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A millimetric droplet may bounce and self-propel across the surface of a vertically
vibrating liquid bath, guided by the slope of its accompanying Faraday wave field. The
‘walker’, consisting of a droplet dressed in a quasi-monochromatic wave form, is a
spatially extended object that exhibits many phenomena previously thought exclusive to
the quantum realm. While the walker dynamics can be remarkably complex, steady and
periodic states arise in which the energy added by the bath vibration necessarily balances
that dissipated by viscous effects. The system energetics may then be characterised in
terms of the exchange between the bouncing droplet and its guiding or ‘pilot’ wave.
We here characterise this energy exchange by means of a theoretical investigation into
the dynamics of the pilot-wave system when time-averaged over one bouncing period.
Specifically, we derive simple formulae characterising the dependence of the droplet’s
gravitational potential energy and wave energy on the droplet speed. Doing so makes clear
the partitioning between the gravitational, wave and kinetic energies of walking droplets in
a number of steady, periodic and statistically steady dynamical states. We demonstrate that
this partitioning depends exclusively on the ratio of the droplet speed to its speed limit.

Key words: drops, Faraday waves

1. Introduction
The hydrodynamic pilot-wave system (Bush 2010), discovered in 2005 by Yves Couder
and Emmanuel Fort (Couder et al. 2005a) has garnered considerable interest owing to
its relation to quantum systems (Couder et al. 2005b), and has provided the basis for the
field of hydrodynamic quantum analogues (Bush & Oza 2021). The system consists of
a millimetric droplet bouncing on the surface of a vibrating liquid bath. The vibrational
acceleration is always less than the Faraday threshold (Benjamin & Ursell 1954; Kumar &
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Figure 1. Stroboscopic pilot-wave fields, h(x, t), generated by (a) a stationary bouncer and (b, c) walkers
for vibrational forcing (a) γ = γW (the walking threshold), (b) γ /γF = 0.9 and (c) γ /γF = 0.97. Upper
panels: overhead view of the stroboscopic wave field accompanying the droplet, with regions of elevation
and depression highlighted in red and blue, respectively. Lower panels: the wave profile (in µm) along the line
of droplet motion. The droplet speed and wave energy increase with the vibrational forcing, with the wave field
spanning the plane in the high-memory limit. As the droplet moves faster, it moves away from the wave crest
towards a region with higher slope, inducing a corresponding decrease in the local wave elevation. The plots are
generated by solving the stroboscopic pilot-wave model (2.1) for walking at a constant speed (see (4.3)) with
physical parameters f = 80 Hz, ρ = 950 kg m−3, ν = 20.9 cSt, σ = 0.206 N m−1, H= 4 mm, R = 0.4 mm,
sin Φ = 0.2, and Td = 0.0174 s (see table 1). The walking threshold is γW /γF = 0.782, the Faraday wavelength
is λF = 4.75 mm and the maximum steady walking speed is c = 13.3 mm s−1.

Tuckerman 1994; Kumar 1996), above which Faraday waves arise even in the absence
of the droplet, so the wave field navigated by the droplet is always entirely of its own
making. The control parameter of the system is the bath’s vibrational acceleration,
which prescribes the longevity of the waves generated by the droplet impacts, and so
the ‘memory’ of the system (Eddi et al. 2011). Increasing the memory progressively
towards the Faraday threshold prompts the stationary bouncing droplet to destabilise into a
‘walker’, a macroscopic realisation of wave–particle duality consisting of a self-propelling
droplet dressed in a quasi-monochromatic pilot-wave form (Bush 2015; Bush & Oza 2021).
As the memory is further increased, the walking speed and spatial extent of the wave field
increase, while the droplet moves downwards on its pilot wave, towards a region with
higher slope (see figure 1).

The hydrodynamic pilot-wave system is driven and dissipative (Kutz et al. 2022;
Rahman & Kutz 2023); specifically, energy is fed into the system through the bath
vibration and dissipated through the action of fluid viscosity. This dissipation ultimately
leads to a warming of the bath and an associated drift of the Faraday threshold (Douady
1990; Harris et al. 2013; Ellegaard & Levinsen 2020). Nevertheless, a number of steady,
periodic and statistically steady dynamical states may be achieved in which the driving
and dissipation effectively balance over the time scales of interest (seconds or minutes),
so that the global energetics need not be considered. Examples include steady walking
states and orbital motion when the droplet moves in response to an external force field
(Fort et al. 2010; Harris & Bush 2014; Perrard et al. 2014b). The existence and stability
of the system’s various dynamical states change with the vibrational forcing, which in
turn prescribes the spatial extent and longevity of the wave field. In the high-memory
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limit, the pilot-wave dynamics often appears chaotic (Tambasco et al. 2016), with the
droplet motion intermittently switching between weakly unstable periodic states (Harris
& Bush 2014; Perrard et al. 2014a). A number of connections have been made between
the energy of different dynamical states and their relative stability. For example, stable
steady walking, orbiting and periodic states are all energetically favourable relative to
unstable stationary bouncing (Durey & Milewski 2017; Durey et al. 2018; Liu et al. 2023).
Energetic considerations also arise in bound states formed from multiple droplets. For
example, the wave energy of promenading pairs (Arbelaiz et al. 2018), consisting of two
coupled droplets walking in tandem, is less than that of two free walkers (Borghesi et al.
2014; Durey & Milewski 2017). Finally, rings of bouncing droplets destabilise and execute
a number of discrete rearrangements in such a way as to minimise their net gravitational
potential energy (Couchman & Bush 2020; Thomson et al. 2020b).

Despite the growing number of connections between energy and stability, a global
account of the energy evolution of the pilot-wave system has not been forthcoming.
One recent advancement, however, was made by Liu et al. (2023), who demonstrated
that for droplets executing circular orbits, the wave energy and the droplet gravitational
potential energies are both prescribed by the droplet speed. Through systematic analysis
of the system energetics, we here demonstrate the generality of this result by deriving a
speed-dependent energy diminution factor relating the wave energy and drop gravitational
potential energy of dynamic states to those of the static bouncing state. Our results are
valid for a number of canonical settings, including steady and quasi-steady dynamics,
periodic and slow oscillatory dynamics and statistically steady states.

In § 2, we introduce the pilot-wave system and determine evolution equations for the
wave and droplet energies. We utilise these results in § 3 to determine the dependence
of energy on the droplet’s speed for canonical dynamical and statistically steady states.
A number of illustrative numerical examples are presented in § 4. In § 5, we enumerate
insights into pilot-wave hydrodynamics provided by our energetic analysis.

2. Pilot-wave hydrodynamics
We consider a vertically vibrating liquid with periodic acceleration γ sin(2π f t) at time t .
All relevant parameters are defined in table 1. For γ > γF , the fluid rest state destabilises
to a field of subharmonic standing or Faraday waves, with wavelength λF = 2π/kF and
period TF = 2/ f . Below the Faraday threshold, γ < γF , any waves generated at the free
surface, for example by a bouncing droplet, are subcritical, decaying over a time scale, TM ,
that increases with proximity to the Faraday threshold. For the weakly viscous liquids used
in experiments (Wind-Willassen et al. 2013), the Faraday wavenumber, kF , approximately
satisfies the gravity–capillary dispersion relation, (π f )2 = (gkF + σk3

F/ρ) tanh(kFH)

(Benjamin & Ursell 1954).

