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ON THE SLOPE OF FIBRED SURFACES

MIGUEL ÁNGEL BARJA1 and FRANCESCO ZUCCONI2

Abstract. We give an asymptotically sharp lower bound for the slope λ(f) of

a fibration f : S → B, where S is a surface and B is a curve, if there exists an

involution on the general fibre F of f . We also construct a new lower bound of

λ(f) depending increasingly on the irregularity of S; as an application of this

new bound we have a criteria to control the existence of other fibrations on S.

§0. Introduction

Let f : S → B be a surjective holomorphic map with connected fibre

F from a complex smooth projective surface S onto a complex smooth

curve B. We always assume that it is relatively minimal, i.e., that there

is no (−1)−rational curve contained in a fibre of f . Following [6, p.9] we

call f a minimal fibration or a minimal genus b pencil of curves of genus

g where g = g(F ) and b = g(B). It is called smooth if all its fibres are

smooth, isotrivial if all its smooth fibres are reciprocally isomorphic, and

locally trivial if it is smooth and isotrivial.

Our results enable to study the geographical problem of f (that is, to

relate numerical invariants of F , S and B) through the control of some

geometrical properties of the general fibre F or by the influence of some

global properties of S such as the relative irregularity qf = q − b. Now we

recall the basic relative invariants for f . If V is an n-dimensional smooth

variety, ωV = OV (KV ) is the invertible sheaf generated by dx1 ∧ ... ∧ dxn,

where x1, ..., xn are local coordinates and KV is called the canonical divisor.

Let pg = h0(S, ωS), q = h1(S, ωS), χOS = pg − q + 1 and let e(X) be the

topological Euler characteristic of X. Then we consider the following set of
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relative invariants:

K2
S/B = (KS − f∗KB)2 = K2

S − 8(b− 1)(g − 1)

χf = deg f∗ωS/B = χOS − (b− 1)(g − 1)

ef = e(S) − e(B)e(F ) = e(S) − 4(b− 1)(g − 1).

We have the following classical results:

Theorem 0.1. Let f : S → B be a minimal genus b pencil of curves

of genus g ≥ 2. Then

(i) (Noether) 12χf = ef +K2
S/B .

(ii) (Zeuthen-Segre) ef ≥ 0. Moreover, ef = 0 if and only if f is smooth.

(iii) (Arakelov) K2
S/B ≥ 0. Moreover, K2

S/B = 0 only if f is isotrivial.

(iv) χf ≥ 0. Moreover, χf = 0 if and only if f is locally trivial.

When f is not locally trivial, Xiao (cf. [17]) defines the slope of f as

λ(f) =
K2
S/B

χf
.

It follows immediately from Noether’s equality that 0 ≤ λ(f) ≤ 12. We

are mostly concerned with a lower bound of the slope. The main known

result in this direction is:

Theorem 0.2. (Cornalba-Harris, Xiao) If g ≥ 2 and f is not locally

trivial, then λ(f) ≥ 4 − 4
g .

After that, the main task is to investigate the influence of some prop-

erties of the fibration on the behaviour of the slope. The first problem is

to study the influence of the relative irregularity qf = q(S) − b. The main

known result is:

Theorem 0.3. (Xiao) If q > b then λ(f) ≥ 4. If λ(f) = 4 and q > b

then q = b+ 1 and f∗ωS/B is semistable.
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The other most considered problem is the study of how properties of

the general fibre F influence. Mostly due to the work of Konno (cf. [11],[13];

see also [7] and [16] for other references) we know the Clifford index (or the

gonality) of the general fibre has some meaning in the lower bound of the

slope. There are evidences for this. For example, it is known that equality

λ(f) = 4− 4
g only holds when F is hyperelliptic. When F is trigonal, a better

bound is known (see Remark 3.5). On the other hand the following theorem

shows that if g >> 0 and F has general Clifford Index then λ(f) ' 6 and

so, together with 0.3, it forces to understand the case qf > 0, g >> 0 and

4 < λ(f) < 6.

Theorem 0.4. (Harris-Eisenbud, Konno) Assume that g is odd and

that the general fibre F is of general Cifford index. If f is not a semistable

fibration assume that Green’s conjecture on syzygies of the canonical curves

holds. Then

λ(f) ≥ 6
g − 1

g + 1
.

An explicit sharp lower bound for λ(f) depending on the Clifford index

of F should not be easy and it should depend on other parameters. Indeed,

when the fibre is trigonal, the behaviour of λ(f) depends on the fact that F

is general or not in the set of trigonal curves (see [16]). A similar behaviour

should hold for tetragonal fibrations: there are tetragonal fibrations with

λ(f) = 4 for any genus g (see [1]), although the general fibre is always

bielliptic.

In §1 we give an idea of Xiao’s method, which is our main tool. In

§2 we study the behaviour of λ(f) when the general fibre F is a double

cover in such a way that extends to a double cover of the fibration itself:

see definition 2.1. In §3 we explicit the influence of qf on λ(f) through an

increasing function on qf generalizing Theorem 0.3. As natural by-product

of this estimates and the previous theorems it seems possible to construct

through λ(f) a geography for fibrations as in the case of surfaces of general

type.

We set aside the double cover case by two reasons: 1) all double covers

are special curves of non general Clifford index; as it happens in the case

of bielliptic curves with respect to tetragonal ones, fibrations which are

double covers are candidates to be exceptional in the study of λ(f). 2)

Xiao’s method works very well if the possibility for f to be a double cover
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is excluded, which also suggest the study of double covers as exceptional.

For these fibrations we get:

Theorem 0.5. Let f : S → B be a non isotrivial minimal genus b

pencil of curves of genus g which is a double cover of a fibration of genus

γ. If g ≥ 4γ + 1 then

λ(f) ≥ 4 + 4
(γ − 1)(g − 4γ − 1)

(g − 4γ − 1)(g − γ) + 2(g − 1)γ2
.

