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On the continued fraction algorithm

J. M. Mack

The fact that continued fractions can be described in terms of

Farey sections is used to obtain a generalised continued

fraction algorithm. Geometrically, the algorithm transfers the

continued fraction process from the real line R to an

arbitrary rational line I in if1 . Arithmetically, the

algorithm provides a sequence of simultaneous rational

approximations to a set of n real numbers 8,, ..., 6 in the

extreme case where all of the numbers are rationally dependent

on 1 and (say) 9^ . All but a finite number of best

approximations are given by the algorithm.

1. Farey sectioji and continued fractions

Farey sections have been used to study approximation problems in

complex number fields (Cassels, Ledermann and Mahler [7], see also Mahler

[5]). Recently Szekeres has exploited the connection between continued

fractions and Farey sections to obtain a multidimensional approximation

algorithm (Szekeres [6]). The present work arose out of investigations of

the behaviour of the Szekeres algorithm.

For each positive integer N , the N-th Farey section F,. consists

of the naturally ordered sequence of all reduced fractions ^ (b > o)

with b 5 N . (An integer n is regarded as T •) We use the following

properties of F., :
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The necessary and sufficient condition that the fractions %, % of

F be consecutive is that \ad-be\ = 1 and the fraction j - % is not in

i? . All terms of ?„ which ewe not already in Fj, are of the form

j—-j , where %, % are consecutive terms of Fff .

Proofs of t h e s e r e s u l t s a re given i n Hardy and Wright [Z, Ch. 3 ] .

Fractions of the form T T ^ , with -j- and -7 consecutive terms of F.. ,
b+c b d N

are called mediants.

An account of the continued fraction algorithm (giving the regular

continued fraction expansion of a real number) is also given in Hardy and

Wright [2, Chs. 10, 11], where proofs may be found for the following

results:

To every real number a , there corresponds a unique continued

fraction \aQ; a~,a2, . . . ] (a integral, an in 2 l ) positive) with

value equal to a . This fraction is infinite if a is irrational and

finite if a is rational. [in the latter case, the last integer a is

greater than 1 if n is greater than 0 .) If

p = a . q = 1 .
r O 0 0

Pi = a l a o + al ' *i = al >

and

Pk = akPk-l + Pk-2
(k 2 2) ,

qk ~ akqk-l + qk-2

then

^ = [a0; a r . . . , a j (fc > 0) ,

and either
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pn
-T = a = la0->

 a
x> • • •» « J f°v some n >

or

P.
lim — = a .

Finally,

(-Dk [qka-pk) 2 0 (fe > 0) .

The integers a, occurring in the algorithm are called partial

Pv
quotients and the fractions — the convergents to a .

qk

Theorem 2 implies that the q, are strictly increasing for k 2; 1 ,

Pk-1 Pk
and that and — are consecutive terms in F for k > 1 . A

description of the continued fraction algorithm in terms of iterated

mediants of fractions in F is contained in Hurwitz [3] and is given in

Pv-2 pk-l
a different notation by Szekeres in [6]. Briefly, if and

qk-2 qk-l

(fe 2 2) are successive convergents to a , and if a lies strictly

between them, then form the successive mediants ("intermediate fractions")

If r, is the greatest value of r such that a lies in the closed

rPfc_l+Pfc_2 Pk-1
interval with endpoints and , then r, = a, and

V q + q q k k

Pk
rkqk-l+qk-2
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2. Extension to a rational line in Rn

We let [x , ..., x J denote the usual coordinate representation of

a point X in R (n i 2) . X is a rational point if each x. is

rational. Every rational point X in Rn has its coordinates x.

i
uniquely expressible in the form x. = — with q 2 1 and p , . . . , p ,

7* Cf JL Yl

V,

<j

q relatively prime integers, and when the x. are expressed in this

canonical form, we call q = q{x) the denominator of the rational point

X .

A line I in JT contains either no rational points, one rational

point, or two (and so an infinity of) rational points. I is called a

rational line if it contains two distinct rational points.

Suppose now that I is a fixed rational line in R . The rational

points on I can be determined explicitly in terms of any system of

linear equations with rational coefficients used to define I . It

suffices for our purpose to establish

THEOREM 1. If X is a rational point on I , then q[X) is

divisible by a fixed positive integer depending only on I .

