
J. Functional Programming 3 (3): 347-363, July 1993 © 1993 Cambridge University Press 347

Correctness of binding-time analysis

JENS PALSBERG
Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

{e-mail :palsberg@daimi.aau.dk)

Abstract

A binding-time analysis is correct if it always produces consistent binding-time information.
Consistency prevents partial evaluators from 'going wrong'. A sufficient and decidable condi-
tion for consistency, called well-annotatedness, was first presented by Gomard and Jones. In
this paper we prove that a weaker condition implies consistency. Our condition is decidable,
subsumes the one of Gomard and Jones, and was first studied by Schwartzbach and the
present author. Our result implies the correctness of the binding-time analysis of Mogensen,
and it indicates the correctness of the core of the binding-time analyses of Bondorf and
Consel. We also prove that all partial evaluators will on termination have eliminated all
'eliminable'-marked parts of an input which satisfies our condition. This generalizes a result
of Gomard. Our development is for the pure 2-calculus with explicit binding-time annotations.

Capsule review

Palsberg's paper defines a general notion of top-down partial evaluator which subsumes most
published partial evaluators when restricted to the pure lambda calculus. A new notion of
well-annotatedness is introduced, weaker than that of Gomard and Jones.

Modularizing a correctness proof of binding-time analysis is a nontrivial task that involves
finding an interface between binding-time information and the subsequent specialization
process.

The paper gives a well structured account of correctness of binding-time analysis for
the pure A-calculus via a careful decomposition of the problem. In essence the correctness
requirement is that a partial evaluator should never 'go wrong' when blindly following
binding-time information. The decomposition is as follows:

(1) The binding-time analysis is viewed as realizing a decidable well-annotatedness condition
for A-terms. (2) Well-annotatedness implies a consistency condition, relating to reductions of
static redexes. (3) A certain family of partial evaluators which follow a simple top-down
reduction strategy cannot 'go wrong' if their input is consistent.

The modularity of this argument not only simplifies the structure of the proof, but allows
for some independent variation in the binding-time analysis and the partial evaluation phases,
and facilitates comparisons (both formal and informal) with existing approaches.

1 Introduction

A partial evaluator is an implementation of Kleene's S™ theorem. When given a
program and some of its expected input, a partial evaluator produces a so-called

14 FPR3

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

348 Jens Palsberg

residual program. The residual program will, when given the remaining input,
produce the same result as would have the original program when given all of the
input. The challenge for a partial evaluator is to produce residual programs that are
significantly faster than the input programs. Partial evaluators can for example be
used to generate compilers from interpreters (Bondorf, 1991; Gomard and Jones,
1991).

Most partial evaluators use a binding-time analysis in a pre-processing phase. A
binding-time analysis annotates a program by marking as 'eliminable' those parts
which may be evaluated during partial evaluation and by marking remaining parts as
'residual'. Partial evaluation then proceeds by attempting to evaluate the eliminable
parts.

A binding-time analysis is correct if it always produces consistent binding-time
information. Consistency prevents partial evaluators from 'going wrong'. A partial
evaluator 'goes wrong' if it commits a so-called 'projection error' (Gomard and
Jones, 1991), that is, if it trusts a part of the program to be of a particular form, of
which it is not.

A sufficient and decidable condition for consistency, called well-annotatedness, was
first presented by Gomard and Jones (1991). They proved that a particular partial
evaluator cannot 'go wrong' when given a well-annotated program. Gomard also
presented a binding-time analysis that always produces well-annotated programs
(Gomard 1990, 1991).

In this paper we prove that a weaker condition than that of Gomard and Jones
implies consistency. Our condition is decidable, subsumes the one of Gomard and
Jones, and was first studied by Schwartzbach and the present author (Palsberg and
Schwartzbach, 1992). Our result implies the correctness of the binding-time analysis
of Mogensen (1992), and it indicates the correctness of the core of the binding-time
analyses of Bondorf (1991) and Consel (1990). By 'the core' of an analysis we mean
its restriction to the A-calculus.

Finally, we prove that all partial evaluators will on termination have eliminated all
'eliminable'-marked parts of an input which satisfies our condition. This generalizes a
result of Gomard who proved that a particular partial evaluator will on termination
have eliminated all 'eliminable'-marked parts of a well-annotated program.

Our consistency criterion is true of the output of radically different binding-time
analyses. The binding-time analysis of Gomard and Jones is based on so-called
partial type inference. The analysis of Mogensen extends it with the use of recursive
types. The binding-time analyses of Bondorf and Consel are based on an abstract
interpretation called closure analysis.

Our results demonstrate that a partial evaluation strategy can be changed without
affecting the correctness of the chosen binding-time analysis. We focus on a novel
family of so-called top-down partial evaluators and prove that if such one is given a
consistent input, then it cannot 'go wrong'.

Our development is for the pure A-calculus with explicit binding-time annotations.
This allows us to concentrate on the higher-order aspects of binding-time analysis.

In the following section we define the pure A-calculus with explicit binding-time
annotations, the so-called 2-level A-calculus. In Section 3 we introduce the key

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 349

concept of consistent 2-level A-terms, and we present the family of top-down partial
evaluators for the 2-level A-calculus. In Section 4 we recall the consistency condition
studied by Schwartzbach and the present author. In Section 5 we state our results,
and in Section 6 we prove the required lemmas. Finally, in Section 7 we conclude.