In our paper there is also a refined version of this theorem but it is

more complicate to state: see 2.4. Next theorem is a partial answer to a

longstanding natural question: how special are fibrations with λ(f) < 4?

Theorem 0.6. Let f : S → B be a non isotrivial minimal genus b

pencil of curves F of genus g which is a double cover of a fibration σ : V →

B with fibre E of genus γ. If F is not hyperelliptic nor tetragonal, γ ≥ 1

and g ≥ 2γ + 11 then λ(f) ≥ 4.

Our next theorem gives a bound which is better than the bound in

Theorem 0.3 if g >> 0 and it gives an affirmative answer to the expected

influence of qf on the slope. Moreover it gives a bound which is (strictly)

increasing and it is asymptotically sharp (see Example 2.8).

Theorem 0.7. Let f : S → B be a minimal genus b pencil of curves of

genus g which is not locally trivial and not a double cover fibration. Assume

that g = g(F ) ≥ 5 and qf = q(S) − b ≥ 1 then the following bounds hold:

(i) If qf ≥ 2 and g ≥ 3
2qf + 2 then

λ(f) ≥
8g(g − 1)(4g − 3qf − 10)

8g(g − 1)(g − qf − 2) + 3(qf − 2)(2g − 1)
if F is not trigonal

λ(f) ≥
4g(g − 1)(4g − 3qf − 10)

4g(g − 1)(g − qf − 2) + (g − 4)(2g − 1)
if F is trigonal.

(ii) If g < 3
2qf + 2 then

λ(f) ≥
4g(g − 1)(2g − 7)

4
3g(g − 1)(g − 3) + (g − 4)(2g − 1)

.
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As an application we obtain a nice relation between λ(f) and the ex-

istence of other fibration on S onto curves of genus at least 2 (see also

Corollaries 3.9, 3.10):

Theorem 0.8. Let f : S → B be a minimal genus b pencil of curves

of genus g which is not locally trivial and not a double cover fibration. Let

C = {πi : S → Ci fibrations, ci = g(Ci) ≥ 2, πi 6= f}i∈I , Assume C 6= ∅ and

let c = max{ci|i ∈ I}. If qf = q−b ≥ 1 (i.e., f is not an Albanese fibration)

then

λ(f) ≥ 4 +
c− 1

g − c
.

Moreover if dim alb(S) = 1 (then necessarily b = 0) we have

λ(f) ≥ 4 +
q − 1

g − q
.

§1. Preliminaries

Here we give a brief run-down of Xiao’s method to estimate λ(f). Its

method uses a result of Harder and Narasimhan and the theorem of Clifford.

Let E be a locally free sheaf on B and let GR(E) be the set of the

locally free subsheaves of E ; it is defined a function µ : GR(E) → Q, F 7→
µ(F) = deg(F)/rank(F). We recall that E is Mumford-stable (respectively

Mumford-semistable) if for every proper subbundle F of E , 0 < rank(F) <

rank(E) we have

µ(F) < µ(E) (resp. µ(F) ≤ µ(E)).

The Harder-Narasimhan theorem concerns the maximum value for µ.

Theorem 1.1. Let E be a locally free sheaf on a smooth curve B,

there exists a unique filtration by subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

such that, for i = 1, ..., l, Ei/Ei−1 is the maximal semistable subbundle of

E/Ei−1. We put µi = µ(Ei/Ei−1). In particular for every i = 1, ..., l, Ei/Ei−1

is the unique subbundle of E/Ei−1 such that for every subbundle F of E/Ei−1

we have µ(F) ≤ µi and if µ(F) = µi then F ⊂ Ei/Ei−1. Moreover µ1 >

µ2 > ... > µl.

Proof. See [9].
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The numbers {µi}1≤i≤l are called the Harder-Narasimhan slopes of E .

For lack of reference we shall prove the following result that relates

the Harder-Narasimhan filtration of a direct sum to the filtrations of the

summands.

Proposition 1.2. Let E, H, K be locally free sheaves on a smooth

curve B. Let 0 = E0 ⊂ E1 ⊂ . . . ⊂ E`, 0 = H0 ⊂ H1 ⊂ . . . ⊂ H`1, 0 =

K0 ⊂ K1 ⊂ . . . ⊂ K`2 be their Harder-Narasimhan filtrations and {µi}1≤i≤`,

{µHi }1≤i≤`1 , {µ
K
i }1≤i≤`2 their Harder-Narasimhan slopes. Assume H⊕K =

E. Then we can define ψ : {0, · · · , `} → {0, 1, · · · , `1}, φ : {0, · · · , `} →

{0, 1, · · · , `2} such that

(i) ψ(0) = φ(0) = 0; for 1 ≤ i ≤ `, ψ(i) = ψ(i − 1) if µHt 6= µi
for every t ∈ {1, · · · , `1}, (respectively, φ(i) = φ(i− 1) if µKs 6= µi for every

s ∈ {1, · · · , `2}) and ψ(i) = t if µHt = µi, (respectively, φ(i) = s if µKs = µi);

(ii) Ei = Hψ(i) ⊕Kφ(i).

Proof. Call πH : E → H, πK : E → K the natural projections. The

sheaves EH
1 = πH(E1), E

K
1 = πK(E1) are locally free since they are torsion

free (EH
1 ⊆ H, EK

1 ⊆ K). We have E1 ⊆ EH
1 ⊕ EK

1 .

Assume EH
1 6= 0. Since E1 is semistable and EH

1 is a quotient, we have

that µ(EH
1 ) ≥ µ(E1) = µ1. From the inclusions EH

1 ⊆ H ⊆ E we get µ1 ≤

µ(EH
1 ) ≤ µH1 ≤ µ1 since H1, E1 are the maximal unstabilizing sheaves in H

and E respectively. Hence µ1 = µH1 and EH
1 ⊆ H1 ⊆ E1 by the maximality

of H1 and of E1 (see 1.1). The same argument works if EK
1 6= 0.