2.1. Governing equations
We model the evolution of a resonant walker bouncing with period TF , in perfect
synchrony with its subharmonic pilot wave, η(x, t). We thus assume that each drop impact
arises at the same wave amplitude and phase, the basis of the stroboscopic approximation
(Oza et al. 2013). The droplet is propelled by the wave force Fw(t) = −F(t)∇η(xp, t) and
resisted by drag, where xp(t) denotes the droplet’s horizontal position at time t and F(t)
is the periodic vertical force acting on the droplet. Notably, the vertical force averaged over
one bouncing period, TF , is precisely equal to the droplet weight, namely F(t) = mg. As
the time scale of the droplet’s horizontal motion greatly exceeds that of its vertical motion,
we model the wave field as η(x, t) = cos(π f t)η̄(x, t), representing the superposition of
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Parameter Definition

m, R Droplet mass, radius
σ , ρ Liquid surface tension, density
ν, νeff (Effective) liquid kinematic viscosity
H, g Liquid bath depth, gravitational acceleration
μair, ρair Air dynamic viscosity, density
f , γ Vibrational forcing frequency, acceleration
γF Faraday instability threshold
λF , kF = 2π/λF , TF = 2/ f Faraday wavelength, wavenumber, period
Td = (νeffk2

F )−1 Wave decay time in the absence of forcing
TM = Td/(1 − γ /γF ) Wave decay time
F(t) Periodic vertical force acting on the droplet
F(t) = mg Vertical force averaged over Faraday period
S = F(t) sin(π f t)/mg Phase of droplet impact for wave generation
C = F(t) cos(π f t)/mg Phase of droplet impact relative to wave

oscillation
sin Φ = 2S C Combined phase parameter
A = √

νeffTF/2π(mgk3
F sin Φ)/(3k2

Fσ + ρg) Amplitude of single surface wave
D = 0.17mg

√
ρR/σ + 6πμair R(1 + (ρairgR/12μair f )) Drag coefficient

c = √
mg A/DTF Maximum steady walking speed

HB = ATM/TF Amplitude of stroboscopic bouncer wave field
H (r) Wave kernel spatial profile
ld (γ ) Wave kernel spatial decay length
α = ε2/[2νeff(1 + 2ε2)] Spatial damping factor
ε = 2π fρνeffkF/[3σk2

F + ρg] Viscosity-induced wavenumber correction
η(x, t), E(t) Faraday wave field, energy
h(x, t), E(t) Stroboscopic wave field, energy
E = (1/2)E/C 2 Faraday wave energy averaged over Faraday

period
E p Stroboscopic droplet energy
E = E p + E Total stroboscopic energy

Table 1. Table of parameters defining the stroboscopic pilot-wave model (Moláček & Bush 2013a,b; Oza
et al. 2013).

a fast subharmonic oscillation modulated by a slowly varying spatial profile (Moláček
& Bush 2013b). Time-averaging the droplet wave force over one bouncing period thus
yields Fw(t) = −mg∇h(xp, t), where h(x, t) = C η̄(x, t) is the stroboscopic wave field
and C = F(t) cos(π f t)/mg denotes the phase of droplet impact relative to the wave-field
oscillation (Moláček & Bush 2013b; Couchman et al. 2019). The time-averaged horizontal
force balance may then be written as (Moláček & Bush 2013b)

m ẍp + D ẋp = −mg∇h(xp, t) + F, (2.1a)

where F is an applied force and dots denote derivatives with respect to time.
We model the stroboscopic pilot wave by the integral

h(x, t) = A

TF

∫ t

−∞
H (|x − xp(s)|)e−(t−s)/TM ds, (2.1b)

which represents a superposition of axisymmetric quasi-monochromatic waves of
amplitude A centred along the droplet’s path and decaying over the memory time scale,
TM (Oza et al. 2013). Experimentally, this represents the wave form observed when the
system is strobed at the Faraday frequency, and images captured at the phase of droplet
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impact, so that the droplet appears to surf along its pilot wave. The system (2.1) represents
the stroboscopic model (Oza et al. 2013) of pilot-wave hydrodynamics, which has proven
to be adequate in rationalising the bulk of observed walker behaviours (Oza et al. 2014a;
Turton et al. 2018). Nevertheless, it is known to have shortcomings when non-resonant
effects arise (Primkulov et al. 2025), specifically when the walker bouncing phase varies
owing to variability in the local wave form (Harris et al. 2013; Durey et al. 2020), which
is particularly prevalent at high memory (Moláček & Bush 2013b; Wind-Willassen et al.
2013). Consequently, the results of our study are unlikely to be applicable in experiments
close to the Faraday threshold, for which exotic and chaotic bouncing modes (Protière
et al. 2006; Wind-Willassen et al. 2013) are expected to significantly alter the pilot-wave
energetics.

For the sake of simplicity, we proceed by focusing on the case of resonant walkers,
and so neglect temporal variations in the droplet impact phase. We may thus treat the
wave amplitude, A, as a constant. We further assume that the wave kernel, H (r), is a
differentiable function, with H (0) = 1 and H (r) < 1 for all r > 0. Furthermore, we posit
that the spectrum is localised about kF , giving rise to a quasi-monochromatic form with
wavelength λF and exponential spatial decay in the farfield over the length scale ld .
Motivated by the results of prior studies (Tadrist et al. 2018; Couchman et al. 2019), we
assume that ld(γ ) increases with the vibrational forcing, and diverges in the high-memory
limit.

2.2. Droplet energy evolution
We proceed by describing the evolution of the droplet’s kinetic and potential energy, where
we express our results in terms of the local wave height, H(t) = h(xp, t). We first use the
chain rule to write Ḣ = ∂t h(xp, t) + ẋp · ∇h(xp, t), whereupon substitution of (2.1) yields

Ḣ = A

TF
− H

TM
+ 1

mg
ẋp · (F − m ẍp − D ẋp

)
. (2.2)

We then rearrange to find that the droplet’s energy evolves according to

d
dt

(
1
2

m|ẋp|2 + mgH

)
= ẋp · F + mg A

TF

(
γD(|ẋp|) − H

HB

)
, (2.3)

where HB = ATM/TF is the amplitude of the stroboscopic wave field for a bouncer,

γD(v) = 1 − v2

c2 (2.4)

is a speed-dependent diminution factor and c = √
mg A/DTF is the maximum steady

walking speed of a free walker, as arises in the high-memory limit (Oza et al. 2013).
For a droplet moving in response to the gradient of an applied potential, F = −∇V (xp),

we may recast (2.3) as the work equation, as prescribes the rate of change of the droplet’s
total energy:

Ė p = mg A

TF

(
γD(|ẋp|) − H

HB

)
, where E p = 1

2
m|ẋp|2 + V (xp) + mgH (2.5)

is the sum of the droplet’s dimensionless kinetic and potential energies. Evidently,
the droplet energy increases when H/HB < γD(|ẋp|), remains constant when H/HB =
γD(|ẋp|) and decreases otherwise. The implications of (2.5) for the system’s energy budget
are discussed in Appendix A.
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2.3. Wave-field energy evolution
For near-critical vibrational forcing, the evolution of the Faraday wave field, η(x, t),
may be regarded as quasi-inviscid, characterised by an exchange between kinetic energy
and a combination of gravitational potential and surface energies. We thus define the
gravitational potential and surface energies for small-amplitude waves (i.e. |∇η| � 1) as
(Moláček & Bush 2013b)

E(t) =
∫∫

R2

ρg

2
η2(x, t) dx +

∫∫
R2

σ

2
|∇η|2 dx. (2.6)

Owing to the assumed far-field exponential decay of the wave field, the integrals in (2.6)
converge, which is not the case for the widely adopted and mathematically convenient
choice H (r) = J0(kFr) (Liu et al. 2023), an account of which is given in Appendix B.

By substituting the relationship η(x, t) = cos(π f t)h(x, t)/C into (2.6), we deduce that
the energy of the wave field when time-averaged over one Faraday period, denoted E(t), is
related to the energy of the stroboscopic pilot wave,

E(t) =
∫∫

R2

ρg

2
h2(x, t) dx +

∫∫
R2

σ

2
|∇h|2 dx, (2.7)

via E = 1
2 E/C 2. As C typically lies in the range 0.1 �C� 0.2 for walkers (Couchman

et al. 2019), the time-averaged wave-field energy is at least one order of magnitude
larger than the energy of the stroboscopic pilot wave. Nevertheless, we leverage this
proportionality relationship to derive a simple formula governing the evolution for E , and
thus E.