2 The 2-level /-calculus

As a basis for discussing the input to binding-time analyses we start by recalling the
pure yl-calculus (Barendregt, 1981).

Definition 1
The language of X-terms is defined by the grammar:

E ::= x (variable)
| Xx.E (abstraction)
| E\ @ Ei (application)

An occurrence of (Xx.E) @ E' is called a redex. The semantics is as usual given by the
rewriting rule scheme:

(Xx.E) 0 £ ' -> E[E'/x] (beta-reduction)

Here, E[E'/x] denotes the term E with E' substituted for free occurrences of x (after
renaming bound variables if necessary). We write Es —•* ET to denote that ET has
been obtained from Es by 0 or more beta-reductions. A term without redexes is said to
be in normal form. We use the convention that application associates to the left. •

To simplify matters, we will assume that the input to a binding-time analysis is
just one A-term that encodes both the term to be analyzed and the known input.
For example, suppose we want to analyze the term E which takes its input through
the free variables x and y. Suppose also that the value of x is known to be E' and
that the value of y is unknown. We will then supply the analysis with the term
(Xx.E) @ £'. Notice that y is free also in this term. Thus, free variables henceforth
correspond to unknown input.

The output of a binding-time analysis can be presented as an annotated version of
the analyzed term. In the annotated term, all residual abstractions and applications
are underlined. The language of annotated terms is usually called a 2-level A-calculus
(Nielson and Nielson, 1988) and is denned as follows.

Definition 2

The language of 2-level X-terms is defined by the grammar:

E ::= x (variable)
| Xx.E (static abstraction)
| E\ ®i £2 (static application)
I Xx.E (dynamic abstraction)
I £1 ®i £2 (dynamic application)

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

350 Jens Palsberg

Notice that we require the application symbols to be indexed. The role of the indexes
will be explained later. The semantics of 2-level X-terms is given by the four rewriting
rule schemes:

(Xx.E)^E' ->• £[£'/*]

(Xx.E)®iE' - • E[E'/x]

(Ax.fi) ©,£' -> E[E'/x]

(lx.E)®iE' -> E[E'/x]

Thus, the semantics of 2-level X-terms is essentially the same as that of X-terms.
An occurrence of (Xx.E) @,- E' is called a static redex. An occurrence of (Xx.E) Q,- E'

is called a dynamic redex. Occurrences of (Xx.E) @,- E' and (Xx.E) <§,• E' are called
confused redexes. A term without static redexes is in static normal form. / / there is
a reduction sequence from E to E' and £ ' is in static normal form, then E is said to
have the static normal form E'.

We write E —*-s E' to denote that E' has been obtained from E by reducing a static
redex. Such a reduction is called a static reduction. We write E$ —**s Ej to denote that
Ef has been obtained from E$ by 0 or more static reductions. Such a reduction sequence
is called a static reduction sequence. If there is a static reduction sequence from E to
E' and E' is in static normal form, then E is said to have the static reduction normal
form £'. Notice that if a term has a static reduction normal form, then it also has a
static normal form. The opposite implication is false: if Q. = (Xa.a ®\ a) @2 (Xb.b @3 b),
then (Xx.y) @4 Q has a static normal form but no static reduction normal form.

The language of 2-level X-terms is partially ordered by C as follows. Given 2-level
X-terms E and £', E Q E' if and only if they are equal except for underlinings and E'
has the same and possibly more underlinings than E. For example, ((Xx.x @i y) @2 z) Q
((Xx.x @i y) @2 z). Notice that C. admits greatest lower bounds for two terms that are
equal except for underlinings. •

Intuitively, 'static' means 'statically known', and 'dynamic' means 'not statically
known'. Thus, the static entities are the eliminable parts, and the dynamic entities
are the residual parts.

Definition 3
A partial evaluator for the 2-level X-calculus implements a partial function from 2-level
X-terms to 2-level X-terms by doing repeated reductions. If it is defined on an argument,
then it yields a static normal form of the argument. D

If a partial evaluator is defined on an argument E, then we will say that the
partial evaluation of £ terminates. Notice that a partial evaluator may perform an
arbitrary reduction sequence, as long as it gets rid of the static redexes. Most partial
evaluators, however, use binding-time information t o perform a sequence of only
static reductions. The following observation expresses a Church-Rosser property of
static reductions.

Fact 4
A 2-level A-term has at most one static reduction normal form.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 351

Proof
Consider the following translation F of 2-level A-terms into A-terms.

F(x)

F(Xx.E)

F(£, 0, £2)

F(Xx.E)

F(£] ®i E2)

= X

= Xx.F(E)

= F(El)®F(E2)

= y*®F(E)

= (zi@F(El))®F(E2)

Here yx and z,- are disjoint families of fresh variables. They may be thought of
as functions that emit code. Clearly, any 2-level A-term E has at most one static
reduction normal form if and only if F(E) has at most one normal form. The result
then follows from the Church-Rosser theorem for A-terms. •

Thus, if two partial evaluations using only static reductions both yield static
normal forms, then these static normal forms are equal. Notice that, in general, two
partial evaluations can yield different static normal forms.

3 Consistency of 2-level 1-terms

We now define the key concept of consistent 2-level A-terms. Our definition of
consistency is independent of particular partial evaluators.

