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Abstract

A dam is considered with independently and identically distributed
inputs occurring in a renewal process, and in particular a Poisson process,
with a general release rate r( - ) depending on the content. Thisis related toa
GI/G/1 queue with service times dependent on the waiting time. Some
results are obtained for the limiting content distribution when it exists; these
are more complete for some special release rates, such as r(x) = ux” and
r(x)=a + px, and particular input size distributions.

1. Introduction

The waiting time X (¢) at time ¢ in a single server queue GI/G/1, or the
content of an equivalent dam, has been extensively studied [12}]; there are
more complete resuits for a Poisson arrival process (M/G/1). More general
release rules than unit rate per unit time have also been considered [4], {7],
[10], [11], [14], [15]; we consider an instantaneous release rate r(X(t)), which
is a function of the content X(¢), at time ¢, such that r(0-)=0, and r(x) is
continuous and positive on (0, »). For illustrative and numerical examples we
shall consider the two special cases (i) r(x)=ux*, 0<pu <o, 0= a <o, so
that the instantaneous release rate is proportional to the ath power of the
content, and (ii) r(x)=a + ux, 0= a <o, 0 < u < [10]. Case (i) with a =0
and & =1is GI/G/1, and with a = 1 there is an exponential decay [8], [9],
[14]; a variety of other values, such as @ = 1/2 for a parallel sided sink, might
be appropriate in particular circumstances. If (ii) r(x) =1+ ux, then the
second factor gives a way of providing faster service for large waiting times or
content, and it also guarantees ergodicity.

We consider a stochastic process X (t), 0 =t <, called the content of a
dam of capacity K = «, defined on [0, K). Inputs, at {, <, < (6,>0=t)
occur in a renewal process with . =t,,—#, i =0,1,2,--- being indepen-
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dently and identically distributed (i.i.d.) random variables with P(r, = x)=
A(x), 0=x <w, E(1,)=1/A, 0< A <o, and with Laplace transform (LT)
a*(0). The inputs S,,n=1,2,---, are i.i.d. random variables with P(S, =
x)=G(x),0=x <%, G0)=0,E(S.)=B <o, and LT g*(8). When A(x)=
1 —exp(— Ax), we have a compound Poisson input process.

The content X (¢) of a dam with infinite capacity and unit release rate is
equivalent to the virtual waiting time in a single server queue. For a general
release rate this is no longer the case; the time a customer would wait for
service depends on his own service time and possible subsequent arrivals.
However, we may take X(¢) as a workload process and it is similar to the
potential waiting process defined by Rubinovitch [13]. Let

D(x) = f ﬁ dy O0<x<o (1.1)
whenever the right-hand side is finite. Put W(t) = D(X(t)), 0=t <. Then
W (t) is a process with slope-1 except when inputs or overflow occur or when
W(t)=0; W()=0 for all t =20 and W(¢) =0 if and only if X(¢) =0 [2]. The
process may be interpreted as the virtual waiting time in a modified GI/G/1
queueing system with service times depending on waiting times; it is thus an
example of the important class of state dependent queueing systems.

We let X(t, - )= X,, W(t,— )= W,, and let S%(W.,) be the size of the
nth input in the transformed process, i.e., “‘the service time of the nth
customer” in the sense that it would take time W, + S%(W, ) before the server
became idle if no arrivals occurred in (4, t. + W, + SH(W,)). As W, = D(X,)
and Wg+ S%H(W,)= D(X, + S,) we find

SHW.)=D(S.+ D'(W.)—- W, 1.2)
P{SIHW)=x|W,.=w}=G(D'(x + w)— D '(w)), 0<x <o,
0=w<oo,

where D' is the (unique) inverse function of D (x), such that D™'(D(x)) = x;
S§*(W,) is an increasing function of D(x) and a decreasing function of W,.
For K = we have

Xn+l = D—l[{D(Xn + Sn)_ Tn}+]1 (1‘3)
and
Wi ={W, + SH(W,) - 7.}, (1.4)

which is Lindley’s [12] form. Any results obtained for the original X(-)
process may be interpreted in terms of the transformed W(-) process.
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In the special case (i) r(x)=ux* (0= a < 1) and (ii) r(x)=a + ux, we
have respectively

1-a

X

(1) D(x)= 'U'(T‘;—), D_'(X)={;L(1—a)x}”“""’
SHW,) = (WY + S, (u(1 = @)} = W,
(“) D(x)=%ln <1+%x>, D-|(x‘)=£-(e“x_l)

