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LOCALLY IRREDUCIBLE RINGS

C. VINSONHALER AND W. WICKLESS

In the study of torsion-free abelian groups of finite rank
the notions of irreducibility, field of definition and
E-ring have played significant r8les. These notions are

tied together in the following theorem of R. S. Pierce:

THEOREM. Let R be a ring whose additive group is
torsion free finite rank irreducible and let T be the
centralizer of QR as a QFE(R) module. Then T 1is the
unique smallest field of definition of R . Moreover,

I "R is an E-ring, in fact, it is a maximal E-subring of
R .

In this paper we consider extensions of Pierce's result to
the infinite rank case. This leads to the concept of local

irreducibility for torsion free groups.
1. Introduction

A group ( (in this paper the word group will always mean torsion-

free abelian group) is called irreducible if QG (Q ® G) is a simple
A

QF (@ ® E)-module, where E 1is the ring of endomorphisms of (G . These
Z

groups have been studied extensively by J. D. Reid [10], [I7], [12] and

play an important role in the theory of torsion-free groups of finite rank.

Let R be a ring (all rings in this paper have an identity and have
a torsion-free additive group). A subfield F of the centre of @R is
called a field of definition of R if (F N Rz, ®...8(F N Rz, isof
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finite index in R for some F-independent subset {xl,...,xn} CR. The

concept of field of definition first appeared in [3] and (7] in the study
of subrings of simple algebras, and subsequently has appeared frequently in

various contexts, (for instance see [6] or [9]).

A ring R is called an E-ring if the embedding x + x, of R into

2
End(R+) is onto. Here xl means left multiplication by & . Schultz

introduced the term E-ring in [14]. A further study of E-rings was made
by Bowshell and Schultz in [4] . 1In spite of their seemingly specialized
nature, E-rings have appeared frequently in the literature (see [I], [Z],

(rz1, 51, (7).

In the finite rank case the concepts of irreducibility, field of
definition and E-~ring are tied together in the following theorem, which

first appeared in [7].

THEOREM. Let R be a (torsion-free reduced) ring of finite rank
which is irreducible as an additive group. Let T =HomQE(QR, QR}. Then:

(1) T <8 a subfield of the centre of QR and T 1is the unique
smallest field of definition of R.

(2) TNR 1is an E-ring. In fact, T N R <is a maximal E-subring of R.

It is easy to verify that if R is irreducible, then so is R_ , the

p

localization of R at an integral prime p . In this paper we study
torsion free rings AR for which each Rp is irreducible. We are able to
generalize the above theorem, even in certain infinite rank cases. Our work
is based on [ 3], [7] and [ 9], which are fundamental references for this

paper.

Zp' Ep, ép stand for

the ring of integers localized at p , the ring of p-adic integers and the

Our notation is fairly standard. Specifically :

field of p-adic numbers, respectively. The symbols = and £ denote
quasi-equality and quasi-isomorphism, while the symbols ® and x

represent group direct sum and ring direct sum, respectively.
A ring R is called p-local provided gR=R for all primes q¥p .

If R is a p-local ring, then £ denotes 2 ® R with the natural ring
Z
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Structure, and Qﬁ represents Q ® R = %)G R . Following [9] , let L(R)
Z Z

be the maximal divisible subgroup of R . Note that if we regard Qﬁ as
a @QF-module in the natural way, then L(R) is a @F-submodule of Qﬁ .

1. The local case

Throughout this section A will be a torsion-free p-local reduced
ring which is irreducible as an abelian group. In particular, @R is a

simple @QF-module and T =Hom

¢E
specifically, T can be identified with a subfield of the centre of @R ,

(QR,QR) 1is a division ring. More

since the elements of T commute with all left and right multiplications
by elements of @R . Furthermore, by the Jacobson Density Theorem, @QF is
a dense subring of .Homr(QR,QR) . An important class of irreducible rings
is the class of rings R for which @R 1is a simple {-algebra. These
rings are irreducible since @F contains left and right multiplications

by elements of @R .

We start with a technical lemma, which is a modification of

Theorem 3.1 of [ 9].
LEMMA 1.1. L(R) =QR(T N L(R)).

Proof. Let N=QR(F N L(R)) C L(R) . Note that N is a QE-submodule
of L(R) . Suppose there exists w e L(R)\N . Since w ¢ QR , write

wW=a,.x

+ ..+ i € Q : .
%1 arxr , with u,b € Qp and :z:z € QR We may assume w has

been chosen so that r is minimal. Clearly, ai#o, xiylo for each 7 .