Definition 5
For a 2-level X-term E, an application is said to be enabled in E if it is a static appli-
cation which is not a subterm of any static abstraction in E, and whose function part
is not a static application. A 2-level X-term is well-formed if all its enabled applica-
tions are static redexes. A 2-level X-term is consistent if every static reduction sequence
yields a well-formed 2-level X-term. •

For example, ((Xx.x ®x y) ®2 z) is not well-formed. As another example, the term
((Xx.x ®i y) @2 z) is well-formed and consistent, since ((Xx.x ®\ y) ®2 z) —>s z @i y
and z ®i y is well-formed and in static normal form. Finally, ((Xx.x ®\ y) ®2 z) is
well-formed but not consistent, since ((Xx.x @i y) ®2 z) —>s z ®\ y and z @\ y is not
well-formed.

Intuitively, an enabled application in a 2-level A-term is located near the root
of the syntax-tree for £ ; the application is 'above' every static abstraction. The
intuition behind why the function part of an enabled application cannot be a static
application is that we want the function part of an enabled application to be 'fully'
evaluated. Notice that there may be more than one enabled application in a 2-level
A-term. Consider for example (x ®\ y) @2 ((Xz.z @3 z) @4 y), where both @i and @4 are
enabled, but @2 and @3 are not.

Fact 6
Consistency of 2-level A-terms is preserved by static reduction.

Proof
Suppose £ is a consistent 2-level 2-term. Suppose also that a static reduction of
E yields £'. Consider then any static reduction sequence starting with £'. This

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

352 Jens Palsberg

sequence can be prefixed by the static reduction from £ to £', yielding a static
reduction sequence starting with £. Since E is consistent, the reduction sequence
from E yields a well-formed 2-level A-term. •

We will now define a novel family of so-called top-down partial evaluators for the
2-level ^-calculus. In practice it is too inefficient to search for a static redex before
every reduction. Instead, most partial evaluators trust that all enabled applications
are static redexes. This will not 'go wrong' if the input is consistent.

Definition 7
A top-down partial evaluator for the 2-level X-calculus attempts only the reduction of
enabled applications. •

The set of consistent 2-level A-terms yields an appropriate interface between a
binding-time analysis and a top-down partial evaluator, as follows.

Fact 8
If a top-down partial evaluator is applied to a consistent 2-level A-term, then it will
not attempt to apply other than a static abstraction to an argument.

Proof

By induction on the length of the reduction sequence. •

We can then summarize the idea of a correct binding-time analysis.

Definition 9

A binding-time analysis of X-terms is a function mapping X-terms to 2-level X-terms
such that the output is an annotated version of the input. It is correct if it always
produces consistent 2-level X-terms. D

For example, the trivial binding-time analysis maps any A-term to the same term
where all abstractions and applications are underlined. It is clearly correct, since
each output contains no static applications, hence no enabled applications.

Most published partial evaluators are top-down. For example, the partial evaluator
studied by Gomard and Jones (1991) can be formulated in the following fashion:

T(x) = x

T((Xx.E)®iE2) = T(E[E2/x\)

T((£, ®} E\) @,,£2) = T(T(E, «,-£',)«, £2)

T(Xx.E) = Xx.T(E)

T(Ei®iE2) = T(£ ,)a - r (£ 2)

The partial function T performs the partial evaluation by attempting to reduce
enabled applications. If the calculation of T(E) gets into a situation where T
occurs but no rule applies then T(E) is undefined. The cases where no rule applies
are T(Xx.E), T(x <9,- E), T((Xx.E) <9,< E), and T((£, @j E2) «,• £). Furthermore, if the
calculation of T{E) diverges, then T(E) is undefined. It is easy to prove by induction
on the length of the calculation of T(E) that if T(£) is defined, then T(£) is a static
normal form of £.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 353

Gomard (1991) proved (using a denotational description of T) that if a 2-level
A-term E is 'well-annotated' and if T(E) is defined, then all abstractions and
applications in T(£) are dynamic.

In this paper we generalize Gomard's result. We prove that if a 2-level A-term
satisfies a weaker condition than Gomard and Jones' well-annotatedness, then all
abstractions and applications in every static normal form are dynamic. The weaker
condition was first studied by Schwartzbach and the present author (Palsberg and
Schwartzbach, 1992); we will call it Palsberg/Schwartzbach well-annotatedness. We
thus prove that all partial evaluators will on termination have eliminated all static
parts of a Palsberg/Schwartzbach well-annotated input. This result can be illustrated
as follows:

Gomard
Gomard/Jones
well-annotatedness

If T{E) is defined, then
all entities in T(E) are dynamic

\

Fact 20

Palsberg/Schwartzbach
well-annotatedness

Theorem 28

\
Immediate

All entities in every
static normal form are dynamic

We call our consistency condition 'well-annotatedness', although this word has
already been used by Gomard and Jones. We believe that our terminology makes
sense because all 2-level 2-terms that are well-annotated according to Gomard and
Jones' definition will also be well-annotated according to our definition.

Gomard (1991) also proved that when given a well-annotated input, the above
partial evaluator will not attempt to apply other than a static abstraction to an
argument.

We also generalize that result by proving that Palsberg/Schwartzbach well-anno-
tatedness implies consistency. This result can be illustrated as follows:

Gomard/Jones
well-annotatedness

Gomard
^ T cannot go wrong

\j
Fact 20

Palsberg/Schwartzbach
well-annotatedness

\
Theorem 26

Consistency
Fact 8

Immediate

A top-down partial evaluator
cannot go wrong

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

354 Jens Palsberg

4 Well-annotatedness of 2-level A-terms

We will now define the Palsberg/Schwartzbach well-annotatedness condition on
2-level A-terms. The condition is defined using constraint systems. For each 2-level
A-term E we will define a constraint system WA(E). Then £ is well-annotated if and
only if WA(E) is solvable. The symbol WA abbreviates 'well-annotated'.