Assume µK1 6= µ1. Then necessarily EK
1 = 0 and EH

1 6= 0. Hence µH1 = µ1,

E1 ⊆ EH
1 ⊆ F1 and then E1 = F1 = H1 ⊕ K0 by maximality. The same

argument works if µH1 6= µ1.

Assume µH1 = µK1 = µ1. Then E1 ⊆ EH
1 ⊕ EK

1 ⊆ H1 ⊕ K1 with µ(H1 ⊕
K1) = µ1. Again by maximality of E1 we conclude E1 = H1 ⊕K1.

Now the proof follows by induction dealing with E/E1 = H/Hψ(1) ⊕
K/Kφ(1).

Corollary 1.3. With the above notations we have:

max{µH1 , µ
K
1 } = µ1

min{µH`1 , µ
K
`2
} = µ`

Proof. Obvious.

We will use the well-known refined version of Clifford’s theorem:
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Theorem 1.4. Clifford-plus. Let F be a smooth curve of genus g. Let

D be a divisor of degree d such that the linear system | D | has dimension

r− 1 and let φ|D| : F → IP r−1 be the rational map associated to D. Then it

holds :

(i) if d ≤ 2g − 2 then d ≥ 2r − 2;

(ii) if deg(φ|D|) = m then d ≥ m(r − 1);

(iii) assume that deg φ|D| = 1; then there are two cases: a) if d ≤ g − 1

then d ≥ 3r − 4; b) if d ≥ g then d ≥ 1
2(3r + g − 4).

Moreover if there exists a divisor D
′

on the smooth curve C and a

double cover σ : F → C such that | D |= Z + σ? | D
′
| (Z is the fixed part

of | D |) then d ≥ 2(r − 1 + g(C)).

Proof. See [4, Lemme 5.1]

Assume that OS(H) is an invertible sheaf on S such that E = f?OS(H)

is a rank g, locally free sheaf on B. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

be its Harder-Narasimhan filtration. We consider η ∈ Pic(B) a sufficiently

ample sheaf such that Ei(η) = Ei ⊗ η is globally generated and the ratio-

nal map ρi : S → IP (Ei) induced by the natural sheaf homomorphism

f∗Ei → f∗f∗OS(H) → OS(H). Let σ : S̃ → S be the elimination of

the indeterminacy of ρi for every i and let IPi be the sublinear system of

| σ∗(H+f?η) | such that IPi = IP (H0(B, Ei(η))) for i = 1, ..., l. Xiao defined

the following divisors on S̃: Zi which is the fixed part of IPi, Mi = σ∗H−Zi
which is the moving part of IPi and Ni = Mi − µiF . By [14] Ni is a nef Q-

divisor for every i. We point out that the restriction IPi|F gives a sublinear

system of | H|F | of dimension at least ri = rk(Ei), with fixed part Zi|F and

moving part Mi|F of degree di = NiF . It is easy to see that these definitions

do not depend on η. Thus we can give the following definition:

Definition 1.5. We call {Mi|F , ri, di} the Xiao’s data associated to

the sheaf E = f?OS(H).

Proposition 1.6. Let f : S → B be a fibration with general fibre

F . Let H be a divisor on S and suppose there are a sequence of effective

divisors on a suitable blow up σ : S̃ → S, Z1 ≥ Z2 · · · ≥ Zl ≥ Zl+1 = 0 and
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a sequence of rational numbers µ1 > µ2 > · · · > µl ≥ µl+1 = 0 such that for

every i, Ni = σ∗H − Zi − µiF is a nef Q-divisor then

H2 ≥
l∑

i=1

(di + di+1)(µi − µi+1)

where di = NiF .

Proof. See [17, Lemma 2].

Xiao’s method is to combine 1.6 and 1.4 if H = KS/B or if H induces

on the general fibre F a sublinear system of | KF |.

§2. The slope of double covers

In this section we will be concerned with the following objects:

Definition 2.1. Let f : S → B be a relatively minimal fibration.

We say that f is a double cover fibration (double cover, for short) if there

exists a relatively minimal fibration φ : V → B and a rational map π :

S−−− →V over B which is a generically two to one map. Otherwise we

say that f is a non double cover fibration (non double cover for short).

Roughly speaking, double cover fibrations correspond to the curves with

an involution in the theory of curves. Of course, if f is a double cover

fibration then F is a double cover. The converse is not true. In [1] Example

1.2 a bielliptic fibration is given for which a non trivial base change is needed

in order to be a double cover fibration. In [3] is proved that if the general

fibre F is a double cover of a curve of fixed genus γ in a unique way, then

the corresponding involution glues to a global involution of S and so f itself

is a double cover. It is easy to check that if g ≥ 4γ+2 such condition holds.

Let f be a double cover fibration. We have

B
?
f

S - V
π

�
�

�	
φ

S̃

?
σ

-
π̃

Ṽ

?
η
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where φ and π exist by definition, π is a generically 2-to-1 rational map

and φ is a relatively minimal fibration; η : Ṽ → V and σ : S̃ → S are

any birational maps such that the induced rational map π̃ = η−1 ◦ π ◦ σ

is a morphism. Let f̃ = f ◦ σ and φ̃ = φ ◦ η. Note that at general t ∈ B

f−1(t) = f̃−1(t), φ−1(t) = φ̃−1(t). The map η◦π̃ factorizes by Stein Theorem

as η ◦ π̃ = π0 ◦ u, where u : S̃ → S0 is birational and π0 : S0 → V . Let

L ∈ Pic(V ) such that L⊗2 = OV (R) where R is the branching divisor of

π0. By standard theory of cyclic coverings we know that

f∗ωS/B = f̃∗ωS̃/B = φ∗((η ◦ π̃)∗ωS̃/B) = φ∗(ωV/B ⊕ (ωV/B ⊗ L))

= φ∗ωV/B ⊕ φ∗(ωV/B ⊗ L).