Moreover, since both L(R) and N are @p—modules, we may take a, = 1.

Since @R is simple over @F we can choose f € QF so that

f(xl)=1. Then w'=f(w) =1 + azf(xz) + ... + arf(:x:r) € L(R) . 1In

particular, since L(R) #Q}} , r 22 . Suppose w' ¢ N . Then xlw' e N

-— ’ = - -
and w -z’ =a,(x, :vlf(xz) + ot (x, xlf(xr)) belongs to

L(R)\N , contradicting the minimality of r . Thus, w' ¢ N .

For all c € @R , ¢ ¢ QE(R) , denote

r
Be,4) =90’ - $(aw') = } ald(e)flxzy) - ¢lef(z))]
i=2
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Then A(ec,¢) € L(R) , hence A(c,¢) € N by minimality of r . Suppose,
for all e¢ , ¢ and 7 , that ¢(c)f(xi) = ¢(cf(:ni)) . Then, by definition of

T, f(xi) e T for each % . But this implies w' € N , a contradiction.

Therefore, there exist ¢ € QR, ¢ ¢ QE(R) and 7 such that
e = ¢(c)f(:ci) - ¢(cf(xi)) # 0 . Without loss of generality, take % = r .

Choose 6 ¢ QF with 8(e) = f(:r:r) . Then

w' - elale,)lf@,) =1+ Zi;; @y, , where a; € ép and
y; = flx;) - elete)fiay) - ¢(cf(xi))]f(xr) € @R . Since
w' - 6[Ale,)]f(x,) belongs to L(R) , v' also belongs to N by

minimality of » . However, 9[A(c,¢)]f(xr) e N as well, implying w' e N .
This final contradiction completes the proof.

For the remainder of this section we make the additional assumption

that the ring R has finite p-rank.

The next lemma goes back to Beaumont-Pierce [3]. See also Lady [6],

and Pierce-Vinsonhaler {9].
LEMMA 1.2. Q& = {f ¢ End(@R)|FfIL(A] C LR} .

Proof. Under the usual identifications, R = R N @R . Moreover,
R= L(R) @ F , where F 1is a finite rank free Zp-module (since R has

finite p-rank). Therefore, if f ¢ End(@R) and f[L(R)] C L(R) , then

PXF(R) € R . This implies PXf € E(R) . since L(B) is an E(R)-submodule
of R , the equality follows.

The ideas involved in the next theorem have been used repeatedly. See

Pierce [7], Lady [6], Bowshell-Schultz [4], Pierce-Vinsonhaler [9].

THEOREM 1.3. Let R be a reduced p-local ring of finite p-rank,
which is irreducible as an abelian group, and let
r = HomQE.(Q,R,QR) , C=TNR.

Then: (1) @QF = Homr(QR,QR) :
(2) R2(TNRz, ... 0 (INRx, for some {:cl,...,xn} CR;

(3) T 1is the smallest field of definition of R ;
(4) ¢ is an E-ring.
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Proof. (1) As previously remarked, ¢QF is a dense subring of

Homr(QR,QR) . To show the reverse inclusion we apply Lemmas 1.1 and 1l.2.
let f e Homr(QR,QR) . Then
FILA] = FIGR(T 0 L(RY] = F@ (T N L(M] € QR(T N L(R) = L(R)

By Lemma 1.2, f € @E(R)

(2) Let 0¥ x € R. Then Tx ® M= QR for some [-submodule
M of QR . Dpefine ex: QR ~ T C QR by Gx(sx+m) =8 . Then, by (1),

Sx € @F . Choose a positive integer Kk such that kex e E(R) . Let
r = (sx+m) ¢ R . Then kex(r) = ks e TNR . It follows that
R=2(T'"Rx®MNR . Continue to split off quasi-summands of R in this

way. The process must stop after a finite number of steps because R is

reduced and of finite p-rank.

(3) Suppose F is a field contained in the center of @R
with R = (F N Ry, e ... 0 (FN Ry, for some {yl,...,ym} C R . Then

H

HomF(QR,QR) C QE . since @R is a vector space over F we have

F HomH(QR,QR) O Hom,_,(QR,QR) =T .