Palsberg/Schwartzbach well-annotatedness is defined to capture the outputs of
the binding-time analyses of Bondorf (1991) and Consel (1990), when restricted
to the A-calculus. We have not given a proof of this connection, however. These
analyses are based on an abstract interpretation called closure analysis (Sestoft,
1989; Bondorf, 1991) (also called control flow analysis by Jones (1981) and Shivers
(1991)). The closures of a term are simply the subterms corresponding to lambda
abstractions. A closure analysis approximates for every subterm the set of possible
closures to which it may evaluate (Jones, 1981; Sestoft, 1989; Bondorf, 1991; Shivers,
1991).

Bondorf used his analysis in the partial evaluator Similix, and Consel used his
in the partial evaluator Schism. Bondorf/Consel's binding-time analysis may be
understood as a closure analysis that in addition to closures also incorporates a
special value Dyn. The intuition behind the constant Dyn is that a term with this
binding time has unknown value; Dyn abbreviates Dynamic. Our constraint systems
combine a closure analysis with the Dyn binding time.

Before defining the IVA(E) constraint systems, we first introduce a set of type
variables, a set of binding-time values, and an auxiliary family of constraint systems.
As explained later, type variables range over the set of binding-time values. Thus,
it might better to use the phrase 'binding-time variable', rather than 'type variable'.
We prefer 'type variable' because it is shorter and because a type might in general
be understood as a property of a program part, for example a binding time value.

(The definition of the consistency criterion that was given by Palsberg and
Schwartzbach (1992) is slightly different but equivalent to the one given here;
the difference helps simplifying our proofs.)

Definition 10
A type variable is of one of the forms Qx]], p.*]), II@i]]. HA*]], and H®,-]. Each 2-level
X-term is assigned a type variable by the function var, defined as follows:

var(.x) = [xj
var(Ax.E) = p.x]]
var(£, 0, £2) =
var(Ax.E) = [[Ax
var(£, «,- £2) =

For each 2-level l-term E we define Varset(£) to be the set of type variables assigned
to subterms of E including E itself:

Varset(£) = {var(£') | £' is a subterm or a bound variable of E (or both) }

Notice that Varset(E) is finite for all E. •

Notice that a type variable may be associated with more than one 2-level A-term.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 355

Notice also that the type variable assigned to a 2-level 2-term is determined from the
root of the syntax-tree for that term. Finally, notice that different variables of the
same name are assigned the same type variable. The key property of the definition
of var is expressed by the following observation.

Fact 11
If £ ->' £', then Varset(£) 2 Varset(E').

Before partial evaluation begins, we can obtain by appropriate renamings that
all bound variables and application indexes are distinct. However, abstractions and
applications may be copied during reduction. The key role of the application indexes
is to maintain some distinction between the applications while guaranteeing that the
Varset is decreasing during reduction.

Definition 12
Type variables range over the set D of binding-time values. The set D consists of the
value Dyn and all finite subsets of LAMBDA, LAMBDA is an infinite set of so-called
'lambda tokens', i.e. symbols of the form Xx. The set D is partially ordered by <, as

follows:

1. Dyn < Dyn; and
2. if d and d' are sets and d <= d', then d < d'.

Notice that D is not a lattice, since Dyn is incomparable to all other values. •

We will now introduce an auxiliary family of constraint systems. They will all be
(equivalent to) finite sets of Horn clauses over inequalities of the form d < d', where
d and d' are either type variables or elements of D. A solution of a constraint system
assigns an element of D to each type variable such that all constraints are satisfied.

Convention 13
To express as a constraint that a type variable v must assume a set (not Dyn) in any
solution, we will write the constraint v > 0. This works since all sets are comparable
to the empty set while Dyn is not.

Definition 14
Let EQ be a 2-level X-term. We define a constraint system CEO{E) for every subterm E
of EQ as follows. Let CEO{E) be the collection of constraints for every subterm of E,
generated from the syntax as follows.

Phrase: Basic constraints:

Xx.E Pxfl > {Xx}
Ei @, E2 var(£i) > 0
Xx.E U*l = W = var(£) = Dyn
£, a,- £2 var(£i) = var(£2) = [a,-] = Dyn

Phrase: Connecting constraints:

@, Ei For every Ax.£ in £o,
if {Xx} < var(£,) then var(£2) < Ex] A [a,-]] > var(£)

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

356 Jens Palsberg

The set of type variables used in CEO(E) is a subset o/Varset(£). (Free variables need
not be mentioned in any constraint). •

Fact 15
If CEO(E) has solution L and E' is a subterm of E, then CEO(E') has solution L.

Proof
Immediate, since CEO(E') is a subset of CEo(E). •

Fact 76
If CEO(E) has solution L, then no redex in E is confused.

Proof
A redex is confused if it is of either of the forms (Xx.E) S, E' and {Xx.E) @, £'. In
the first case, we get both L P x J > {kx} and Lp.x]] = Dyn, a contradiction. In the
second case, we get both LyjcJ = Dyn and L|[Ax]] > 0, also a contradiction. •

The constraint system in effect combines a closure analysis with a binding-time
analysis. As a conceptual aid, the constraints of CE0 (E) are grouped into basic and
connecting constraints. The connecting constraints reflect the relationship between
formal and actual arguments and results. The condition {Xx} < var(£i) states that
the two guarded inequalities are relevant only if a closure denoted by Xx is a
possible result of E\. Note that Dyn is not a possible result of E\ because of the
basic constraint v a r ^) > 0.