To proceed, we recast the stroboscopic pilot wave as

h(x, t) =
∞∑

n=−∞

∫ ∞

0
kĥn(k, t)Φn(x, k) dk, (2.8a)

where Φn(x, k) = Jn(kr)einθ denotes an orthogonal set of functions defined in plane polar
coordinates, x = r(cos θ, sin θ), Jn is the Bessel function of the first kind of order n, k is
the wavenumber and i denotes the imaginary unit. In terms of this basis decomposition,
the stroboscopic wave energy defined in (2.7) is (Moláček & Bush 2013b)

E(t) = π

∞∑
n=−∞

∫ ∞

0
k(ρg + σk2)|ĥn(k, t)|2 dk. (2.8b)

Furthermore, an application of Graf’s addition theorem (Abramowitz & Stegun 1964,
9.1.79) to (2.1b) determines that each wave mode evolves according to

ĥn(k, t) = ĥ B(k)

TM

∫ t

−∞
Φ∗

n (xp(s), k)e−(t−s)/TM ds, (2.9)

where ∗ denotes complex conjugation and ĥ B(k) = ∫∞
0 rhB(r)J0(kr) dr is the Hankel

transform of the bouncer wave field, defined as hB(r) = HBH (r) with HB = ATM/TF .
We now exploit the fact that the spectrum of the bouncer wave field is sharply peaked

around kF , with ĥ B(k) being appreciable only when |k − kF |ld = O(1), to determine
approximate expressions for H(t) and E(t) valid in the high-memory limit, for which
ldkF � 1. To facilitate this analysis, we first substitute the leading-order Taylor expansion
Φ∗

n (xp, k) = Φ∗
n (xp, kF ) + O(
k) (where 
k = k/kF − 1) into (2.9), giving
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ĥn(k, t)

ĥ B(k)
= 1

TM

∫ t

−∞
Φ∗

n (xp(s), kF )e−(t−s)/TM ds + O(
k) = ĥn(kF , t)

ĥ B(kF )
+ O(
k),

(2.10)
or, equivalently,

ĥn(k, t)

ĥn(kF , t)
= ĥ B(k)

ĥ B(kF )
+ O(
k). (2.11)

This relationship demonstrates that the spectrum close to kF is proportional to that of the
bouncer wave field, which we exploit below to approximate the local wave height, H(t),
and stroboscopic wave energy, E(t).

To approximate the local wave height, H(t) = h(xp, t), we substitute Φn(xp, k) =
Φn(xp, kF ) + O(
k) and (2.11) into (2.8a), and then exploit the fact that the integrand
is sharply peaked about kF for ldkF � 1, giving

H(t) =
∞∑

n=−∞

ĥn(kF , t)

ĥ B(kF )
Φn(xp, kF )

∫ ∞

0
kĥB(k) dk + O((kFld)−1). (2.12)

By noting that hB(0) = ∫∞
0 kĥB(k) dk, where hB(0) = HB is the amplitude of the bouncer

wave field, we deduce that

H(t) = HB

∞∑
n=−∞

ĥn(kF , t)

ĥ B(kF )
Φn(xp(t), kF ) + O((kFld)−1), (2.13a)

thereby approximating the local wave height in terms of the system’s wave modes.
Likewise, we substitute (2.11) into (2.8b), giving

E(t) = π

∞∑
n=−∞

|ĥn(kF , t)|2
ĥ2

B(kF )

∫ ∞

0
k(ρg + σk2)ĥ2

B(k) dk + O((kFld)−1), (2.13b)

where we have used that ĥ B(k) is real. This expression may be written more concisely as

E(t) = EB

∞∑
n=−∞

|ĥn(kF , t)|2
ĥ2

B(kF )
+ O((kFld)−1), (2.13c)

where

EB = π

∫ ∞

0
k(ρg + σk2)ĥ2

B(k) dk (2.14)

is the energy of the bouncer wave field. We thus deduce from (2.13) that H and E
deviate from their respective values for a stationary bouncing droplet, denoted HB and
EB , according to a weighted sum of the wave modes with wavenumber kF . These
approximations form the foundation for our forthcoming analysis of the energy evolution
of the stroboscopic wave field.

To determine the evolution of E(t), we first differentiate (2.9) and (2.13c) with respect
to time. By neglecting higher-order connections of size O((kFld)−1) in the high-memory
limit, corresponding to kFld � 1, we deduce that

∂ ĥn

∂t
= ĥ B(k)

TM
Φ∗

n (xp(t), k) − ĥn

TM
and

dE

dt
= EB

∞∑
n=−∞

2Re[∂t ĥ∗
n(kF , t)ĥn(kF , t)]

ĥ2
B(kF )

,

(2.15)
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respectively, where Re denotes the real part. By eliminating ∂t ĥ∗
n(kF , t) from the second

equation and using (2.13c), we obtain

TM

2
dE

dt
= EB

∞∑
n=−∞

ĥn(kF , t)

ĥ B(kF )
Φn(xp(t), kF ) − E . (2.16)

Finally, we use the approximate definition for H(t) given in (2.13a) to deduce the leading-
order evolution equation for the wave energy:

dE

dt
= 2EB

TM

(
H(t)

HB
− E(t)

EB

)
. (2.17)

The wave energy increases when the ratio of the wave height relative to a bouncer
exceeds the corresponding ratio for wave energy, and decreases otherwise. Equation (2.17)
represents a powerful formula for elucidating the evolution of wave energy in pilot-wave
hydrodynamics, the implications of which for the system’s energy budget are discussed in
Appendix A. We proceed by considering its application in a series of canonical dynamical
regimes.

3. Energy evolution for canonical pilot-wave phenomena
Although the range of dynamics observed in experiments and predicted by the
stroboscopic pilot-wave model (2.1) is vast (Bush 2015; Bush & Oza 2021), the qualitative
behaviour may often be characterised by a small number of canonical regimes. To address
the evolution of energy in these canonical regimes, we analyse the evolution formulae for
the droplet and wave energy, as detailed in (2.5) and (2.17), respectively. Our results shed
light on the dependence of energy on the droplet speed in a number of dynamical states.

The first canonical regime describes steady pilot-wave dynamics, for which the droplet
and wave energies are conserved (Kutz et al. 2022; Liu et al. 2023; Rahman & Kutz 2023),
as is the case for walking and orbiting at a constant speed. We thus deduce from (2.5) and
(2.17) the respective relationships

H/HB = γD(|ẋp|) and E/EB = H/HB, (3.1a)

giving rise to the following expressions for the droplet and wave energies:

E p = 1
2

m|ẋp|2 + V (xp) + mgHBγD(|ẋp|) and E = EBγD(|ẋp|). (3.1b)

Notably, the wave and droplet gravitational potential energies are both maximised for a
stationary droplet, and decrease as the droplet walks faster and its kinetic energy increases.
We thus deduce that the wave energy of a walker is always less than the wave energy of the
unstable bouncer at the same vibrational forcing, providing a theoretical rationale for the
observations made by Durey & Milewski (2017) based on their numerical computations.

The second canonical dynamical regime is periodic droplet motion, for which the
average droplet and wave energies are conserved over one periodic cycle (Kutz et al.
2022; Rahman & Kutz 2023), as is the case for wobbling and drifting orbital states in
a rotating frame (Harris & Bush 2014), and lemniscate and trefoil trajectories in a central
force (Perrard et al. 2014b). In order to determine the average wave height, 〈H〉, and wave
energy, 〈E〉, over one periodic cycle, we time-average (2.5) and (2.17), giving

〈H〉/HB = γD(v̄) and 〈E〉/EB = 〈H〉/HB, (3.2a)
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where v̄ =
√

〈|ẋp|2〉 is the time-averaged droplet speed. Consequently,

〈E p〉 = 1
2

mv̄2 + 〈V (xp)〉 + mgHBγD(v̄) and 〈E〉 = EBγD(v̄), (3.2b)

with the average droplet and wave energies both taking a form analogous to that of their
steady counterparts given in (3.1).