QF
(4) Since @C = QT NR) =T is a field, then C is
irreducible. Moreover, as a pure subring of R, C is p-local and of finite

p-rank. Let I' = HomQE(C)(QC,QC) - By (2),
= N 1 .
¢c=(r C)yl ® ... @ (I''nN €)Y, for some {yl,...,ym} CC . This,

combined with the result (2) for R , implies that TI' is a field of
definition for R . By (3), I'' O T . Since we are regarding [I'' as a

subring of Q@€ =T , then T' =T . fThat is,

I =T' = Hom (QC,QC) = Hom

QE(CY QE(C)
It follows that QE(C) € HomF(P,F) = I' and, hence, that
E(C)y =E(Ir'"Ry=TNR,

(r,my .
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2. The global case

In this section we consider torsion-free reduced rings R for which
each localization Rp satisfies the conditions of Section 1: Rp is
irreducible and of finite p-rank. We call such a ring locally irreducible.

For each prime p , let TI(p) = I'(R,p) = HomQE’(R )(QR,QR) , and let

p
I' = T(R) be the subring of the center of @R generated by
{rp) ]p prime} . We will see that in some ways, I' acts like a smallest

field of definition of R . 1In particular, we have
LEMMA 2.1. If F <is a field of definition of R , them T(R) CF .
Proof. By definition, T'(p) = HomQE‘(R )(QR,QR) . On the other hand,
p

if F is a field of definition of R then Hom (QR,QRy C F . Finally,

QE(R)
. C C
since @QE(R) QE'(Rp) , then HomQE(R )(QR,QR) HomQE(R) (QR,QR) . 1t
follows that T(p) € F for all primes p , so that T(R) CF .
LEMMA 2.2. If R 4is locally irreducible, then @E(R) C Hom, (R)(QR,QR).
Proof. Let f € QE(R) . Then for all primes p, f € QE'(Rp) , and

therefore f commutes with T(p) . It follows that f commutes with
I'(R)

The next lemma describes the structure of T .

LEMMA 2.3. Let R be locally irreducible and T = T'(R) . Then:
(1) there exist primes Dyseeesl,y, such that T = Fpy)...Tep,) 18

the subring generated by T(p,),.. ST,

(2) T = Fyx... XFm , Wwhere each Fi i8 a field;

(3) if e; 18 the central idempotent of QR corresponding to the
3 3 . R) De.l =F,
identity of F. , then I‘(e,LR) el F, .

Proof. (1) Let Py+Pys-.. be a listing of the primes p for which
PR # R . Then T(p)) c T(pPT(p,) C ... is an ascending chain of T(p,)
submodules of @R . Since @R is finite dimensional over I‘(pl) by

Theorem 1.3, the chain must stabilize. This implies (1) .
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(2) By (1) we can write T = F(pl)...F(pn). Let

F=Tpy ... ﬂl‘(pn) .
Then F is a subfield of each F(pi) , and a simple argument shows that
each F(pi) is finite dimensional over F for 1 <% <n . Furthermore,
each F(pi) is a separable extension of F since char(R) = 0 . Thus
T = F(pl) QF"' F,F(pn) is a commutative, separable, finite dimensional

algebra over F (see [8], p.188). This implies that 7T is semisimple and
hence a direct product of fields ([8], p.186). However, T is a ring

epimorphic image of T . Thus T = I& X ... xFﬁ for some collection of

fields Fl""’Fﬁ .

(3) This is a routine calculation using the definitions.

To study the relationship between I and R , it often suffices, by
Lemma 2.3, to assume [ is a field. We make this reduction whenever it is

feasible.

The following simple example shows that even if R is of finite rank,
locally irreducible and T(R) is a field, T'(R) need not be a field of

definition for R .

EXAMPLE. Let A be the subgroup of § generated by
{l/plp is a prime} , and let R = 2 ® A with ring structure defined by

(m,a) (n,b) = (mn,mb+na) . Then, for each prime p , Rp = Zp ® Zp is

irreducible, and T(p) = & ® (0) . Thus, I'(R) = @ ® (0) . Note that T(R)
is not a field of definition of K . 1Indeed, R has no field of definition.
In this example, QE(R) is the ring of lower triangular 2x2 rational
matrices, while Homr(QR,QR) is the ring of all 2x2 rational matrices.

Compare with Theorem 1.3 (1).