Definition 17
Let £o be a 2-level X-term. We define the constraint system WA(Eo) to be the union of
CEO(£O) and the following constraints:

• For all free variables x of £o.' the constraint flxfl = Dyn; and

• The constraint var(£o) = Dyn.

The set of type variables used in WA(EQ) is Varset(£). •

Fact 18
If WA(Eo) has solution L, then C£0(£o) has solution L.

Proof
Immediate, since CE0(£O) is a subset of WA(EQ). •

The extra constraints in WA(EQ) of the form [[JCJ = Dyn reflect that the free
variables of £o correspond to unknown input. The extra constraint var(£o) = Dyn
reflects that a partial evaluator is supposed to produce a residual program.

We now define the key concept of well-annotated 2-level A-terms.

Definition 19
A 2-level X-term E is well-annotated if and only if WA(E) is solvable. •

The following observation justifies our use of the word 'well-annotatedness' for
our consistency condition.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 357

Fact 20
If a 2-level A-term is well-annotated according to Gomard and Jones' definition,
then so is it according to ours.

Proof
See Palsberg and Schwartzbach (1992). •

Strong static normalization means that every static reduction sequence is finite.
Well-annotatedness does not-, imply strong static normalization, as expressed by the
following observation.

Fact 21
Well-annotated 2-level A-terms may yield infinite static reduction sequences.

Proof

Let Q = (la.a ®i a) @2 (Afo.6 @3ib). Then, (Ax.y) <34 Q is well-annotated. •

The set of annotated versions of a /l-term is partially ordered by C. For every
A-term, this set has a least well-annotated element, as expressed by the following
observation.

Fact 22
For all A-terms, there is a C-least well-annotated version.

Proof
See Palsberg and Schwartzbach (1992). •

Mogensen's binding-time analysis produces 2-level A-terms that are what we
here will call Mogensen well-annotated. This notion of well-annotatedness arises by
extending the Gomard/Jones approach with recursive types. It follows from Palsberg
and Schwartzbach (1992) that if a 2-level A-term is Mogensen well-annotated, then
it is also Palsberg/Schwartzbach well-annotated.

To prove the correctness of the binding-time analysis of Mogensen and the core
of the binding-time analysis of Gomard, we need to show that well-annotatedness
implies consistency. This will also indicate the correctness of the core of the binding-
time analyses of Bondorf and Consel, since we believe (but have not proved) that
these analyses produce the C-least well-annotated version of a A-term.

5 The correctness theorems

We will now state the two promised theorems about our consistency condition.
First we need three lemmas which will be proved in the following section. In the
statement of the lemmas, we assume that L assigns an element of D to each variable
in Varset(Eo), where Eo is a 2-level A-term.

The first lemma expresses that in certain 2-level A-terms, all abstractions and
applications are dynamic.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

358 Jens Palsberg

Lemma 23
Suppose £ is in static normal form, that CEO(E) has solution L, and that all free
variables x in E has LQx]] = Dyn. If L(var(£)) = Dyn, then all abstractions and
applications in £ are dynamic.

The second lemma expresses a subject-reduction property of reductions.

Lemma 24

If CEO{ES) has solution L and E$ -* ET, then CEO(ET) has solution L and
L(var(£s)) > L(var(£T)).

The third lemma is a substitution lemma which is used in the proof of lemma 24.

Lemma 25
Suppose CEo{E),CE0(U\),...,CE0(Un) all have solution L and that the free variables
of £ are among xi,...,xn. If L(var(C/,)) < LQxJ, then CEO(£[[/,/X,]) has solution L
and L(var(£)) > L(var(£ [{/,/*,])).

The two correctness theorems can then be stated and proved as follows.

Theorem 26

A well-annotated 2-level A-term is consistent.

Proof
Suppose EQ is a well-annotated 2-level A-term, and that Eo —•* £. Then WA(Eo)
is solvable, so suppose it has solution L. By fact 18, also C£0(£o) has solution L.
By lemma 24 and an induction on the length of the reduction sequence, CEO(E)

has solution L and L(var(£)) = Dyn. Since free variables cannot be created during
beta-reduction, we also get that all free variables x in £ has LQx]] = Dyn.

We need to show that £ is well-formed, so let E\ @, £2 be any enabled application
in £. Then E\ 0,- £2 is not a subterm of any static abstraction in £, and E\ is not a
static application. It is sufficient to show that E\ is a static abstraction.

Suppose for a contradiction that E\ is either a variable, a dynamic abstraction, or
a dynamic application. In the last two cases we have L(var(£i)) = Dyn, contradicting
L(var(£i)) > 0. Consider then the case where E\ is a variable. Since E\ is not a
proper subterm of any static abstraction in £, then E\ is either free in £ or it is bound
in a dynamic abstraction. Hence, L(var(£i)) = Dyn, contradicting L(var(£i)) > 0.

•
Recall that by 'the core' of an analysis we mean its restriction to the A-calculus.

Corollary 27
The core of the binding-time analysis of Gomard (1990) and the binding-time
analysis of Mogensen (1992) are correct.