The third canonical regime corresponds to dynamical states that modulate slowly in
time. In particular, equation (3.1) approximates quasi-steady dynamics, for which the
time scale over which the pilot-wave system evolves greatly exceeds the memory time,
and thus one may neglect Ė p and Ė in (2.5) and (2.17). This slow variation is typical
of the low-memory regime and near-critical non-oscillatory perturbations about a steady
state, such as the ‘jump up’ and ‘jump down’ instabilities observed in a rotating frame,
wherein the droplet shifts to an orbit with larger or smaller orbital radius, respectively
(Oza et al. 2014b). Similarly, equation (3.2) approximates dynamics consisting of a fast
oscillation augmented by slow drift and amplitude modulations. Specifically, the slow
drift and amplitude modulations render the average droplet and wave energies over one
fast cycle relatively small and thus one may neglect 〈Ė p〉 and 〈Ė〉 when averaging (2.5)
and (2.17), respectively. This regime characterises near-critical oscillatory perturbations
about a steady state, such as the onset of wobbling of circular orbits arising when a droplet
is constrained by an external force (Oza et al. 2014b).

The final canonical regime characterises statistically steady states, as might arise for
chaotic pilot-wave dynamics in the long-path-memory limit, including the intermittent
switching between weakly unstable states when the droplet moves in response to a
Coriolis or central force (Harris & Bush 2014; Perrard et al. 2014b). Of particular note
is the prevalence of wake-like statistics in the hydrodynamic pilot-wave system and
their connections to quantum mechanics (Bush & Oza 2021). We assume only that the
droplet speed, local wave height and wave energy approach statistically steady states,
and that E p and E are bounded. By taking long-time averages of (2.5) and (2.17), we
deduce relationships that are algebraically identical to (3.2), but with angled brackets now
denoting long-time averages (Rahman & Kutz 2023).

Equations (3.1) and (3.2) have important consequences for energy evolution in the
hydrodynamic pilot-wave system. Notably, the droplet gravitational potential and wave en-
ergies both decrease when the droplet speed increases, providing a simple heuristic for dis-
tinguishing energetically favourable states. In particular, the energy of an unstable bouncer
always exceeds that of a droplet moving at a constant speed (Durey & Milewski 2017; Liu
et al. 2023). Finally, the bound E > 0 imposes a droplet speed limit: specifically, (3.1)
implies that v < c for all steady states, while (3.2) implies that v̄ < c for all periodic states.

We proceed by demonstrating that the droplet must move at its speed limit in order to
maintain a finite local wave height in the high-memory limit. We first note that the wave
height of a bouncer, HB = ATM/TF , increases linearly with memory. It thus follows from
(3.1) that the limit limTM→∞ H = H0 for steady droplet motion requires that

lim
TM→∞

ATM

TF
γD(v) = H0, (3.3)

where v(TM) is the droplet speed and H0 is the limiting wave height, which is assumed to
be finite and positive. As γD(c) = 0 (see (2.4)), this limit can only be satisfied when

v ∼ c

(
1 − H0TF

2ATM

)
as TM → ∞, (3.4)
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with a similar relationship holding for the average speed, v̄, of periodic states.
Consequently, the speed bounds v < c and v̄ < c are necessarily achieved for all steady
and periodic states that retain a finite local wave height in the vicinity of the Faraday
threshold.

Conversely, the wave energy diverges as the Faraday threshold is approached, by virtue
of waves being excited across the entire bath. Specifically, we show in Appendix C that the
energy of the bouncer wave field satisfies the scaling EB ∼ T 2

Mld in the high-memory limit,
reflecting the diverging wave amplitude and spatial decay length, ld(γ ), of the bouncer
wave field close the Faraday threshold. For steady states with a finite wave amplitude in the
high-memory limit, we combine (3.3) with the relationship E = γD(v)EB to deduce that

E ∼ H0TF

ATM
EB as TM → ∞, (3.5)

and likewise for periodic states. Consequently, the wave energy dominates the droplet’s
kinetic and gravitational potential energies at high memory, as is evident in the energy
evolution and partitioning to be considered in § 4.

4. Numerical examples
We proceed to exemplify our theoretical developments (§ 3) through a series of numerical
examples. Drawing upon prior theoretical and experimental investigations (Damiano et al.
2016; Couchman et al. 2019), we define the axisymmetric wave kernel

H (r) = J0(kFr)

[
(1 − S(kFr)) + r

ld
K1(r/ ld)S(kFr)

]
, (4.1)

where K1 is the modified Bessel function of the second kind of order one. The smoothing
function, S(x) = e−x−2

, ensures regularity of the wave kernel near the origin, with
S(x) → 0 as x → 0 and S(x) → 1 as x → ∞ (Couchman et al. 2019). The exponential
far-field spatial decay is characterised by the parameter ld = 1

2
√

TM/α, which increases
with proximity of the vibrational forcing to the Faraday threshold, with α defined in
table 1 (Moláček & Bush 2013b). We consider the regime for which stationary bouncing
is unstable, namely γW < γ < γF , where the walking threshold is (Oza et al. 2013)

γW = γF

(
1 − ckF Td√

2

)
, (4.2)

with Td defined in table 1. We first consider steady walking and orbital motion (§ 4.1),
before considering the onset of orbital instability in a rotating frame (§ 4.2). We emphasise
that the validity of our theoretical developments is not restricted to the choice of wave
kernel considered here.

4.1. Steady droplet motion
For steady droplet motion at speed v > 0, the relationship H = HBγD(v) and (2.1b)
determine that the corresponding memory time, TM , satisfies

1 − v2

c2 = 1
TM

∫ ∞

0
H (δ(t))e−t/TM dt, (4.3)

where δ(t) denotes the droplet displacement over time t . For rectilinear walking, δ(t) = vt ,
and for orbital motion with radius r0, δ(t) = 2r0| sin(vt/2r0)|. Notably, we parameterise
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Figure 2. The dependence of energy on the steady rectilinear walking speed, v0, computed using (4.3).
(a) The free-walking speed increases with the vibrational forcing for γW < γ < γF , approaching the speed lim-
it, c, at the Faraday threshold. (b, c) The magnitude of the local wave height, H (red squares), and stroboscopic
wave energy, E (green diamonds), relative to that of a bouncer (HB and EB , respectively) as a function of
(b) vibrational acceleration, γ , and (c) free-walking speed, v0. The numerical results coincide with the
theoretical predictions H/HB = γD(v0) and E/EB = γD(v0) for steady droplet motion (see § 3) indicated by
the black curve, where γD(v) = 1 − v2/c2 is the speed-dependent diminution factor (see (2.4)). The physical
parameter values are the same as in figure 1.

orbital motion by its radius, as is the case for a droplet moving in response to a Coriolis or
central force (Oza et al. 2014a; Labousse et al. 2016a; Liu et al. 2023). We solve (4.3)
numerically, and then compute the energy, E (defined in (2.7)), of the accompanying
stroboscopic pilot wave using Fourier transforms on a large, doubly periodic domain of
size 48λF × 48λF with 512 × 512 grid points. The numerical results are insensitive to
increasing the size of the computational domain and to refining the spatial discretisation.