We will refer to the following remark:

Remark 2.2. Let H = φ∗ωV/B,K = φ∗(ωV/B ⊗ L). Let qf = q(S) −

b, s1 = q(V ) − b and s2 = qf − s1. According to Fujita’s decomposition

(see[8]) we have f∗ωS/B = E ⊕O⊕s
B . A simple computation shows that then

we obtain H = F ⊕O⊕s1
B , K = G ⊕ O⊕s2

B and E = F ⊕ G.

In order to estimate a lower bound for the slope in the double cover

case the following is the key technical result. The first part is due to Konno

(cf. [12]). We reproduce here a proof for lack of a suitable reference.

Proposition 2.3. Let f : S → B be a non isotrivial, minimal genus b

pencil of curves of genus g which is a double cover of a genus γ ≥ 1 fibration

φ : V → B. Maintain the notations of 2.2. Let 0 ⊂ H1 ⊂ . . . ⊂ H`1−1 ⊂ H`1,

{(MH
i|E , r

H
i , d

H
i )}`1i=1 and 0 ⊂ K1 ⊂ . . . ⊂ Kl2−1 ⊂ Kl2 , {(MK

i|E , r
K
i , d

K
i )}l2i=1

be the Harder Narasimhan filtration and the Xiao data of H and K re-

spectively. Set χf = deg(f∗ωS/B), χ1 = degH and χ2 = degK. Assume

g ≥ 2γ + 1. Then

(i) K2
S/B−4χ ≥ −4(µH1 +µHl )+2(g−2γ+1)max{

µH
1

γ , µ
H
l }. In particular

if g ≥ 4γ + 1 then λ(f) ≥ 4.

(ii) K2
S/B ≥ 8g(g−1)

g2+g−1
χ1.

(iii) If g ≥ 2γ + s2 then

K2
S/B ≥ 4

(g − 1)(g − s2 − 1)

(g − 1)(g − γ) − s2g
χ2.
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If g ≤ 2γ + s2 then

K2
S/B ≥ 8

g(g − 1)

g2 + g − 1)
χ2.

Proof. We follow the well-known construction of Horikawa for the

canonical resolution of a double cover. We have obtained η ◦ π̃ : S̃ → V

a generically 2-to-1 morphism from a blow-up of S onto a relatively mini-

mal genus b pencil of genus γ. Now we consider

B

f

S

?

. . .

S̃
u

σ

?

S0S = Sk

πk πo

�
�

�	

?

- . . . -

?

XXXXXXXXXXXXXXXz

V0 = VV = Vk - . . . -
���������������9

where: • η ◦ π̃ = π0 ◦ u is the Stein factorization of η ◦ π̃, with u birational,

π0 finite (so it is a double cover) and S0 normal.

• πk : Sk → Vk is the canonical resolution of singularities of π0 : S0 →
V0.

• σ̄ : Sk → S is the birational morphism defined by the relative mini-

mality of f . The maps π0 : S0 → V0 and πk : Sk → Vk are determined by di-

visors R0 on V0, Rk on Vk and line bundles L0, Lk such that L⊗2
0 = OV0

(R0),

L⊗2
k = OVk

(Rk). First of all we have

K2
S/B − 4χf = (K2

S − 4χOS) − 4(b− 1)(g − 1)(1)

≥ (K2
S
− 4χOS) − 4(b− 1)(g − 1) .

For smooth double covers πk : S → V we have

χOS = 2χOV +
1

2
LkKV +

1

2
LkLk

K2
S

= 2K2
V

+ 4LkKV + 2LkLk
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so we have

K2
S
− 4χOS = 2[K2

Vk
− 4χOVk

] + 2LkKVk
.(2)

By the canonical resolution of singularities of π0 : S0 → V0 we obtain

2[K2
Vk

− 4χOVk
] + 2LkKVk

≥ 2[K2
V0

− 4χOVo ] + 2L0KV0
(3)

(i) By (1), (2) and (3) we have that

K2
S/B − 4χf ≥ 2(K2

V/B − 4χ1) +KV/BR

where R = R0 is the branch divisor of S0 → V0 = V . We want to estimate

the term KV/BR.

By [17, Lemma 3] we have a nef Q-divisor N1 and an effective divisor Z1

in V such that KV/B ≡ N1 +µH1 E+Z1, where E is the fibre of φ : V → B.

Let R = Rh + Rv be the decomposition of R in its horizontal and vertical

part respectively. Let Rh = C1 + . . . + Cm be the decomposition into its

irreducible components (note that R is reduced since S0 is normal). Set ni
the multiplicity of Ci in Z1. Then

m∑
i=1

niCiE ≤ Z1E ≤ 2(h− 1)(4)

since E is nef and Z1 ≤ KV/B.

Hurwitz formula yields

2(g − 2h+ 1) = RhE =
m∑
i=1

CiE(5)

By construction

(ni + 1)KV/B − µH1 E ≡ ni(KV/B + Ci) +N1 + (Z1 − niCi)

and it follows

((ni + 1)KV/B − µH1 E)Ci ≥ 0(6)

since (KV/B + Ci)Ci ≥ 0 (Hurwitz formula), N1Ci ≥ 0 (Ni is nef) and

(Z1 − niCi)Ci ≥ 0 (Ci is not a component of Z1 − niCi).
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Claim. KV/BR ≥ 2(g−2γ+1)
h µH1 .

Proof of the Claim. We can assume n1 ≥ n2 ≥ . . . ≥ nm ≥ 0.

If h− 1 ≥ n1 (≥ ni for all i) then, by (6), (hKV/B − µH1 E)Ci ≥ 0 since

KV/B is nef.