In the remainder of this section we show that T'(R) " R is an E-ring
in any case, and that, with an additional assumption, ' " R is a quasi-

summand of KR . For the sake of convenience we denote
supp(R) = {p ¢ le is prime and PR # R}.

et C=C(R =T NR, and, for each P € supp(R) , let
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Cp) =T(p) N R . Plainly, C is the pure subring of the centre of R
generated by {C(p) Ip € supp(R)} . Moreover, by Theorem 1.3, for each

p € supp(R) , C(p) is an F-ring and R = [0(p)p]” for some 7 = n(p)

We next show C 1is an E-ring.

THEOREM 2.4. Let R be a locally irreducible ring. Then C = C(R)
is an E-ring.

Proof. Let ¢ : C +C be an endomorphism of ¢ with ¢(1) =0 . We
will show that ¢ = 0 . It is an easy exercise to verify that this implies
C is an E-ring (or see [4]). For a given prime p € supp(R) , regard ¢

as an endomorphism of Cp C Rp . Note that Cp is a C(p)p-submodule of

R_ , which is quasi-equal to a free C(p)p module. If T is (quasi-)

p

projection onto one of the free cyclic summands of Rp , then
1r¢(C(p)p) =0 , since T(1l) = 0 and C(p)p is an E-ring. This implies
$(C(p)) = 0 for each prime p € supp(R)

Now let q # p be primes in supp(R) and O # £ € C(q) . Then, with

T as above, 4@ > ar > m¢(axr) induces an endomorphism 6 of C(p)p .
Moreover, (1) = O since ¢(x) € ¢(C(q)) = 0 . Since C(p)p is an E-ring,

@ =0 . It follows that w¢(C(p)C(q)) = 0 , and hence that ¢(C(p)C(q)) = O.
An induction argument shows ¢(,C(p1)...C(pk)) = 0 for any primes

Pyrev-iPy - Hence ¢(C) = 0 and € is an E-ring.

We next consider the question of finding a necessary and sufficient
condition for C to be a quasi-summand of R . We start with a simple

lemma from commutative ring theory.

LEMMA 2.5. Let C be a Dedekind domain. Suppose A 2 B are torsion
free C-algebras and P 1is a prime in C with AP/BP P-bounded. If

B/PB contains no nilpotent ideals, then Ap = Bp.

Proof. By assumption we can write PnAP C By for some 7 >0 .

. - A . . ..
Consider I PAP BP , an ideal in BP containing PBP . Then

I-= I/PBP is an ideal in BP/PBP with (f)n = 0 . By assumption, we have

-
0

0 . That is, PAP n BP = PBP . However, PCP is a principal ideal

since C is Dedekind. Thus, PBP = PAP N BP implies BP = AP .
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PROPOSITION 2.6. Let S be a torsion-free reduced algebra over the
Dedekind domain C such that C 1is pure in S and

(1) @S and @QC are fields,

(2) C has finite p-rank for all integral primes p ;

(3) Sp is finitely generated over Cp for all integral primes

p € supp(S) .
Then S 1is finitely generated over C .

Proof. If p e supp(S) , (3) implies that Sp is quasi-equal to a
finite rank free Cb-module. It follows that S has finite p-rank for

each prime p € supp(S) . Furthermore, SP is equal to a finite rank free

‘p

integral prime p € supp(S) , and CP is a PID .

-module for each prime P of ( , since such a P must contain an

Let B be the integral closure of ¢ in @S . Then B is a
Dedekind domain which is finitely generated as a (-module, with @B = @S
([13), p.46). It follows that S = BS is quasi-equal to S . To see this
note that I = {x € Clz5 C S} is a non-zero ideal of ( since B is
finitely generated over ( . Thus, I contains an integer since @C is a

field.

We will show 35/B is bounded, hence finite. Let P be a prime in
C and consider EP/BP . By the first paragraph of the proof and the

definition of B , = S, = B, are equal to free Cb-modules. Therefore

SP P P
S'P/BP is P-bounded. 1If the ring BP/PBP is semi-simple, then §P/BP is

zero by Lemma 2.5. However, BP/PBP is semi~simple if and only if P is
unramified in B , that is, PB is a product of distinct prime ideals of
B . This is true for almost all primes P in C by a well-known result
from ring theory ([73}], p.62). Thus, BP/BP is non-zero for at most
finitely many primes Pl""'Pk in € . Since EP/BP is P-bounded for
P = Pi , 11 <k, there exist integers eyr---,€ such that

e e
Pll... Pk .S € B . However, the ideal Pll... Pkk contains an integer, so

that S5/B is bounded. Thus, S = S = B is finitely generated over ( .
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Let K be locally irreducible and let
(R = F& X, .. XFﬁ , R = elR ® ... 8 emR be as in Lemma 2.3. Note that