(b b \
-j-, . .. , -p on I of minimal

b.
denominator q{B) = d . The t r a n s l a t i o n y . = x. - —§- (j = 1 , . . . , n)

o J d

moves the origin to B , and I becomes a line through the origin which

contains other rational points (since the set of rational points on I is

preserved by the translation). Hence by homogeneity I contains points

whose ^-coordinates are integers, and the set of such points forms a

lattice on I . Let T = (t,, ..., t ) be a primitive point of this

lattice, so that t t are relatively prime integers. The

correspondence
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between I and i?1 is a bijection which preserves rational points, as

does the correspondence

b .+xt .
(2.1) x. = '? , '? (j = 1, . .., n) .

Under (2.1) we see that a rational number x with denominator q

corresponds to a rational point X on I with denominator dq , and

conversely. This establishes the result.

The relation (2.1) enables us to order points on I by using the

natural ordering of their images on i?1 . For each positive integer N ,

we now define the Farey section F on I to be the ordered set of all

rational points X on I whose denominators q{X) satisfy q(X) £ Nd .

Then we have proved

THEOREM 2. F^ is the image of F under the mapping (2.1). X, X'

are consecutive points of F.. if and only if the corresponding numbers

x, x' are consecutive terms of F . This is so if and only if

\q{X)p'-q(Xl)p.\ = d\t.\ (j = 1 n)
d J O

and

q(X) + q(X') > Nd .

When X and X' are consecutive points of some F.. , we shall write

X © X' for their mediant, that is for the point on I corresponding

under (2.1) to the mediant of x and x' on R . If r > 1 is an

integer, rX © X' will denote the iterated mediant X © ({r-l)X © X') .

We now construct on a given rational line I in FT an analogue of

the continued fraction algorithm on R . Having first determined the

minimal denominator d and selected a point B on I with q(B) = d ,

we then determine the integers t . uniquely by specifying that the first
3

non-zero integer in the sequence t.,...,t be positive. Inserting

these values into (2.1), we define the point B, for each integer k as

,b b, -i
the image of k under (2.1). Thus if B, = — j - , ..., — T H ,

K y CL d J

https://doi.org/10.1017/S0004972700046116 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046116


418 J .M. Mack

Let A be a given point of I . We define a (possibly finite)

sequence of points A (m i 0) on I and a corresponding sequence a

of integers as follows:

(i) if A = B, for some k , then A = B. = A and a = k .
K O K O

Otherwise, 4 is the unique S, for which A lies between
0 K.

Bk a n d B*c+i ' a n d % = k ;

( i i) if X = 4 , the process stops. If A l ies strictly between

Bk ® Bk+1 a n d f̂e+1 ' p u t al = 1 a n d ^1 = Bk+1 ' o'tllerwise

let aj i 2 be the largest integer r such that A lies

between B, and (r-l)B, © S, . , and put A equal to

( i i i ) i f A o , 4 , (m > 2) have been defined, and A + A . ,
TU—d. Til— X TTl—j-

then let a be the largest integer r such that /4 lies

between 4^ and ^ © ^ , and put

If the coordinates of A are , . . . , -22M , where <? = q (A ) ,

OJ O 3 ' ^o '

then an easy calculation shows that for j = 1, ..., n ,

(2.2)

Ptf = aiPoj + *j

and for m 2 2 ,

( 2 " 3 ) Pmj" avPm-±,3 + Pm-2,3 '

Thus with each point A on Z- is associated a sequence {4 } of

points of I and a sequence {a } of integers. Conversely, given I ,

B , and the t. , a given sequence {a , a.., ...} of integers a
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satisfying a > 1 for m i l clearly determines a corresponding

sequence of points A on I . Let a, a respectively correspond to

points A, Am under the mapping (2.1).

THEOREM 3. (i) Given a point A on I , let {A } and {a } be

mm

the sequences constructed above. Then the integers a are precisely the

digits in the continued fraction expansion of a :

and

am = & V V •••' a J {m-0) •
(ii) Given a sequence {a , a., ...} of integers a satisfying

a i l for m i 1 , the corresponding points A on I converge to that

point A for which a = [a ; a. , . . . ] .