Assume h ≤ n1. Since n1C1E ≤ 2(h− 1) then C1E = 1. Note that (4)

gives ni ≤ 2h− 2 − n1 for i ≥ 2. Hence, using (5) and (6) we have

KV/BRh ≥ µH1

m∑

i=1

1

ni + 1
CiE

≥ µH1

(
C1E

n1 + 1
+

(Rh − C1)E

2h− 1 − n1

)
= µ1

H

(
1

n1 + 1
+

2g − 4h+ 1

2h− 1 − n1

)

≥ µ1
H 2(g − 2h+ 1)

h

since n1 ≥ h. This proves the Claim.

Finally, since KV/B − µH`1E is nef we have by (5)

KV/BR ≥ 2(g − 2h+ 1)µH`1 .

In [17, p.460] Xiao gives the following bound for any fibration:

K2
V/B ≥ 4χ1 − 2(µH1 + µH`1)

and if we recall that K2
S/B − 4χf ≥ 2(K2

V/B − 4χ1) +KV/BR we obtain the

desired inequality:

K2
V/B − 4χf ≥ −4(µH1 + µH`1) + 2(g − 2γ + 1)max{

µH1
h
, µH`1}.

(ii) We consider the Xiao’s data {(MH
i|E , r

H
i , d

H
i )}`1i=1. Since | MH

i|E | is

a sublinear system of | KE |, by Clifford’s lemma dHi ≥ 2(rHi − 1). By pull-

back it induces on F a linear system of degree ai ≥ 4(rHi − 1). Hence, for

1 ≤ i ≤ `1 − 1 we have ai + ai+1 ≥ 8rHi − 4, and for i = `1, a`1 + a`1+1 ≥

4r`1 − 4 + 2g − 2 ≥ 8h− 4 since g ≥ 2h+ 1 by hypothesis. By proposition

1.6 we obtain

K2
S/B ≥ 8

`1∑

i=1

rHi (µHi − µHi+1) − 4µH1 = 8χ1 − 4µH1 ≥ 8χ1 − 4µE1
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since µE1 ≥ µH1 . Hence by [10, Lemma 2.7] (see also Theorem 3.1 (ii)) we

have: (1 + 2g−1
g(g−1))K

2
S/B ≥ 8χ1.

(iii) Now we want to compare K2
S/B with χ2. Let NK

i and ZK
i be

the divisor on V (on a suitable blow up of V ) associated to the Harder-

Narasimhan decomposition of K (We assume π : S → V for simplicity). We

put Ni = π∗(NK
i ), Zi = π∗(ZK

i ), H = KS/B , µi = µKi where i = 1, . . . , l2.

Since Hi = H−Zi−µiF = π∗(KV/B+L−ZK
i −µKi E) then Hi is nef and by

1.6 H2 ≥
∑l2

i=1(di + di+1)(µi − µi+1) where di = NiF = 2dKi , i = 1, · · · , l2.

We consider Xiao’s data for K: {(MK
i|E , r

K
i , d

K
i )}l2i=1. Now the linear systems

| MK
i|E | are sub-linear systems of | KE + L|E |, so not always they are

special.

We put ri = rKi . We have: dKi ≥ 2(rKi −1) if rKi ≤ γ and dKi = rKi +γ−1

if rKi ≥ γ − 1. We distinguish two cases: g ≥ 2γ + s2 or g ≤ 2γ + s2.

First Case: g ≥ 2γ + s2. If we consider the degree as a function of the

rank we easily see that dKi ≥ g−s2−1
g−s2−γ−1 . Thus

dKi + dKi+1 ≥ 2
g − s2 − 1

g − s2 − γ − 1
ri −

g − s2 − 1

g − s2 − γ − 1

if i ≤ l2 − 1 and dKl2 + dKl2+1 ≥ 2 g−s2−1
g−s2−γ−1 (g − s2 − γ) − 2 g−s2−1

g−s2−γ−1 . We put

A = g−s2−1
g−s2−γ−1 and B = 2 g−s2−1

g−s2−γ−1 , then

K2
S/B ≥

l2∑

i=1

(di + di+1)(µi − µi+1) ≥
l2∑

i=1

(4Ari −B)(µi − µi+1) −Bµl2 ,

that is: K2
S/B ≥ 4Aχ2 − B(µ1 + µl2). We recall that K2

S/B ≥ dl2(µ1 + µl2);

then

(1 +
2g − 2 − 2s2

(2g − 2)(g − γ − s2 − 1)
K2
S/B ≥ 4Aχ2

so: K2
S/B ≥ 4 (g−1)(g−s2−1)

(g−1)(g−γ)−s2g
χ2.

Second Case: g ≤ 2γ + s2.

If g ≤ 2γ + s2 then di ≥ 4(ri − 1), so K2
S/B ≥ 8χ2 − 4µ1 then by [10,

Lemma 2.7] (see also 3.1 (ii)) we have

K2
S/B ≥ 8

g(g − 1)

g2 + g − 1
χ2.
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In the next two theorems we find lower bounds for λ(f) in the case of

double covers, considering or not the influence of the relative irregularity of

f (see §3). Our bound-functions l = l(g, γ, s1, s2) or l̃ = l̃(g, γ) have rather

complicate expressions to be able to check their sharpness. Nevertheless we

can give examples to check their asymptotic good behaviour.

Theorem 2.4. Let f : S → B be a non isotrivial minimal genus b

pencil of curves of genus g which is a double cover of a fibration of genus

γ. We maintain the notations of 2.2.

(i) If g ≥ 2γ + s2 and g > 4γ + 1 then

λ(f) ≥

4 + 4
(g − 4γ − 1)[(g − 1)(γ − 1) + s2]

(g − 4γ − 1)[(g − 1)(g − γ) − gs2] + 2(g − 1)(g − s2 − 1)(γ − s1)γ
.