C(R) = e C(R) ® ... ® ¢ C(R) . Let C(R) = e,C(R) ® ... & ¢ C(R) , where

eiC(R) denotes the integral closure of the subring eiC(R) in the field

Fi . We now can state a theorem giving a sufficient condition, in the

global case, for C(R) to be a quasi-summand of R .

THEOREM 2.7. Let R be loecally irreducible and assume that
C(R) £ C(R) . Then C(R) 1is a quasi-sumand of R .

Proof. Denote C = C(R) , C = C(R) . 1It suffices to assume that

QC = F , F a field, since elC ® ... & emC is a quasi-summand of R if
and only if each eiC is a quasi-summand of eiR . In view of the

assumption that C = C , no harm is done, up to quasi-isomorphism, by
assuming c=cC , that is, C 1is integrally closed in F . Let I be a
non-zero ideal in C . Then, as before, I contains an integer and, since
C has finite p-rank for all p , we have that (/I is finite. Thus, C

is Noetherian, therefore Dedekind.

Next we show that the Beaumont-Pierce Principal Theorem, proved in [3]
for torsion free rings of finite rank, holds for the locally irreducible
torsion free reduced ring R , provided ( = c (or, more generally, if
c=0 .

Since gR is a finite dimensional algebra over @C = F , by the
Wedderburn Principal Theorem, @R = S* ® N* , where S* is a semisimple
subalgebra of @R and N* is the nil radical of @R . Let
S=8*NPR ,and N=N*NR . We show that R/S ® N is finite.

Following [3], let Sl = {x e S*Ix-#n € R for some n € N*} . It is easy to
check that S C Sl CS* = @5 and that R/Se N = Sl/S . Thus, it suffices

to prove that Sl/S is finite.

We have enough machinery at our disposal to bypass the computations

employed in [3] to establish that Sl/S is finite. Write
S* = Ml=<... XMﬁ where each Mi is a full matrix algebra over a

division algebra Di - Up to quasi-isomorphism, it is enough to consider
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the case where S € Sl C S*x=M , a matrix algebra over a division ring D .
Since Sl and S are full subrings of the simple algebra ¥ , S1 and S

are finitely generated over their centres, XK, and K respectively ([7]).

1

Thus, since QKl = @K is a field, the rings S, and S are quasi-equal

1

to free modules over Ki and K , respectively. It therefore suffices to
show that Kl/K is finite. To see this, apply Proposition 2.6 to conclude
that Kl and K are both finitely generated C-modules. Thus Kl/K is

finite and R = S ® N . Moreover, it follows that C € S , since
C=CNSeCNN and CNN=o0.

To complete the proof of Theorem 2.7, we must show that C is a
quasi-summand of S . As above, reduce to the case that C C S CS* =M,
M a full matrix algebra. Let A= HomQE(S)(QS,QS) . Then A is the

unique smallest field of definition for S (I[7]). Since multiplication by
elements of F = §C commutes with QE(R) D QE(S) , then F C A . But, by
the first part of the proof, S is finitely generated over ( , so that F
is a field of definition for S . Hence, ACF , so A= F . Thus

§= (N S)t = (FN S)t = Ct for some positive integer ¢ . Note that we

have actually established a little more than was required: namely that,

in the general case, §C = Alx... XAj , with Ai the smallest field of
definition for Mi NR,151<4.

COROLLARY 2.8. Let R be as in Theorem 2.7. Then C(R) is a maximal
E subring of R .

Proof. By Theorems 2.4 and 2.7, C is an E-ring which is a (pure)
quasi-summand of R . If B is a subring of R with B2 (C , then C
is a pure quasi-summand of B . It follows that B cannot be an E-ring,
since pure quasi-summands of an E-ring must be fully invariant ideals in
that ring ([4]), and 1 € C .

COROLLARY 2.9. Let R be a torsion-free ring of finite rank which
i8 locally irreducible. Then C(R) 18 a quasi-sumand of R .