The rectilinear walking speed, v0, increases monotonically with the vibrational forcing,
approaching the speed limit, c, at the Faraday threshold (see figure 2a). As the droplet
walks faster, the local wave height, H , and wave energy, E , both decrease relative to that
of a stationary bouncer, denoted HB and EB , respectively (see figure 2b,c). The theoretical
prediction for the local wave height, H/HB = γD(v0) (see (3.1)), where γD(v) = 1 −
v2/c2 is the speed-dependent diminution factor, holds exactly for all γW < γ < γF .
Despite the theoretical prediction for wave energy, E/EB = γD(v0) (see (3.1)), being
formally valid only in the high-memory limit (for which the error in the approximation
is of size O((kFld)−1)), our numerical results demonstrate the efficacy of this prediction
both within and beyond the high-memory regime. Indeed, the discrepancy between the
theoretical and numerical solutions is visually indistinguishable in figure 2(b,c), with the
relative error being less than 1 % for all values of γ .

A similar physical picture emerges for orbital states. As the orbital radius, r0, is
increased, the orbital speed, v, varies with orbital radius, oscillating over half the Faraday
wavelength, before approaching the rectilinear walking speed, v0, in the large-radius limit
(see figure 3a). This speed modulation is a consequence of the increased influence of
the droplet’s wake on its motion at high orbital memory (Oza et al. 2014a), with similar
variations in the local wave height, H , and wave energy, E , evident as the orbital radius
is increased (see figure 3b). Despite this more complex dependence on orbital speed,
the theoretical predictions prescribed by the speed-dependent diminution factor, γD , are
in excellent agreement with the numerical results across a wide range of memory and
orbital radius. Indeed, the dependences of normalised local wave height, H/HB , and
wave energy, E/EB , on orbital speed collapse onto the curve γD(v) for all values of γ
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Figure 3. The dependence of energy on the steady orbital speed, v, computed using (4.3) for γ /γF taking
values 0.9 (blue), 0.95 (green) and 0.98 (red). (a) The orbital speed oscillates over half the Faraday wavelength
as the orbital radius, r0, is increased, approaching the rectilinear walking speed, v0, for large radii. The
variations in the orbital speed are most pronounced close to the Faraday threshold. (b, c) The magnitude of
the local wave height, H (squares), and stroboscopic wave energy, E (diamonds), relative to that of a bouncer
(HB and EB , respectively) as a function of (b) orbital radius, r0, and (c) orbital speed, v. The numerical
results coincide with the theoretical predictions H/HB = γD(v) and E/EB = γD(v) for steady droplet motion
(see § 3) indicated by the black curve, where γD(v) = 1 − v2/c2 is the speed-dependent diminution factor (see
(2.4)). The physical parameter values are the same as in figure 1.

(see figure 3c), underscoring the universal dependence of energy on speed in orbital
pilot-wave dynamics.

Of particular interest is the partitioning of energy in pilot-wave hydrodynamics, which
we quantify here for steady walking and orbiting states. To do so, we define the total
stroboscopic energy as

E = 1
2

m|ẋp|2 + mgH + E, (4.4)

representing the sum of kinetic, gravitational potential and wave energies. For steady
walking and orbiting, we apply the approximations given by (3.1) (as verified in figures 2
and 3) to deduce from (4.4) the approximate relationship

E = 1
2

m|ẋp|2 + γD(|ẋp|)(mgHB + EB), (4.5)

which makes clear the dependence on the speed-dependent diminution factor, γD , and
the relative sizes of the local wave height, HB , and wave energy, EB , for stationary
bouncing. In particular, we see from (4.5) that the contribution of kinetic energy to the
total stroboscopic energy, E , increases with droplet speed, while the contributions of wave
and gravitational potential energies both decrease.

In figure 4, we present the dependence of the total stroboscopic energy on the vibrational
forcing for stationary bouncing and steady walking. For both bouncing and walking, the
wave energy diverges in the high-memory limit, where the wave field spans the entire
plane and so is the main contributor to the total energy (see Appendix C). For steady
walking, the kinetic energy increases with the vibrational forcing (consistent with the
walking speed curve in figure 2a), while the gravitational potential energy decreases,
approaching a finite value in the high-memory limit. The adjustment of the droplet from its
wave crest to a region with higher slope is also evident in the wave-field plots in figure 1.
Finally, we note that although the gravitational potential energy of a bouncer diverges as
the Faraday threshold is approached, this contribution is subdominant to the wave energy,
with mgHB � EB at high memory (see (4.5)).
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Figure 4. The dependence of the energy partitioning on vibrational forcing for stationary bouncing (dashed
curves) and steady walking at the free-walking speed, v0 (solid curves). (a) The contribution to the total energy,
E (grey, see (4.4)), in terms of the stroboscopic wave energy, E (red), droplet gravitational potential energy,
mgH (blue), and droplet kinetic energy, 1

2 mv2
0 (black). The total energy is normalised by that of a bouncer at the

walking threshold, E(γW ). The wave energy diverges in the high-memory limit for both bouncing and walking.
Notably, the droplet gravitational potential energy diverges at high memory for a bouncer, yet decreases towards
a finite value (comparable to the kinetic energy) for a walker. (b) The relative contributions of each type of
energy to the total energy, with the wave energy dominating in the high-memory limit. The physical parameter
values are the same as in figure 1.
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Figure 5. The dependence of the energy partitioning on the orbital radius for steady orbiting at γ /γF = 0.95.
(a) The contributions to the total energy, E (grey, see (4.4)), from the stroboscopic wave energy, E (red),
droplet gravitational potential energy, mgH (blue), and droplet kinetic energy, 1

2 mv2 (black). The total energy
is normalised by that of a bouncer at the walking threshold, E(γW ). (b) Energy partition of E , with minima
in the wave and gravitational potential energies corresponding to maxima in the kinetic energy. The physical
parameter values are the same as in figure 1.

Similar trends for orbital motion are evident in figure 5. At high memory, the wave
energy dominates the droplet kinetic and gravitational potential energies. We note that
modulations in the droplet speed with the orbital radius lead to peaks in the partitioning
of kinetic energy, and corresponding troughs in the partitioning of wave energy. While
it is not easily discernible from figure 5(b), the droplet gravitational potential energy
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oscillates in a manner similar to that of the wave energy, by virtue of the relationships
H/HB = E/EB = γD(v). As the vibrational forcing is progressively increased, the peaks
and troughs in figure 5(b) become more pronounced, and the wave energy dominates the
total energy.

4.2. Onset of unstable orbital motion
To investigate the efficacy of (3.2) for slowly varying and periodic states, we consider the
onset of orbital instability in a rotating frame. A droplet walking in a rotating frame moves
in response to a Coriolis force, F = −2mΩ × ẋp, where the rotation vector, Ω = Ωez ,
is orientated vertically, perpendicular to the droplet’s plane of motion (Fort et al. 2010;
Harris & Bush 2014; Oza et al. 2014a). For a droplet moving at steady speed v = r0ω
along a circular orbit of radius r0, we deduce from pilot-wave system (2.1) the radial and
tangential force balances:

−mr0ω
2 = −mg A

TF

∫ ∞

0
H ′

(
2r0 sin

(
ωt

2

))
sin
(

ωt

2

)
e−t/TM dt + 2mΩr0ω, (4.6a)

Dr0ω = −mg A

TF

∫ ∞

0
H ′

(
2r0 sin

(
ωt

2

))
cos

(
ωt

2

)
e−t/TM dt, (4.6b)

where H ′(r) denotes the derivative of H with respect to r (with an odd extension so
as to be defined over the real line). Notably, one may apply integration by parts to the
tangential force balance (4.6b) to deduce the equation for local wave height (4.3) (Oza
et al. 2014a; Liu et al. 2023). Following Oza et al. (2014a), we parameterise the circular
orbits by their orbital radius for a fixed vibrational forcing: specifically, we fix r0 and use
(4.6b) (or (4.3)) to solve for the orbital frequency, ω, and then use (4.6a) to determine the
corresponding bath rotation rate.