Proof
Both produce well-annotated 2-level A-terms (Palsberg and Schwartzbach, 1992).
The conclusion then follows from Theorem 26 and Definition 9. •

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 359

Theorem 28
If a 2-level A-term is well-annotated, then all abstractions and applications in every
static normal form are dynamic.

Proof
Suppose £o is a well-annotated 2-level A-term. Suppose also that £o has static
normal form £. Then WA(E0) is solvable, so suppose it has solution L. By fact 18,
also CE0 (£O) has solution L. By Lemma 24 and an induction on the length of the
reduction sequence, C£o(£) has solution L and L(var(£)) = Dyn. Since free variables
cannot be created during beta-reduction, we also get that all free variables x in £
has Lflx]] = Dyn. By Lemma 23, all abstractions and applications in £ are dynamic.

•

6 The Proofs

Throughout this section, we assume that L assigns an element of D to each variable
in Varset(£o). We will drop the subscript in CEO(E) and simply write C(£). We will
repeat the statement of the three lemmas (omitting subscripts).

Lemma 23 (restated) Suppose £ is in static normal form, that C(£) has solution L,
and that all free variables x in £ has LQXD = Dyn. If L(var(£)) = Dyn, then all
abstractions and applications in £ are dynamic.

Proof
The proof has two parts: first we prove that all applications are dynamic and then
we prove that all abstractions are dynamic.

For the first part of the proof, suppose for a contradiction that static applications
do occur in £. We can then choose a subterm of £ of the form E\ @, £2 so that
it is not a subterm of any static abstraction of £ and so that £1 is not a static
application. (The existence of £1 <3, £2 is easily proved by induction on the structure
of £). It is now sufficient to show that there are no possible forms of £1. There are
four cases.

First, £1 cannot be a static abstraction, since £ is in static normal form.
Second, E\ cannot be a dynamic abstraction or a dynamic application, since they

would both imply L(var(£i)) = Dyn, contradicting L(var(£i)) > 0.
Third, E\ cannot be a variable x, since x would be either free in £ or bound by a

dynamic abstraction and thus have L(var(x)) = Dyn, contradicting L(var(£i)) > 0.
Fourth, £1 cannot be a static application, by assumption.
Thus, there are no possible forms of £1, contradicting the existence of £1 0, £2.
For the second part of the proof, suppose for a contradiction that static abstrac-

tions do occur in E. We can then choose a subterm of £ of the form Xx.E' so that it
is not a proper subterm of any other static abstraction in £. It is sufficient to show
that this is impossible. There are four cases.

First, ix.E' cannot equal £, since LPxfl > {Ax}, contradicting L(var(£)) = Dyn.
Second, Xx.E' cannot be the function or argument part of a static application

since we know from the first part of the proof that they don't occur in £.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

360 Jens Palsberg

Third, Xx.E' cannot be the function or argument part of a dynamic application,
or the body of a dynamic abstraction, since that would imply LJAxJ = Dyn,
contradicting LPxfl > {Ax}.

Fourth, Xx.E' cannot be the body of a static abstraction, by assumption.
Thus, Xx.E' cannot appear anywhere, contradicting its existence. •

Lemma 24 {restated) If C(ES) has solution L and Es -> ET, then C(ET) has solution
L and L(var(£s)) > L(var(£r)).

Proof

We proceed by induction on the structure of Es. In the base case, consider x. The
conclusion is immediate since x is in normal form.

In the induction step, consider first Xx.E'. Suppose Xx.E' —• Xx.E". Clearly,
L(var(2x.£')) = L(var(Ax.£")) = LPxfl. By the induction hypothesis, C(E") has
solution L. Since C(Xx.E') has solution L, LPxJ > {Xx}. Thus, C{lx.E") has
solution L.

Consider then E\ @, £2. There are three cases.
Suppose Ex <S, E2 ->• E[@, £2. Clearly, L(var(£i Q, £2)) = L(var(£j Q, £2)) =

Lp),-]|. By the induction hypothesis, C{E\) has solution L and also L(var(£i)) >
L(var(£',)). We then need to show that L is a solution of the basic and the
connecting constraint for £J @,- £2, that is: L(var(£j)) > 0 and for every Xx.E in £0,
if {Ax} < L(var(E[)) then L(var(£2)) < L W A L M > L(var(£)). Both immediately
follow from L(var(£i)) > 0 and for every Xx.E in £0, if {Xx} < L(var(£i)) then
L(var(£2)) < Lflx]) A LH<3,]] > L(var(£)) and L(var(£i)) > L(var(£j)), and the
transitivity of <. Thus, C(£J @, £2) has solution L.

Suppose then that £1 @, £2 —* £1 @i £2. This case has a similar proof, we omit the
details.

Suppose then that E\ = Xx.E and that E\ <3, £2 —> £[£2/x]. Since C(£i @, £2)
has solution L, we have {Ax} < LPxJ = L(var(Ax.£)) = L(var(£!)). Thus we also
have L(var(£2)) < L[[x]] A L[[Q,]] > L(var(£)). The conclusion then follows from
lemma 25 and the transitivity of <.

Consider then Xx.E'. Suppose Xx.E' —* Xx.E". Clearly, we have L(var(2.x.£')) =
L(var(Ax.£")) = L[[i.x]]. By the induction hypothesis, C(E") has solution L, and
L(var(£')) > L(var(£")). We need to show LEix]] = LUx]] = L(var(£")) = Dyn.
This follows from LUA = -̂ IM] = ^(var(£')) = Dyn and L(var(£')) > L(var(£")).
Thus, C(Xx.E") has solution L.