Proof. 1In the finite rank case each F, of Lemma 2.3 is an
algebraic number field. It is well known that, in this case, C(R) = C(R) .
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3. An infinite rank example

In this section we construct an example to show that the assumption

that C = C in Theorem 2.7 cannot be removed completely.
LEMMA 3.1. There exists an infinite set of primes S = {pl.pz,...}

such that for all 1 #3 , p.

; ¥8 asquare mod P; and such that

p; 1(i+1)/2 for all < .

Proof. Let P, = 5 aand assume p,,.. have been chosen such

“Ppoy
that each pi = 1 (mod 4) and such that, for all ¢ # j , pi is a square
mod pj . Moreover, assume that pi > 1({1+1)/2 for 1 <n-1 .

The sequence 4k(p1,...,pn_1) + 1 contains an infinite number of
primes. Let pn be a prime in this sequence with pn > n(n+l)/2 . Note

that p, = 1 (mod pi) is a square mod p; for 7 <n-1 . Since also

P, z 1 (mod 4) , quadratic reciprocity applies and each p; is a square

mod pn .
Henceforth, § will denote the set of primes {pl,pz,...}
satisfying the conditions of Lemma 3.1. Let {xj,yjll < J < =} be a set

of algebraically independent elements over & . For each prime p we will

identify this set with a subset of Zp which is algebraically independent

over Zp in the following way. For each j , let cj and dj be fixed

integers. Choose a set {o_.,B_.|1 <4 <w} in Z of elements
o Bpsl L < 9 p
algebraically independent over Zp . Identify xj with cj + papj and

. with 4. + ., . Note that, for all y {2y ]l £ < o is

Y; ALY P lzjysll s <o)

algebraically independent in 2 and gx. = c. .= d. (mod pZ) . We
I o P p’ 7% %57 Pp

will eventually impose additional requirements on c.,dj .

Let K = Q[{xj,yj,/pj}] be the ring generated by the set of all
z;0y; » and /Egkpj € 8) . For each p ¢ S , apply Hensel's Lemma to

identify /pj, pj # p , with an element of ﬁp . We can combine this with
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our previous identifications of :cJ.,y b to obtain an embedding of K into

A

Q. ® Q p .
p P
We now define a rinq R by defining the localizations R for each

prime p . For p ¢ S, let

Rp=Zp[{xj,yj,/5gl 1< <=},

For €S ,1let R =KNn(Z_®Zp/p) . Then E=nNR_ . Note that 2

Pes. P p° PP P'p P
is pure in Rp for each prime p . It follows that p-height(l) = 0 in R
for each prime p .

LEMMA 3.2. The integral domain R defined above is an E-ring.
Moreover, as an abelian group R is homogenous of type equal to the type
of Z.

Proof. 1t is easy to check that, for p eSS, Rp is irreducible of
p-rank 2 and T(p) = Q[{xj'yj'/l;.; |l S j<=mp # pj e S} (refer to
Section 2). For p¢ S, Rp is a free Zp-module and T(p) = Q . Thus,
T'{R) = X =@QR . By Theorem 2.4, R is an E-ring.

To see that R 1is homogeneous of type equal to the type of Z , pick
O#ae R . Since g e K there exists a positive integer m with

ma = zgihi , where the sum is finite, g; € Z[{xj,yj | 154 <} and

hi € Z[{/p? 1 <4 <=} . Let ét € Z be g, evaluated at
T = oy = dj . Note that for pe § , ma = zé’,,h‘,,’md PR . let

b= Zéthv, € Z[{/z? |14 <o}l CR. since b is algebraic over 32 ,

there exists f(x) = f, + f1 + .-+ fnxn € Zlxl with f(b) = 0 and

- b(fl + ... + fn_lbn_l) . and the p-height of b in R

fo #0 . Then f,
is less than or equal to the p-height of fo in R for all p . fThus, in
R , type b < type fo = type Z . Since for all p € S ,ma = b (mod pR) ,

the p~height of ma in R is O for almost all pe S . For p¢ S ,
Rp is a free Zp-module. It follows that the p-height of ma in R is 0

for almost all p ¢ S . Finally, since R is p-reduced for all primes
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p . the p-height of ma in R is finite for all p . We may conclude
that type a = type ma = type Z .

EXAMPLE 3.3. 1Let R be the integral domain of 3.2. Then there is
an R—-algebra A such that
(1) A has rank 2 as an R-module.
(2) A is an E-ring.
(3) C(A) =R.