We investigate the evolution of the local wave height, H(t), and stroboscopic wave
energy, E(t), for an oscillatory instability whose corresponding perturbation grows
towards a 2-wobble (Harris & Bush 2014; Oza et al. 2014b). We thus anticipate that
(3.2) (with V = 0) will hold sufficiently close to the instability threshold, for which
the instability time scale greatly exceeds the orbital time scale. This behaviour is
evidenced in figure 6, for which the local wave height and wave energy when averaged
over one speed cycle (denoted 〈H〉/HB and 〈E〉/EB , respectively) agree closely with
the theoretical predictions made by (3.2) during both the unstable transient and the
periodic 2-wobble. Notably, the theoretical prediction for 〈E〉/EB slightly exceeds the
accompanying numerical result; this discrepancy is a direct consequence of the high-
memory approximation made when deriving (2.17), and so will be less significant closer
to the Faraday threshold.

We further test the efficacy of our theoretical predictions by comparing in figure 7 the
evolution of dE/dt in the simulations with the theoretical prediction prescribed by (2.17).
This investigation is based on the same simulation as in figure 6, but with the focus shifted
onto the instantaneous wave energy, rather than that time-averaged over each speed cycle.
For the numerical simulations, dE/dt is computed using a second-order finite-difference
approximation of E(t), as defined by (2.7). For the theoretical prediction, the numerically
computed values of E(t) and H(t) are substituted into the right-hand side of (2.17). Akin to
figure 6(d), the theoretical prediction for dE/dt is typically slightly larger than its numer-
ical counterpart, as is most apparent in the unstable transient (see figure 7a). Nevertheless,
there is excellent agreement when the droplet executes the periodic 2-wobble, as
demonstrated in figure 7(b) for the final two orbital periods. Our findings verify that (2.17)
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Figure 6. Wobbling motion of an inertial orbit in a frame rotating at Ω = −2.78 rad s−1 and vibrating with
γ /γF = 0.96. (a) Droplet trajectory following a small perturbation from an anticlockwise circular orbit of
radius r0/λF = 0.8. After an initial transient, the trajectory approaches a 2-wobble (grey curve, with the final
orbital period denoted in blue). (b) Evolution of the droplet speed (black curve). The red diamonds denote
the maxima of each speed cycle, over which the average speed, v̄ = 〈|ẋp|2〉1/2, is computed (see § 3). (c, d)

The black curves denote the evolution of (c) the local wave height, H/HB , and (d) the wave energy, E/EB ,
each normalised by that of a stationary bouncer at the same memory. Time is scaled by the orbital period,
TO = 2π/ω, of the initial circular orbit. The red circles denote the average values of H/HB and E/EB over
each speed cycle, and the blue curve denotes the corresponding theoretical prediction given by 〈H〉/HB =
〈E〉/EB = γD(v̄) (see (3.2)). The physical parameter values are the same as in figure 1.
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Figure 7. The rate of change of wave energy for a droplet executing the same wobbling trajectory as in figure 6.
(a) The black curve denotes dE/dt computed from the simulation, and the blue curve denotes dE/dt as
computed from the theoretical prediction (2.17). Time is scaled by the orbital period, TO , of the initial unstable
orbit, and wave energy is normalised by that of a stationary bouncer, EB , at the same memory. (b) Zoom-in of
(a) underscores the efficacy of the theoretical prediction when the droplet executes a 2-wobble.

may be reliably used to investigate the evolution of energy in pilot-wave hydrodynamics,
forming a platform on which to base future investigations of unsteady systems.

5. Discussion
Our study has yielded several new insights into the energetics of pilot-wave
hydrodynamics. The walking droplet system is damped and driven, with energy input

1009 A4-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.168


M. Durey and J.W.M. Bush

from the bath vibration and energy dissipated through the action of viscosity. We have
paid particular attention to the cases in which these energy inputs and outputs balance,
specifically steady and periodic dynamical states, slowly varying states and statistically
steady states. For such states, our study illustrates how the partitioning of energy between
droplet kinetic energy, droplet gravitational energy and wave energy depends on the
system memory. It further illustrates how this partitioning evolves with time for unsteady
states. Specifically, the rate of change of droplet energy (2.5) is prescribed by the local
wave amplitude relative to that of a bouncer and the diminution factor, γD(|ẋp|), which
decreases with the droplet’s speed. The rate of change of wave energy (2.17) also depends
on the instantaneous wave energy relative to that of a bouncer, and thus the diminution
factor, γD . Notably, the walker’s wave-induced added mass, mγB(|ẋp|), also decreases
with its speed (Bush et al. 2014). A comparison between γB and the energy diminution
factor, γD , is presented in Appendix D.

Our theoretical developments may be extended in a straightforward fashion in order to
treat the energetics of N interacting droplets with constant impact phase, as outlined in
Appendix E. In particular, insight into multiple-droplet systems (e.g. lattices or rings) may
be gained through consideration of the wave energy, E(t), which evolves according to
(E7). For quasi-steady droplet motion, the correspondence

E(t)

EB
= N H(t)

HB
(5.1)

holds, where H is the average height of the wave field beneath the droplets, which
incorporates wave-mediated inter-droplet spatio-temporal correlations (see (E8)).
Consequently, the evolution of the mean lattice wave height may be used as a proxy for
that of wave energy for slowly evolving lattices. The decrease in average droplet height
between discrete rearrangements of unstable ring structures noted by Couchman & Bush
(2020) was thus accompanied by a decrease in the energy of the global pilot-wave field,
and so reflects the tendency of multiple-droplet systems to minimise their total energy.
We note, however, that (5.1) does not account for dynamic or spatial variations in the
droplets’ impact phase, and so is not necessarily applicable to irregular or unsteady lattice
structures.

It is worth emphasising the generality of our results, but also noting their limitations.
In our theoretical developments, we have assumed only that the axisymmetric wave kernel
oscillates over the Faraday wavelength and decays exponentially at infinity, with the spatial
decay length increasing with proximity to the Faraday threshold. Our results thus apply
not only to the particular wave kernel considered in our numerical examples (§ 4) but
to any such pilot-wave form. As a caveat, we note that our results have been deduced
from the stroboscopic model, which is based on the assumption of resonance between
the droplet and its guiding wave. The role of impact phase is somewhat obscured in the
stroboscopic formulation, but becomes clear when one recalls that all of our energetic
formulations have been made in terms of the stroboscopic wave height, h(x, t), rather than
the temporally oscillating wave field, η(x, t) = h(x, t) cos(π f t)/C. Notably, the energy of
the stroboscopic wave field, E , is related to the energy of the temporally oscillating wave
field averaged over one Faraday period, E, via E = (1/2)E/C 2, so the two energies are
proportional. As the memory is increased, the phase of drop impact relative to the wave
oscillation, C, also changes, and with it the relative magnitudes of the wave and droplet
energies. This dependence is not captured with the stroboscopic model, which assumes
that the impact phase is independent of memory. Nevertheless, our results may be applied
given the value of C at a particular memory, as may be measured experimentally.
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While the stroboscopic model has been successful in rationalising a number of
phenomena in pilot-wave hydrodynamics, it is known to have shortcomings in situations
where the droplet’s impact phase varies owing to its interaction with a time-varying wave
field, as may arise at high memory (Wind-Willassen et al. 2013) and in closed settings
(Harris et al. 2013; Durey et al. 2020; Abraham et al. 2024). Relaxation of the stroboscopic
approximation requires consideration of the droplet’s vertical dynamics (Moláček & Bush
2013a; Couchman et al. 2019; Primkulov et al. 2025). Consideration of the energetics in
this more general setting will yield insight into the myriad complex periodic, aperiodic and
chaotic walking states arising at high memory (Moláček & Bush 2013b; Wind-Willassen
et al. 2013) and will be the subject of future work.
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Appendix A. Energy budget
In contrast to the majority of studies on the spontaneous formation of waves above the
Faraday threshold (Kumar & Tuckerman 1994; Kumar 1996), the Faraday waves in the
walking-droplet system are subcritical, yet sustained by repeated impacts of the droplet on
the bath. The energy budget is complex: the energy injection depends on the interference
of the waves generated by the moving droplet, and the bath vibration serves to increase the
longevity of the waves generated at each impact. These two sources of energy injection
may be distinguished by recasting the droplet (2.5) and wave (2.17) energy evolution
equations as

dE p

dt
+ D|ẋp|2 + mgH(t)

Td
= mg A

TF
+
(

1
Td

− 1
TM

)
mgH(t), (A1a)

1
2

dE

dt
+ E(t)

Td
= EB H(t)

TM HB
+
(

1
Td

− 1
TM

)
E(t). (A1b)

In both energy equations, the terms on the right-hand side correspond to energy injection
through wave creation and bath vibration, respectively. The left-hand side thus describes
the energy dissipation, as governed by work done on the droplet by drag (in (A1a) only)
and dissipation of the wave field over Td , the viscous decay time in the absence of
vibration.