SHW,) =lln{1+“—5" e-“%}.
Py a

If the integral in (1.1) is infinite, e.g., r(x) = pux°, a 2 1, then the dam can not
empty in finite time from any positive value of the content. For any £ >0 we
put
D, (x) = f Ly
y=c T(¥)
with D(x) = lim, ;o D. (x) whenever the limit exists and is finite; in this case
D.(x)=D(x)—D(e). For x <g we have D.(x)<0, but D.(x) is still
monotone in x. If we put W, (t)= D.(X (1)), then W, (t) may be negative.
However, at all relevant points in the argument below (also in [15]) D. (x)
actually occurs as a difference D.(x)— D, (y) (x >0, y > 0), which eliminates
the dependence on &. Consequently results can be justified for the more
general case, although we shall argue only for the case D(x) <> and shall
leave the generalization to the reader.
We wish to study the distribution function (d.f.) F(x,t;x.)= P{X(t)=
x | X(0) = xo} and H.(x; xo) = P{X, = x| X(0)= x,} of the content at time ¢
and before the nth input respectively, and the corresponding limiting d.f.’s
F(x)=Ilim_.F(x,t;x0)= P(X =x) and H(x) = lim,_.. H,(x; x,), whenever
they exist. By renewal theoretic arguments it follows [7] that F(x) and H(x)
form proper d.f.’s whenever K < o or lim,_.. r(x) > AB. Further from (1.3) we
have

0<x<w (1.5)

H,.\(x;x0) = f dH, (y;x0)P(y,x) = —f H,(y;x0)d,P(y, x)
y=0 y=0

H@=- [ HOWPE.) 16)
where
P(y,x)=P{X,..=x| X, =y}

= Jmo {1- A(D(y + w)- D(w)}dG(w).  (1.7)

w=
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For GI/G/1 we have P(y,x)=P{S,—7.=x -y} ([12]), p. 49), and the
Wiener-Hopf equation (1.6) can be solved by known methods; in general
(1.6) presents a much more complex problem.

Except for the special case r{x)= ux we consider an exponential
inter-input distribution; the input process is then compound Poisson (class 1
in [2]). Some general results are given in the next section, with more explicit
and numerical examples for some special input size distributions in Sections 3
and 4.

2. Compound Poisson input process

In the case of an exponentially distributed time between inputs we can
formally obtain an integro-differential equation [7] for F(x,t), which for
K = = has been solved in some special cases, such as for r(x) = 1(M/G /1) {12]
and in terms of LT’s for r(x)=pux [8], [9]. For the limiting content
distribution we have

x

r(x)F’(x)=/\F(x)—/\f F(x —y)dG(y) 0<x <K, (2.1)

provided K < or lim,_... r(x) > AB. For the transformed process W = D(X)
with L(w)= P{W = w} we have

w

L'(w)=AL(w)—)tj L(u)dG(D7'(w)— D™ '(u)), 0<w < D(K).
u =0
2.2)
For the remainder of this section we suppose K =, We define ¢(8)=
Joexp(— 6x)dF(x) (0 = 6 < «) as the LT of the limiting content; from (2.1)
f N r(x)e *dF(x) = r(0)F(0)+ ¢(6)£(0) (2.3)

£(6)=p{1-g*(8)}/9. 24

The LT (8) is known in the special cases r(x) =1 [12] and r(x) = ux [8]. In
the combined case r(x)= a + ux (2.3) gives

P'(0)+ (£(0)— y)¥(8)= — yF(0)
where ¥y = a/u, p = A/u. Using ¢(0) =1 we obtain

Y(@)=e’® {1 — yF(0) fy; e"”dy}

]

16)= =0+ [ 1)a.
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As a consequence of E(S)= B <xwe find — J(6)— + ©as § — =, so that

o= o [, o)

The procedure can be used for more general input processes [3]. When
g*(6) = v/(v + ) this gives (3.6) at x = 0, while for g*(8)=exp(— 68) F(0)
can be evaluated numerically. Moments may be obtained by

E(X)=pB - v(1- F(0)) (2.5)
v =2EE) s (o8 - ) E(X).
From (2.1) it follows that
E(r(X))= AB +r(0+)F(0), 2.6)
which gives for r(x)= ux® (a >0) that
E(X*)=pB
E(X**") = pBE(X)+5 E(S?),

etc., which involves finding the moments of integer order. For « =0 (and
pB <1) and @ =1 all moments can be obtained in this way by recurrence.
Further if r(x)= pux all moments can be found for inputs occurring in a
renewal process; if X * is the content just before an input occurs, then (see [6])

B =72 S (1) ExnE(s)
B(x) = L=l $ (1) pknE(s™). -

In the case of r(x)= ux* (0 < o < 1) we can use a fractional LT ([5], Section
4.7) to obtain

tim | * ST 2LS wnde = = 160 (6).

By differentiation we obtain formally

PBEC)+LESY = [ = v

which gives known results as o« — 0 or 1.
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3. Exponentially distributed inputs

We assume that the size of an input has a negative exponential
ditribution with mean B8=1/r, 0<v <o, s0 G(x)=1—exp(—rx), 0=x <
oo, From (2.1)

x

r(x)F'(x)=AF(x)— vAe ™ f F(y)e"ady, 0<x <K, 3.1
y=0
and hence by differentiation

F'(x)+ (wﬂi‘)—i) F(x)=0, 0<x<K

r(x) r(x)
Thus

F'(x)=cr(x)'e?® (3.2)
0<x<K
Q(x)= —uvx + AD(x),
and using F(K)=1 and (2.6) we find
e O 4 Vf e9Wdy
Y

= 0sx =K, (3.3)
eO(K)+ VJ' eO(y)dy
y

=0

F(x) =

which has been obtained by McNeil [10], p. 253, using a limiting result of
another problem. From (3.3) or (2.3) the equivalent result for L (z) can easily
be found.