(ii) If 4γ + 1 ≤ g ≤ 2γ + s2 then

λ(f) ≥ 4 + 8
2(g − 4γ − 1)(g − 3

2(g − 4γ − 1) + 8(g − 1)(γ − s1)γ
.

Proof. Looking independently to the cases µH`1 ≥ µH1 /γ and µH`1 ≤ µH1 /γ

in 2.3 we always get

K2
S/B − 4χ ≥

2(g − 4γ − 1)

γ
µH1 .

Since µH1 ≥ 1
γ−s1

χ1 and g ≥ 4γ + 1 then

K2
S/B ≥ y1 = 4χ+

2(g − 4γ − 1)

γ(γ − s1)
χ1.

By Proposition 2.3 we know that if g ≥ 2γ + s2 then

K2
S/B ≥ y2 = 4

(g − 1)(g − s2 − 1)

(g − 1)(g − γ) − s2g
χ− 4

(g − 1)(g − s2 − 1)

(g − 1)(g − γ) − s2g
χ1.
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The bounds given above and in Proposition 2.3 can be viewed as linear

functions of χ1 = x. We consider the region delimited by this two linear

inequalities in the plane (x, y). Since y2(x0) = y1(x0) implies

x0 =
[4g(γ − 1) + 1 − γ + s2](γ − s1)γ

2[(g − 1)(g − γ) − gs2](g − 4γ − 1) + 4(g − 1)(g − s2 − 1)(γ − s1)γ
χ

then we find

λ(f) ≥ 4 +

4
(g − 4γ − 1)[g(γ − 1) + 1 − γ + s2]

(g − 4γ − 1)[(g − 1)(g − γ) − gs2] + 2(g − 1)(g − s2 − 1)(γ − s1)γ
.

The same proof holds if g ≤ 2γ + s2.

In an easier way we prove the theorem 0.5 stated in the introduction:

Theorem 2.5. Let f : S → B be a non isotrivial minimal genus b

pencil of curves of genus g which is a double cover of a fibration of genus

γ. If g ≥ 4γ + 1 then

λ(f) ≥ 4 + 4
(γ − 1)(g − 4γ − 1)

(g − 4γ − 1)(g − γ) + 2(g − 1)γ2
.

Theorem 2.4 has the following nice corollary:

Corollary 2.6. If q(S) = q(V ) = b+ γ and g ≥ 2γ + 1 then

λ(f) ≥ 4
g − 1

g − γ
.

Proof. It follows from 2.4 since s2 = 0, s1 = s = γ.

Remark 2.7. We notice that if γ = 1 we find λ(f) ≥ 4 for bielliptic

fibrations of genus g ≥ 5; see [1].

We give now some examples that show that the bounds given are

asymptotically sharp.

Example 2.8. Let A be an abelian surface with simple base points

linear system |C|, C2 = 4. Then g(C)=3. Take C1, C2 two smooth and

transversal members, let σ : Ã → A be the blow-up at the 4 base points

and let E be the proper transform of C; then E is the fibre of a fibration

https://doi.org/10.1017/S0027763000008060 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008060
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τ : Ã → P1. Let Z = Z1 + Z2 + Z3 + Z4 be the σ-exceptional reduced

divisor. Note that τ(Z) = P1. Let n >> m >> 0 and D = nE +mZ; then

|2D| has no base point. We can take then a smooth member R ∈ |2D| and

we consider the associated double cover π : S → Ã which has an induced

fibration fn,m : S → P1.The general fibre F is a double cover of E and we

have (note that K
Ã

= σ∗KA + Z = Z)

γ = g(E) = 3

g = g(F ) = 4m+ 5

K2
S = 2(K

Ã
+D)2 = 8(m+ 1)(2n−m− 1)

χOS = 2χO
Ã

+
1

2
DK

Ã
+

1

2
D2 = 2m(2n−m) + 2(n−m)

By Kawamata-Viehweg vanishing theorem, h1(Ã,O
Ã
(−D)) = 0 since

D is nef and big; hence

q(S) = q(Ã) = 2

and the slope is:

λ(fn,m) =
8(m+ 1)(2n−m− 1) + 32(m+ 1)

2m(2n−m) + 2(n−m) + 8(m+ 1)
.

For each fixed m > 0 we have g = 4m + 5, γ = 3 and if we allow n to be

arbitrarily big λ(fn,m) tends to

16(m+ 1)

4m+ 2
= 4 +

8

g − 3
= λ

′
.

Now if in Theorem 2.4 we put the data of fn,m: s2 = 0, s1 = 2, γ = 3,

g = 4m+ 5 and this time we allow m to increase, then we obtain

λ(f) ≥ 4 +
8

(g − 3) + 6(g−1)
g−13

' 4 +
8

g + 3
.

Remark 2.9. Let Y be a smooth surface and let B be a smooth curve

and denote by πY : Y ×B → Y , πB : Y ×B → B the two natural projections.

Consider C,E ∈ Div(Y ) where E has genus γ and let D,G ∈ Div(B) such

that there exist W , V smooth divisors, W ∈| 2(π∗Y (C) + π∗B(D)) | and V

∈| π∗Y (E) + π∗B(G) |. Let τ : Z → Y × B be the double cover branched

on W and set S = τ∗(V ). We put π = τ|S, φ = πB|V , f = φ ◦ π and we
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assume that W|V = ∆ is a smooth divisor. Then S is smooth, f : S → B is

a fibration and if m = deg(G), n = deg(D) and g is the genus of the general

fibre F of f then

λ(f) = 6
4(g − 1)(n+m) + 2m(KY + C +E)2

(3n+ 6m)(g − 1) + 12mχ(OY ) + 6m(g(C) − 1) + 3nEC

If we consider a K3 surface Y we find that for each smooth curve B and

for each γ ≥ 2 there exists a double cover fibration f of genus g = 4γ − 3

such that λ(f) = (16n+32m)(γ−1)
(3n+5m)(γ−1)+4 . If B = IP 1 we can take n = m = 1 and

obtain a genus 5 fibration f : S → IP 1 with λ(f) = 4 which is a double

cover of a genus 2 fibration. In particular the slope 4 can be achieved by

double cover fibrations with γ > 1.