The proof consists simply of interpreting the construction of the

points A in terms of operations on the corresponding real numbers a ,

and using the properties of the continued fraction algorithm quoted in §1.

The representation of points A on a rational line I via sequences

{a } will be called the generalised continued fraction algorithm for I ,

and we write the expansion of A in the form

A = K; v v •••] •
The preceding discussion shows that this algorithm requires two

choices to be made - a point of minimal denominator on Z must be selected

as BQ , and a direction along I is chosen by specifying a choice of

signs for the integers t , ..., t . It is clear that a new choice for

B alters the first digit a in the expansion of A , but leaves the

others unchanged. Choosing opposite signs for the set t , ..., t

produces the following easily verified alterations:

(a) an expansion of the form [k; 1, a2> •••]
 i s changed to
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1 ; a2> a3> • • »J >

(b) an expansion of the form [k; a:, a2, • • • ] (a\ i. 2) is changed

to [-(fc+1); 1, ai-1, a2, .. •] •

Geometrically, a change of origin leaves the sequence of points {A }

on I unaltered, while a change of direction inserts or removes one point

initially and relabels the others.

3. Properties of the algorithm

Suppose now that we have selected a base point B = \~s~, . • •, ~r

and a direction on the rational line 1 , so that t. t are known.

If X = (x^, ..., x ) is a point of I , let x be the unique real

number determined from (2.1), and let

x = [a0; alf ...]

be the regular continued fraction expansion of x . If 5 is the m-th

convergent to x , the points X corresponding to the 5 under (2.1)

will be called the convergents to X on I . The coordinates

— — of the Xm can be calculated using (2.2) and (2.3).

Properties of the ordinary continued fraction algorithm can now be

easily carried over. For example, Borel's theorem becomes:-

THEOREM 4. If X is not a rational point of I , then at least one

of every three consecutive convergents X to X satisfies

= — 4 - U = 1 n) .

1̂ 5-1Choosing X as the point on I corresponding to x = — ^ — shows

that Theorem h is best possible.

Similarly, periodicity of the generalised continued fraction

expansion of X is a necessary and sufficient condition that the
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coordinates of X lie in the same quadratic field (and that at least one

coordinate is irrational).

The fact that the convergents £ to x give all the best

approximations to x implies that the convergents X to X give all

the best approximations to X among points on the line I , in the sense

(Pi Pn)that if Y = — , ..., — is a rational point on I with

a(Y) = q £ qm = q{xj , then

max lax .-p. I > max la x .-p . I .
3 3 ° 3 m ° ^

It follows from a simple general result of the author (Mack [4]) that

the X necessarily give all best approximations to X with denominators

greater than some constant depending only on Z .

The condition that a set of n real numbers 9. , ... , 9 be the
1 n

coordinates of a point P lying on a rational line X in w is

equivalent to the numbers 0 8 being rationally dependent on 1

and at most one of the 9 . . If 9 , ..., 9 are all rational, then there
3 i. Yi

are an infinity of rational lines I passing through P , and there is a

generalised algorithm for each line. Those lines I for which <&nax|t.|

is minimal are determined, and the algorithm for one of these lines yields

good rational approximations to P . (it is possible to select a line with

d = 1 , but then the line with max|t.| minimal need be neither the line
3

joining P to the origin, nor the line Joining P to the nearest point

with integer coordinates.) When one of the 9. is irrational, the
3

rational line I is uniquely determined and the generalised algorithm for

I can be applied to the point P .

We close with a simple example of the algorithm. The point

X = p 2 ! — , — ^ lies on the rational line 2xl + 3x2 = 1 in R2 , for

which d = 1 . The lattice of integer points is given by

X] = -1 + 3M , x2 = 1 - 2 M {n £ Z) ,
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so we may take as base point B = (-1, l) , while tj = 3 , tx = -2

The number a; corresponding to X is

3-/2

The continued fraction expansion of x is [0; 2, 1, 1, 10, 1, 1, lj

(the bar denotes the periodic part) and the first few convergents are

ô " u ' h 2 ' 2̂ 3 ' 3 5 ' H 53 '

giving as convergents J to X the points
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