um|Pm is the identity.
Since the orbits of U |Pm are small, there is a reasonable chance that many of them have large
height; if so, they furnish ideals whose densities are bounded away from zero.
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Example. Let ε > 1 be the Pisot number satisfying ε3 = ε+ 1. Then D =−23. For m= 10 we
have pm(x) = (4 + x)2(13 + x) mod fm = 19; for m= 41 we have pm(x) = (4 679 681 + x)2

(5 436 593 + x) mod fm = 7 448 797. The vectors vm given by

v10 = [5 : 9 : 1] and v41 = [5 514 143 : 5 170 633 : 7 378 397]

have period m and satisfy minH(U ivm)/f2
m ≈ 0.267 and 0.249 respectively, versus a maximum

possible value of
√

2≈ 1.4142. (Here the associated lattices Lm = Zvm + fmZ3 have determinant
f2
m, and we take ‖x‖3 in the definition (6.2) of the height.) Experimentally, it appears that such
U -orbits of large height can be found for arbitrarily large m.
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