Remark 2.10. The constant 4 g−1
g−γ that appears in Corollary 2.6 plays a

curious role in the study of double covers: it appears as a limit bound when

adding fibres to the ramification locus. Indeed, let F and E be respectively,

the general fibre of the fibrations f : S → B, φ : V → B where f is

assumed to be relatively minimal and non isotrivial. To simplify we assume

(although it is not necessary) that π : S → V is a double covering branched

on a smooth divisor ∆ ∈| 2L |, where L ∈ Pic(V ) such that f = π ◦ φ.

Let ∆n ∈| 2(L + φ∗Dn) | where Dn is a divisor on B of degree n > 0, let

πn : Sn → V be the double covering branched on ∆n and fn = πn ◦φ. Then

the sequence of the slopes {λ(fn)}n≥0 is monotonous and limn→∞ λ(fn) =

4 g−1
g−γ .

In particular, if γ = 0 or 1 (hyperelliptic or bielliptic fibrations) we

obtain 4− 4
g and 4 respectively, which are the exact lower bounds (cf. [17],

[1]). Nevertheless is not true that λexp = 4 g−1
g−γ is in general a lower bound

for double cover fibrations, as the following example shows.

Example 2.11. We start as in [4, 2.6 Example 3]. Let Y = A × H

where A and H are elliptic curves and ε is a point of order two on A. Let

X = Y/〈σ〉 where σ is an involution defined on Y by σ(a, h) = (a+ ε,−h).
We denote by A

′
the quotient of A by the group {0, ε} and by h1, ..., h4 the

points of order 2 on H. Let p : X → A′ and q : X → IP 1 = B the two

natural elliptic fibrations on X. Clearly KX = p∗(η) where η is the divisor

on Pic0(A
′
) associated to the étale covering A → A

′
. Let A

′

i = q−1(hi) for

i = 1, 2, 3, 4 and Q ∈ A
′
. Since the divisor δ = p∗(η+dQ)+A

′

1 is 2-divisible

on X we consider the double covering µ : V → X associated to δ. We denote
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p ◦ µ = φ : V → B and q ◦ µ = l : X → IP 1. Let C = φ∗(P
′
) and E = l∗(P )

where P
′
∈ A

′
and P ∈ B. Set L = nE +mC. Let π : Sd,n,m → V be the

double covering associated to L and let fd,n,m : Sd,n,m → B be the induced

fibration on B with fibre F = π∗(E). By the standard theory of double

covering we have :

λ(fd,n,m) = 8
2nm+ 2nd+ 5m+ 5d

4nm+ 2nd+ 5m+ 6d

and g = g(F ) = 4m + 4d + 1, γ = g(E) = 2d + 1. In particular λexp =

4 g−1
g−γ = 8 m+d

2m+d = limn→∞ λ(fd,n,m) but limd→∞ λexp = 8 > 82n+5
2n+6 =

limd→∞ λ(fd,n,m).

We remark that, in this counterexample, to obtain λ(f) < λexp we have

g ∼ 2γ, and that F is a double cover of a double cover.

Our techniques requires the assumption g ≥ 4γ+ 1. On the other hand

our next theorem (0.6 in the introduction) shows that for a double cover

fibration λ(f) ≥ 4 holds with a few exceptions.

Theorem 2.12. Let f : S → B be a non isotrivial minimal genus b

pencil of curves F of genus g which is a double cover of a fibration σ : V →
B with fibre E of genus γ. If F is not hyperelliptic nor tetragonal, γ ≥ 1

and g ≥ 2γ + 11 then λ(f) ≥ 4.

Proof. By [1, Theorem 2.1] we can assume F is not bielliptic since

2 + 11 = 13 ≥ 6. We can also assume F is not trigonal otherwise λ(f) ≥
14(g−1)
3g+1 ≥ 4 if g ≥ 9 using [11] (Main theorem).

Consider the Harder Narasimhan filtration of E = f∗ωS/B: 0 = E0 ⊂ E1 ⊂

... ⊂ El = E with slopes µ1 > ... > µl ≥ 0 and Xiao’s data {(Mi|F , ri, di)}
l
i=1.

Note that if |Mi|F | induces a map φi we have :

If deg(φi) = 1 di ≥ 3ri − 4 (if di ≤ g − 1), di ≥
3ri+g−4

2 (otherwise);

If deg(φi) = 2 di ≥ 2ri + 2 (since F is not hyperelliptic nor bielliptic)

If deg(φi) = 3 di ≥ 3ri (since F is not trigonal)

If deg(φi) ≥ 4 di ≥ 4(ri − 1) .

Observe that, since Mi ≤ Mi+1, the map φi factorizes through φi+1

and then di+1|di. Note also that ri+1 ≥ ri + 1 and di+1 ≥ di. Then we can

prove di + di+1 ≥ 4ri + 1 with a few exceptions. Indeed | Mi | does not

define any map only if (r1, d1) = (1, 0). Then d2 ≥ 5 = 4r1 + 1 except if

d2 = 2, 3, 4. All these possibilities imply r2 = 2 according to the previous
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inequalities and hence F would be hyperelliptic, trigonal or tetragonal, all

of these being impossible by hypothesis. From now on we assume ri ≥ 2.

If deg(φi) ≥ 2 then di ≥ 2ri and hence di + di+1 ≥ 2di + 1 ≥ 4ri + 1, if

di < di+1; if di = di+1, then φi = φi+1 and hence di + di+1 ≥ 4ri + 2.

If deg(φi) = 1 then also deg(φi+1) = 1. If di, di+1 ≤ g−1 then di+di+1 ≥
3ri − 4 + 3ri+1 − 4 ≥ 6ri − 5 ≥ 4ri + 1 since ri ≥ 3 (φi is birational).