Consider then E\ @, £2. There are three cases.
Suppose £1 9,- £2 -> E\ S, £2. Clearly, L(var(£j 0, £2)) = L(var(£j 9, E2)) =

LQ®,]]. By the induction hypothesis, C(E\) has solution L, and also L(var(£i)) >
L(var(£j)). We need to show L(var(£;)) = L(var(£2)) = LH®,]] = Dyn. This follows
from L(var(£!)) = L(var(£2)) = L[[®,]] = Dyn and L(var(£,)) > L(var(£;)). Thus,
C(£J a, £2) has solution L.

Suppose then that £1 9, £2 —> E\ 9/ £2. This case has a similar proof, we omit the
details.

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 361

Suppose then that £1 = Xx.E and that E\ ft £2 ->• £[£2/*]- Since C(E{ 0, £2)
has solution L, we have Dyn = L[[Ax]] = L[[x] = L(var(£)) = L(var(£,)) =
L(var(£2)) = L[[ft]]. The conclusion then follows from lemma 25.

Finally note that by fact 16, no redex in Es is confused. •

Lemma 25 (restated) Suppose C(£),C(U\),...,C{Un) all have solution L and that
the free variables of £ are among x\,...,xn. If L(var((/,)) < L[[x,]], then C(£[£/;/x(])
has solution L and L(var(£)) > L(var(£[l/,/x,])).

Proof
We proceed by induction on the structure of £. In the base case, consider x. Since x
is being substituted by a term U where C(U) has solution L and L(var(t/)) < LQx]],
the conclusion is immediate.

In the induction step, consider first Xy.E'. Clearly, we have that L(var(Xy.E')) =
L(var((^.£')[C/,/x,])) = LPyfl. Moreover, C({Xy.E')[U,/xi\) = C{Xy.{E'[U,/xt])).
Assume now that y does not occur free in any Ut (this can be obtained by the
renaming of variables). By the induction hypothesis, if we have a V such that C(V)
has solution L and L(var(K)) < LB>]], then C(£'[L/,/x,-, V/y]) has solution L and
L(var(£')) > L(var(£'[t/,/x,, V/y])). By taking V = y we get that C(£'[[/,/x,]) has
solution L and that L(var(£')) > L(var(£'[l/,/x,])). Finally, L^Xyl > {Xy}, since
C(Xy.E') has solution L. Thus, C((Xy.E')[Ui/xi]) has solution L.

Consider then £1 0, £2. Clearly, L(var(£! 9, £2)) = L(var((£i a,- £2)[[/,/x,])) =
LH@,]]. Moreover, C((£, @, £2)[l/,/x,]) = C((£i[l/,/x,]) «,- (£2[L/,/x,])). By the in-
duction hypothesis, C(£i[(/,/x,]) and C(£2[C/,/x,]) have solution L, and further-
more L(var(£0) > L(var(£i[[/,/x,])) and L(var(£2)) > L(var(£2[C/,/x,])). We then
need to show that L is a solution of the basic and the connecting constraint
for (£, 0, £2)[l/,/x,], that is: L{var(Ei[Ui/Xi])) > 0 and for every Xx.E in £0, if
{Xx} < L(var(£! [C/,/x,])) then L(var(£2[[/,/x,])) < LUx] A LH@,]1 > L(var(£)).
Both immediately follow from: L(var(£i)) > 0 and for every Xx.E in £0, if
{Xx} < L(var(£,)) then L(var(£2)) < Ldx] A Lp,]] > L(var(£)) and L(var(£,)) >
L(var(£, [[/,/x,])) and L(var(£2)) > L(var(£2[L/,/x,])), and the transitivity of <.
Thus, C((£i a,- E2)[Ui/xi]) has solution L.

Consider then Xy.E'. Clearly, L(var(Xy.E')) = L(var((Ay.£')[l/,/x,])) = Lflly]].
Moreover, C((/ty.£')[t/,/x,]) = C(Ay.(£'[l/,7x,-])). Assume now that y does not occur
free in any (7, (this can be obtained by the renaming of variables). By the induction
hypothesis, if we have a V such that C(V) has solution L and L(var(K)) < L[[y]],
then C(E'[Ui/xi,V/y]) has solution L and L(var(£')) > L(var(£'[l/,/x,, K/y])). By
taking K = y we get that C(£'[t/,/x,]) has solution L and that L(var(£')) >
L(var(£'[t/,/x,])). We then need to prove that LUyl = Lfry'R = L(var(£'[t/,/x,])) =
Dyn. This follows from LUyl = ^ tv l = L(var(£')) = Dyn and from L(var(£')) >
L(var(E'[Ui/x,])). Thus, C({Xy.E')[Ui/xi\) has solution L.