(4) C(A) 1is not a quasi-summand of 4 .

Proof. Define a multiplication on QR @ QR by

(1'1,1’2)(81,32) = (1r=1sl+1r'262,1nls2

+r231) . It is easy to check that this
product gives an associative R-algebra structure on @R & @R . Let A be
the R-subalgebra of @R ® QR generated by R ® R and
Py ) |1 <4 <=}, where 5={p ,p,,...} from above.:- For

- i i » . .
p; ¢ S, Api is the ring generated by Rpi ® Rpi and v’pt(:ci,y,b) , SO

that p’iAp. Cc Rp- ® Rp- C Ap. . Since T(R) = QR , it is immediate that
7 7 7 z

I(4d) = @R ® 0 . It is a straightforward calculation to show that

C(A) =T(A) N4 =R ® 0 . For convenience, we identify R with R @& 0
in A4 .

Recall that z; = c; (mod pR) , Y; =z dj (mod pR) for all primes p ,
where cj, dj € Z . We now show that cj’dj may be chosen so that 4 is

an E-ring. Let K1=Q[{ij|l < g <=}, R1=KlﬂR . Then Rl is a
countable pure subring of R . List all pairs (alk’blk) € Rl ® Rl, 1< k
where p-height (‘alk’blk) =0 in Rl ® Rl for all peS . Choose ey

d, € 2 so that clbll—d

1 # 0 (mod piR)) .

1°1
Let K2 = Kl [xl,yll , Rz = K2 NRE . Then R2 is a countable pure

subring of R containing Rl . List pairs

(‘azk'bzk) € (R, ® R)) - (R, ® R)) where p-height(azk,bzk) =0 in R, ®R,

for all p € S . Choose cz,d2 € Z so that ezbij - dZaij # 0 (mod p,R,)

for 1j = 11, 12 or 21.
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. . _ _ A .
Inductively define Kh Kﬁ-llzn-l’yn—ll R Rh Kn R , and list the

pairs (ank’bnk) in (R ®R) - (R _, ®R ) with p-height =0 for all
i . - .. £
p € S. Choose integers cn’dn so that cnbtg dnatg # 0 (mod ann) or
1 <7 <n,1<j<ni+tl . Note that there are n(n+l)/2 such pairs
(Z,J) . Therefore the choice of cn'dn is easy since pn was chosen
larger than n(n+l)/2 . In fact we can take cn = 1 . Then observe that,

for each pair of indices %j , there is at most one choice of dn for which

0 < dn < p,, and bij - dnaij € p,R . Since the number of index pairs is

n{n+l) /2 < pn , there exists at least one choice of dn with

bij - dnaij £ p,R for all ij .

With this choice of cj’dj , the ring A becomes an E-ring. To see
this, suppose ¢ : A - A satisfies ¢(1) = 0 . It suffices to show ¢ =0.
Since C(4) = R , ¢ is R-linear (Lemma 2.2). Let
$(0,1) = (a,b) ¢ ACQR ® QR . Then ¢(r,s) = s{a,b) for all (r,s) € 4.

Thus, ¢(ﬁ{;cﬁj,yj)) = /E;yj(a,b) €A for alll<j. Let m be a positive

integer such that ma,mb € R. Then mavggkyj,xj) = mafggkxj,yj)(o,l) € A.
Subtraction yields (O,MVEglayj-bxj)) € A . Hence, mvggkayj,bxj) € R. Let

e be the largest integer dividing ma and mb in R and write
ma = ea', mb = eb' . Choose Jj large enough so that pj > e and
(a',b') =

(aik’bik) for some 1 <7 <j,1<kz<j-i+1 . We may also

assume that the fixed elements a',b' belong to Q[{Vpr,xr,yr |r <41 .

Then /Es(mayj—mbxj) € R implies pj divides mayj—mbxj in R . Hence

pj divides a'yj—b'xj in R , and therefore divides

a‘'d.~b'e. = a.,d.-b.,c. , a contradiction to the choice of d. .
370 %G T AakiTPE %%

We have shown that A is an F-ring with C(4) =R # A . 1In
particular, C(A) cannot be a quasi-summand of A . This follows, as in the
proof of Corollary 2.8, from the fact that any pure quasi-summand of an
E-ring is a fully invariant ideal in that ring ([4]). But C(C(4) cannot be

an ideal since 1 € C(A4) .
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