We proceed to more closely examine the energy injection in (A1). We first note that
the energy injection from the bath vibration may be characterised in terms of the effective
growth rate

1
Td

− 1
TM

= γ /γF

Td
, (A2)

which describes the decrease in the wave decay rate resulting from bath vibration
(Benjamin & Ursell 1954). The energy injection via wave creation is more subtle. The
droplet energy injection rate, mg A/TF in (A1a), is constant, a consequence of the waves
generated along the droplet’s path being of equal amplitude. In contrast, the wave energy
injection rate, EB H(t)/TM HB in (A1b), depends on the local wave height, H(t), which
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can vary substantially as the droplet navigates its pilot wave. As the droplet’s dynamics
and the constants A, TM , HB and EB appearing in (A1) depend on the proximity of the
vibrational acceleration, γ , to the Faraday threshold, γF , we conclude that γ /γF is the
primary factor controlling both forms of energy injection. A more detailed investigation
of the system’s energy budget will be the subject of future work.

Appendix B. Energy evolution for the J0(kFr) wave kernel
For the dynamics of a single droplet, the exponential spatial decay of the wave field is
relatively unimportant (Bush 2015; Bush & Oza 2021), with investigators thus considering
the algebraically tractable wave kernel H (r) = J0(kFr) (Oza et al. 2013). In this case,
the notion of wave energy is somewhat nebulous, with the defining integrals (2.7) of the
wave field over the plane being divergent. To circumnavigate this issue, Labousse et al.
(2016b) and Hubert et al. (2022) defined a corresponding wave intensity, denoted I (t), that
retained the key features of wave energy whilst being non-divergent. When accounting for
the influence of gravitational potential and surface energies for a linear stroboscopic wave
field, the wave intensity is defined as (Liu et al. 2023)

I (t) = lim
R0→∞

1
2R0

[∫∫
|x|<R0

(
ρgh2(x, t) + σ |∇h|2) dx

]
, (B1)

with h(x, t) defined by (2.1b) for H (r) = J0(kFr). Notably, the wave intensity defined in
(B1) has units of energy per unit length. Owing to the monochromatic form of the pilot
wave, one may equivalently express the wave intensity as (Liu et al. 2023)

I (t) = (
ρg + σk2

F

)
lim

R0→∞
1

2R0

[∫∫
|x|<R0

h2(x, t) dx
]

, (B2)

which forms the basis for our analysis.
Wave intensity defined in this limiting sense may be better understood by projecting the

monochromatic wave field onto the orthogonal eigenfunctions Φn(x, kF ) = Jn(kFr)einθ ,
in a manner similar to § 2.3. Specifically, by expressing

h(x, t) =
∞∑

n=−∞
an(t)Φn(x, kF ), where an(t) = HB

TM

∫ t

−∞
Φ∗

n (xp(s), kF )e−(t−s)/TM ds

(B3)
and HB = ATM/TF is the amplitude of the bouncer wave field, it follows from an
application of Parseval’s theorem that (Labousse et al. 2016b; Hubert et al. 2022; Liu
et al. 2023)

I (t) = IB

∞∑
n=−∞

|an(t)|2
H2

B

, (B4)

where

IB = (
ρg + σk2

F

)
lim

R0→∞
1

2R0

[∫∫
|x|<R0

[HBJ0(kF |x|)]2 dx
]

= (
ρg + σk2

F

)H2
B

kF
(B5)

is the wave intensity of a bouncer.
Notably, (B4) has the same algebraic form as (2.13c), but without the O((k2

Fld)−1)
correction valid in the high-memory limit; indeed, no approximations have been made
when deriving (B4) from (B1). We may thus exploit this correspondence to perform
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a series of algebraic steps identical to those presented in § 2.3 to derive, without
approximation, the evolution of wave intensity:

dI

dt
= 2IB

TM

(
H(t)

HB
− I (t)

IB

)
, (B6)

where H(t) = h(xp, t) is the local wave height. Notably, (B6) is the analogue of the wave
energy evolution equation (2.17), thereby demonstrating the generality of the evolution
of energy-like wave quantities in terms of the local wave height, H(t). Furthermore, one
recovers the relationship I/IB = H/HB for steady motion, as derived by Liu et al. (2023)
for circular orbits. Following a procedure similar to that of § 4, we verified numerically
that the approximations to (B6) for canonical pilot-wave dynamics (see § 3) also hold for
the wave intensity defined here when considering the wave kernel J0(kFr).

Appendix C. Energy of the bouncer wave field
We proceed to determine asymptotic approximations for the energy of the bouncer
wave field, EB (as defined in (2.14)), valid in the high-memory limit. We first derive
an asymptotic approximation for an arbitrary wave kernel (Appendix C.1), before
seeking a closed-form approximation for EB when the wave kernel is that used in § 4
(Appendix C.2).

C.1. Asymptotic approximation
In the high-memory limit, the exponential spatial decay length, ld , of the wave kernel
is assumed to diverge. As such, the spectrum of the bouncer wave field is sharply peaked
around the Faraday wavenumber, kF . By taking a Laplace-type approximation of (2.14) for
the term related to surface energy, we deduce the high-memory approximation (Borghesi
et al. 2014)

EB = π
(
ρg + σk2

F

) ∫ ∞

0
kĥ2

B(k) dk. (C1)

By applying the Plancherel theorem and using that the bouncer wave field, hB(r), is related
to the wave kernel, H (r), via hB(r) = HBH (r), we deduce that

EB = π
(
ρg + σk2

F

)
H2

B

∫ ∞

0
rH 2(r) dr. (C2)

Notably, HB = ATM/TF scales linearly with the memory time, TM , and so diverges in
the high-memory limit. Furthermore, as the exponential spatial decay length, ld , of the
wave kernel diverges in the high-memory limit, we posit the scaling

∫∞
0 rH 2(r) dr ∼ ld

as TM → ∞. We thus deduce the scaling EB ∼ ld T 2
M in the high-memory limit, where the

precise dependence of ld on TM depends on the specific choice of wave kernel.

C.2. Wave kernel used for numerical examples
We proceed by determining an approximate expression for EB in the high-memory limit
for the wave kernel used in § 4, as defined in (4.1). As the function S(kFr) primarily
controls the smoothness of the wave kernel near the origin and the dominant contribution
of the energy at high memory comes from the slow far-field decay, we set S = 1 in (4.1)
for the calculation of the wave energy. Consequently, we consider from (C2) the integral∫ ∞

0
rH 2(r) dr =

∫ ∞

0
r

[
r

ld
K1(r/ ld)J0(kFr)

]2

dr, (C3)
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where the integral may be evaluated using Mathematica to give∫ ∞

0
rH 2(r) dr = 1

16k2
F

[
3 − 4

(1 + k2
Fl2

d)2
+
(

1
kFld

+ 3kFld

)
arctan(kFld)

]
. (C4)

We note that ∫ ∞

0
rH 2(r) dr ∼ 3πld

32kF
for kFld � 1, (C5)

consistent with the asymptotic scaling posited in Appendix C.1. We thus conclude from
(C2) that the energy of the bouncer wave field for the wave kernel used in § 4 has leading-
order behaviour:

EB ∼ 3π2

32

(
ρg + σk2

F

) A2T 2
Mld

T 2
F kF

as TM → ∞, (C6)

where ld = (1/2)
√

TM/α.