Finally, consider £1 ®j £2. Here, L(var(£j 8j £2)) = L(var((£, a,- £2)[l/,/x,])) =
LH*,]|. Moreover, C((£i «, £2)[[/,/x,]) = C((£i[l/,-/x,-]) ft (£2[(/,/x,])). By the induc-
tion hypothesis, C(£i[l/,/x,]) and C(£2[(/,/x,]) have solution L, and furthermore
L(var(£,)) > L(var(£i[C/,/x,])) and L(var(£2)) > L(var(£2[t/,/x,])). We then need
to prove that L(var(£1[t/,/x1])) = L(var(£2[t/,/x,])) = L[[@jJ = DYn- This follows

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

362 Jens Palsberg

from L(var(£,)) = L(var(£2)) = L$@il = Dyn and L(var(£,)) > L(var(£i [[/,/*,]))
and L(var(£2)) > L(var(£2[L/,/x,])). Thus, C((£, @, £2)[l/,/x,]) has solution L. D

7 Conclusion

We have studied a notion of well-annotatedness which subsumes that of Gomard
and Jones. We have obtained generalizations of two theorems of Gomard and we
have obtained a proof of correctness of the core of the binding-time analysis of
Gomard and the binding-time analysis of Mogensen. Our results also indicate the
correctness of the binding-time analyses of Bondorf and Consel. We hope that our
results can be used as lemmas when proving the correctness of other binding-time
analyses. In particular we would like to relate our results to the binding-time analysis
for typed A-calculus of Nielson and Nielson (1988), and to the related results of
Schmidt (1987). Notice here that Nielson and Nielson to our knowledge haven't
considered subject reduction properties for their 2-level A-calculus. We would also
like to prove that well-annotatedness is preserved by static reduction. This seems
difficult because if £ —> £', then the constraint systems WA(E) and WA(E') are
rather different. Finally, we would like to prove the correctness of the binding-time
analyses of Bondorf (1991), Consel (1990), and Bondorf and Jorgensen (1993).

Mitchell Wand (1993) studied Mogensen's binding-time analysis and partial eval-
uator for the 2-calculus (Mogensen, 1992). Wand proved that the partial evaluator
is correct, in the sense that if it is given an output from the binding-time analysis,
then indeed it produces a specialized program. This result relates to our theorem 26
as follows. Wand considers arbitrary static reduction sequences under a certain
consistency condition. We consider only those static reduction sequences that in-
volve enabled applications, but under a weaker consistency condition. In contrast to
Wand, we study the idea of trusting enabled applications to be static redexes.

It remains open if Wand's result can be proved under the weaker consistency
condition studied in this paper. In other words, it should be investigated if Mo-
gensen's partial evaluator can be shown to produce a specialized program when
given a Palsberg/Schwartzbach well-annotated 2-level 1-term. The open problem
and its relation to the solved problems is illustrated below.

Mogensen
well-annotatedness

Wand
Mogensen's partial evaluator
produces specialized programs

\

Palsberg/
Schwartzbach

Open

Palsberg/Schwartzbach
well-annotatedness

Palsberg
A top-down partial evaluator
cannot go wrong

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

Correctness of binding-time analysis 363

Acknowledgements

The author thanks Torben Amtoft, Olivier Danvy, Fritz Henglein, Neil Jones,
Jesper Jorgensen, Karoline Malmkjaer, Hanne Riis Nielson, and Kristoffer Rose for
discussions on the correctness of binding-time analysis. The author also thanks
Torben Amtoft, Peter Mosses, Michael Schwartzbach, Mitchell Wand, and the
anonymous referees for helpful comments on a draft of the paper. Finally, the
author thanks Olivier Danvy for pointing out an error in a previous version of the
definition of enabledness.

References

Barendregt, Henk P. (1981) The lambda calculus: Its syntax and semantics. North-Holland.
Bondorf, Anders. (1991) Automatic autoprojection of higher order recursive equations. Science

of computer programming, 17(1-3), 3-34.
Bondorf, Anders, & Jcrgensen, Jesper. (1993) Efficient analyses for realistic off-line partial

evaluation. Journal of functional programming, special issue on partial evaluation.
Consel, Charles. (1990) Binding-time analysis for higher order untyped functional languages.

Pages 264-272 of: Proc. ACM conference on lisp and functional programming.
Gomard, Carsten K. (1990) Partial type inference for untyped functional programs. Pages

282-287 of: Proc. ACM conference on lisp and functional programming.
Gomard, Carsten K. (1991) (November). Program analysis matters. Ph.D. thesis, DIKU,

University of Copenhagen. DIKU Report 91-17.
Gomard, Carsten K., & Jones, Neil D. (1991) A partial evaluator for the untyped lambda-

calculus. Journal of functional programming, 1(1), 21-69.
Jones, Neil D. (1981) Flow analysis of lambda expressions. Pages 114-128 of: Proc. eighth

colloquium on automata, languages, and programming. Springer-Verlag (LNCS 115).
Mogensen, Torben JE. (1992) Self-applicable partial evaluation for pure lambda calculus.

Pages 116-121 of: Proc. ACM SIGPLAN workshop on partial evaluation and semantics-
based program manipulation.

Nielson, Hanne R., & Nielson, Flemming. (1988) Automatic binding-time analysis for a typed
A-calculus. Science of computer programming, 10, 139-176.

Palsberg, Jens, & Schwartzbach, Michael I. (1992) Binding-time analysis: Abstract interpreta-
tion versus type inference. Submitted for publication.

Schmidt, David A. (1987) Static properties of partial reduction. Pages 295-305 of Proc.
partial evaluation and mixed computation, Gl. Avernas, Denmark.

Sestoft, Peter. (1989) Replacing function parameters by global variables. Pages 39-53 of:
Proc. conference on functional programming languages and computer architecture.

Shivers, Olin. (1991) (May). Control-flow analysis of higher-order languages. Ph.D. thesis,
CMU. CMU-CS-91-145.

Wand, Mitchell. (1993) Specifying the correctness of binding-time analysis. Journal of
functional programming, special issue on partial evaluation.

FPR3

https://doi.org/10.1017/S0956796800000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000770