More explicit results can be found for special cases of the release rate
r(x); for convenience we let K =o. When r(x)=1 (and A/v <1) F(x)=
1—(A/v) exp(v — A)x, and when r(x) = ux (3.3) is (truncated) gamma [8]. If
r(x)=pVx, ie, a=1/2 and if ¢(x) and ®(x) are the density function and
distribution function of a standard normal random variable, and y =
pV(2/v), it follows that F@0)=¢(y)(d(y)+yP(y)), and Y=
V(2vX)— vy =+vW — y is a truncated standard normal random variable on
(— 7, ) with density function yF(0)¢(y)/¢(y) with a jump of size F(0) at
— v. Further E(\/X) = pB (2.6) and

E(X) = 3550 2v8 (1) + y"0() + 1= 100 3)

E(X?) = 7505 {1+ 677+ 87 +8Y)8 (1) + v'0(1) = 37’Q(r3)

-:1Q(v%5)h 34
where Q(x?; k) is.the tail of the gamma function with index k/2 ([1], p. 978).
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If r(x)=ux? i.e,, @ =2, then F(0+)=0, and with o = pv = Av/u we
obtain

—vx—plx
Fx)=—YPE" ™" g<x<o, (3.5)
2x\/vK,2V/ pv)
where K, (x) is the modified Bessel function of the second kind and of order j
([1], p.- 417). The constant ¢ in (3.2) is given by the solution of a"(o) =
a(o)/o, where

a(o) = r e gy = 2/ oK,(2\/ 7).

In this case E(X?)=pB (2.6) and

a(o)

E(X)

_ E K() 2\/0'
“Vy K.(Ve)

TABLE 1

The mean E (X)), standard deviation V V(X) and probability F(0 + ) of emptiness for
exponentially distributed (v) inputs with r(x) = pux”, @ = 0,3,1,2,p = A/u = 0.5,
1,2,4, and r(x)=1+ xp.

p v « E(X) V' V(X) F(O+)
0.5 1 ] 1 1.732 0.500
H 0.567 0.960 0.367
1 0.500 0.707 0
2 0.537 0.452 0
1+x/2 0.302 0.639 0.604
1 1 ! 1.449 1.588 0.103
1 1 1 0
2 0.814 0.580 ]
1+ x 0.500 0.866 0.500
2 1 172 4.499 2.919 0.0028
1 2 1.414 0
2 1.212 0.728 0
1+2x 0.800 1.166 0.400
4 1 . 16.500 5.701 0.000
1 4 2 0
2 1.788 0.896 0
1+4x 1.243 1.567 0.311
1 2 0 0.500 1.225 0.500
i 0.444 0.610 0.223
1 0.500 0.500 0
2 0.606 0.364 0
1+x 0.167 0.373 0.667
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When r(x)=a + ux we find
P
F(—‘i‘3+ vx; +1)—F (ﬁl; +1>+(1+M) e ("—a; +1)
w p “ p a Y u’ P
1—r(m, +1)
L P

where vy(x;p) and I'(x;p) are respectively the density function and the
distribution function of a gamma distribution with index p (I'(x;p)=
1—0(@2x;2p) (1], p- 978)).

For r(x)= ux® a =0,3 1,2, and r(x) = 1+ px and a selection of values

of p and v the probability of emptiness F(0+), the mean E(X) and the
standard deviation \/V(X) of the content are shown in Table 1.

F(x) =

4. Bounded inputs

We consider inputs which have zero mass on [0, ), 0 < n <, with mean
B; many input distributions would satisfy such a mild restriction. Further this
would give an approximation when counting only inputs of magnitude at least
7 occurring in a stable input process as defined in [2]. In this case (2.2) can be
solved iteratively over [0,7),[n,27),-- - to obtain

e S (- 1Y£(x)
F(x)— = 0=x=K @.1)

/n]

2 - 1Y¢/(K)

where &(x)=1, 0= x < and

x —AD(w)
cer=af | Eesaw [T e G-y jnEx<e

w=m

If the inputs are constant, i.e., G(x)=1 for x = n = 3, then

x =AD(y)+AD(y-B)

s =A[ Sy -pdy jBEx<e (D)

For r(x)= ux*, « =0,0.25,0.50,0.75,1,1.50,2, B =1, p =0.50,1,2,4, and x
an integer =7 (4.2) has been evaluated [14], [15].

If the interinput is Erlang with index k (=2,3,- ), then the iterative
procedure used above carries over.
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