Appendix D. Comparison with the hydrodynamic boost factor
Our investigation into pilot-wave energetics has demonstrated that both the wave energy
and droplet gravitational potential energy depend on the droplet’s speed, v, specifically
the diminution factor, γD(v). It is valuable to note that the droplet’s speed also determines
its wave-induced added mass; in particular, a droplet executing a slowly accelerating
trajectory would appear to have mass mγB(v) when viewed with no knowledge of the
wave field, where γB(v) > 1 is the ‘hydrodynamic boost factor’ (Bush et al. 2014). When
the distance, vTM , travelled by the droplet over one memory time is short relative to the
spatial decay length, ld , the droplet’s trajectory may be adequately described by replacing
the wave kernel, H (r), by J0(kFr) in (2.1b) (Oza et al. 2013; Couchman et al. 2019). In
this case, the hydrodynamic boost factor is defined as (Bush et al. 2014)

γB(v) = 1 + g Ak2
F T 3

M

2TF (1 + (kF TMv)2)3/2 . (D1a)

Evaluating the integral in (4.3) reveals that the diminution factor evaluated at the free-
walking speed, v0(TM), may be expressed as

γD(v0) = 1

(1 + (kF TMv0)2)1/2 . (D1b)

We note in figure 8 that γB(v0) decreases with the free-walking speed, v0(TM), with a
parabolic-like profile similar to that of γD(v0) = 1 − v2

0/c2. This qualitative comparison
can be made more explicit by eliminating TM from (D1), yielding

γB(v0) = 1 + g A

2TF kF c3 (1 + γD(v0))
3/2. (D2)

The hydrodynamic boost factor, γB(v0), thus also depends on the ratio of the droplet’s
free-walking speed, v0, to its speed limit, c, and so may be defined in terms of the energy
diminution factor, γD(v0) = 1 − v2

0/c2. A deeper discussion of this correlation between
γB(v0) and γD(v0) will appear elsewhere.
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Figure 8. Comparison of the hydrodynamic boost factor, γB(v0) (left axis, solid blue curve), and the energy
diminution factor, γD(v0) (right axis, dashed red curve), evaluated at the free-walking speed, v0(TM ), for the
wave kernel H (r) = J0(kFr). Both γB(v0) and γD(v0) decrease as the walking speed increases, with the
relationship between the two defined in (D2). The physical parameter values are the same as in figure 1.

Appendix E. Energy evolution for interacting droplets
We proceed by considering the energetics of N identical interacting droplets, each with
position xi (t) (for i = 1, . . . , N ). We assume that the droplets bounce in resonance with
the Faraday wave field, which is subharmonic relative to the bath vibration. Thus, droplet
impacts occur in one of two successive cycles of the bath vibration, and droplet pairs may
be either in phase or out of phase relative to each other. We thus introduce the parameters
σi = ±1 to denote the relative bouncing phase of each droplet, with σiσ j = 1 for two
droplets bouncing in phase and σiσ j = −1 for out-of-phase bouncing (Couchman et al.
2019). The stroboscopic approximation rests on the assumption that temporal variations in
the impact phase of each droplet (and thus the wave amplitude, A) are negligible, in which
case the stroboscopic model (2.1) takes the form (Couchman et al. 2019)

m ẍi + D ẋi = −mgσi∇h(xi , t) + Fi for i = 1, . . . , N , (E1a)

h(x, t) = A

TF

N∑
j=1

σ j

∫ t

−∞
H (|x − xj (s)|)e−(t−s)/TM ds. (E1b)

By modifying the framework developed in § 2, we now establish evolution equations for
the droplet and wave energies.

Following an approach similar to that detailed in § 2.2, we define the local wave
height beneath each droplet as Hi (t) = σi h(xi , t), where the factor of σi accounts for the
different wave heights encountered during the different bouncing phases. By performing a
calculation similar to that followed for a single droplet, we deduce that
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d
dt

(
1
2

m|ẋi |2 + mgHi

)
= ẋi · Fi + mg A

TF

⎛
⎝ N∑

j=1

σiσ jH (|xi − xj |) − |ẋi |2
c2 − Hi

HB

⎞
⎠
(E2)

for i = 1, . . . , N , which represents the multiple-droplet extension of (2.3). Notably, the
sum in (E2) may be decomposed into the terms for which j = i and j 
= i , from which
the speed-dependent diminution factor, γD , appears naturally within our framework. In
the case when the droplets respond to an external potential, Fi = −∇V (xi ), the energy of
each droplet, defined by

Ei = 1
2

m|ẋi |2 + mgHi + V (xi ), (E3)

evolves according to

dEi

dt
= mg A

TF

(
γD(|ẋi |) − Hi

HB
+
∑
j 
=i

σiσ jH (|xi − xj |)
)

for i = 1, . . . , N . (E4)

The final term of the right-hand side of (E4) accounts for the change in energy induced by
wave-mediated interactions with other droplets. When the droplets are sufficiently distant
(specifically, when |xi − xj | � ld for all i 
= j , where ld is the exponential spatial decay
length of the wave kernel), this interaction term may be neglected, in which case (E4)
reduces to the energy evolution equation for a single droplet, as prescribed by (2.5).

Following the framework developed in § 2.3, we now determine an evolution equation
for the wave energy, E (defined in (2.7)), valid in the high-memory limit. By decomposing
the wave field into the orthogonal basis functions Φn(x, k) with wave mode amplitudes

ĥn(k, t) = ĥ B(k)

TM

N∑
j=1

σ j

∫ t

−∞
Φ∗

n (xj (s), k)e−(t−s)/TM ds, (E5)

we find that (2.11) and (2.13c) still hold for the case of multiple droplets, while (2.13a)
becomes

Hi (t) = σi HB

∞∑
n=−∞

ĥn(kF , t)

ĥ B(kF )
Φn(xi (t), kF ) + O((kFld)−1). (E6)

Finally, by differentiating (2.13c) with respect to time and using (E5) and (E6), we deduce
the leading-order wave energy evolution equation:

dE

dt
= 2EB

TM

⎛
⎝ N∑

j=1

Hj (t)

HB
− E(t)

EB

⎞
⎠ , (E7)

which is the multiple-droplet analogue of (2.17), valid in the high-memory limit.
For steady and slowly varying configurations, such as lattices (Eddi et al. 2009;

Couchman et al. 2022), rings (Couchman & Bush 2020; Thomson et al. 2020a) or orbiting
pairs (Protière et al. 2006; Oza et al. 2017), we deduce from (E4) that the local wave height
satisfies

Hi = HB

(
γD(|ẋi |) +

∑
j 
=i

σiσ jH (|xi − xj |)
)

, (E8)

1009 A4-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.168


Journal of Fluid Mechanics

and so depends on both the droplet speed (via the diminution factor, γD) and the interaction
potential, as is mediated by the accompanying Faraday wave field. Furthermore, it follows
from (E7) that the wave energy is proportional to the mean wave height beneath the
droplets, as expressed in (5.1), which represents the extension of (3.1) to multiple droplets.
We thus deduce that the mean gravitational potential energy of droplets in a slowly
evolving lattice may be treated as a proxy for wave energy. Finally, similar deductions may
be made for periodic and quasi-periodic dynamical states of multiple droplets, including
promenading pairs (Borghesi et al. 2014; Arbelaiz et al. 2018), wobbling orbiting pairs
(Oza et al. 2017) or various ring oscillations (Couchman & Bush 2020; Thomson et al.
2020a, 2021), on the basis of results akin to those derived in § 3.
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