If di ≤ g − 1, di+1 ≥ g then di + di+1 ≥ 2di + 1 ≥ 6ri − 7 ≥ 4ri + 1

except if ri = 3. But then di + di+1 ≥ (3.3 − 4) + g = 5 + g ≥ 13 ≥ 4ri + 1

since g ≥ 11 by hypothesis.

Finally assume di, di+1 ≥ g, being φi and φi+1 birational maps. Then

di + di+1 ≥
3ri + g − 4

2
+

3ri+1 + g − 4

2
≥ 3ri + g − 4 +

3

2
≥ 4ri + 1

if ri ≤ g − 3 (the case ri = g − 3 needs a bit care).

Assume ri = g − 2. If ri+1 = g then di+1 = 2g − 2 and we are done.

If ri+1 = g − 1 then the only case to check is di = 2g − 5, di+1 = 2g − 3.

Note that then h0(F,KF −Mi|F ) = h0(F,KF −Mi+1|F ) = 1 since F is not

hyperelliptic. By Riemann-Roch ri = h0(F,Mi|F ) = 1 + di + 1 − g = g − 3

which is impossible.

Assume ri = g − 1. Then di = 2g − 3 , (Mi+1|F , di+1) = (rl, dl) =

(g, 2g − 2) and di + di+1 = 4g − 5 = 4ri − 1.

For ri = g = rl we have dl + dl+1 = 2dl = 4g − 4 = 4rl − 4. By 1.6 we

conclude

K2
S/B ≥

∑l
i=1(di + di+1)(µi − µi+1)

≥
∑l

i=1(4ri + 1)(µi − µi+1) − 2(µl−1 − µl) − 5µl

= 4χ+ µ1 − 2µl−1 − 3µl

(7)

if rl−1 = g − 1, dl−1 = 2g − 3; otherwise

K2
S/B ≥

∑

i=1

l(4ri + 1)(µi − µi+1) − 5µl = 4χ+ µ1 − 5µl.

Let us consider first the general case. If µ1 ≥ 5µl we are done. Assume

µ1 ≤ 5µl. Let H = φ∗(ωV |B) and K = φ∗(ωV |B ⊗ L). By 1.2, Ei = Hψ(i) ⊕

Kφ(i) where µi = µHψ(i) = µKφ(i). By 1.3 we have that µl = min{µH`1 , µ
K
l2
} ≤

µH`1 , µ1 = max{µH1 , µ
K
1 } ≥ µH1 . Hence µH1 ≤ µ1 < 5µl ≤ 5µH`1 . By 2.3 we

have

K2
S/B ≥ 4χ− 24µH`1 + 2(g − 2γ + 1)max{

µH1
γ
, µH`1}.
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If γ ≥ 5 or
µH

1

γ ≤ µH`1 we have max{
µH

1

γ , µ
H
`1
} = µH`1 and hence

K2
S/B ≥ 4χ+ 2(g − 2γ − 11)µH`1 ≥ 4χ

when g ≥ 2γ + 11.

If γ = 2, 3, 4 and
µH

1

γ ≥ µH`1 then

K2
S/B ≥ 4χ− 24µH`1 + 2(g − 2γ + 1)

µH1
γ

≥ 4χ+ 2(g − 2γ − 11)
µH1
γ

≥ 4χ

when g ≥ 2γ + 11.

Consider finally the special case rl−1 = g − 1, dl−2 = 2g − 3. By 1.6,

with the notations of 1.6 where H = ωS/B it follows that Zl−1 is a section

of f such that Zl−1|F ≡ KF −Ml−1|F . We recall that Ml−1|F is the base

point free linear system induced on the general fibre by the piece El−1.

By 1.2 El−1 = Hψ(l−1) ⊕ Kφ(l−1). Since rl−1 = rl − 1 we only have two

possibilities: either Hψ(l−1) = H`1 , Kφ(l−1) = Kl2−1 and rKl2−1 = g − γ − 1

or Hψ(l−1) = H`1−1, Kφ(l−1) = Kl2 and rK`1−1 = γ − 1. We claim the second

possibility can not occur. Indeed consider the double cover π|F : F → E.

We have that

H0(F,ωF ) ' H0(E,ωE) ⊕H0(E,ωE ⊗ L|E)

This decomposition means that if D is the ramification divisor on F and

t ∈ H0(F,OF (D)) then for every ω ∈ H0(F,ωF ), ω = tπ∗|F (ω1) + π∗|F (ω2)

where ω1 ∈ H0(E,ωE) and ω2 ∈ H0(E,ωE ⊗ L|E).

We have V ∈ H0(F,ωF ) a codimension one subspace which produces,

after taking out the base point, the linear series | Ml−1|F |. The second

possibility asserts that V = π∗|FV1 ⊕ π∗|FV2 where V2 = H0(E,ωE ⊗ L|E)

and V1 is a codimension one subspace of H0(E,ωE). Since deg(ωE⊗L|E) ≥

2γ+10, V2 is base point free. Hence π∗|FV2 is base point free: a contradiction

since V has a base point.

So we have the following decompositions

El = H`1 ⊕Kl2 , El−1 = H`1 ⊕Kl2−1

where rKl2−1 = g − γ − 1. If El−2 = Hj ⊕ Kk we have several possibilities

according to 1.2.

If j = `1, k = l2−2 then µl−1 = µ(El−1/El−2) = µ(Kl2−1/Kl2−2) = µKl2−1

and µH`1 > µl−1.
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If j = `1 − 1, k = l2 − 1 then µl−1 = µ(H`1/H`1−1) = µH`1 .

If j = `1 − 1, k = l2 − 2 then µl−1 = µHl2 = µKl2−1.

In any case we get µl−1 = µH`1 . Since always happens that µ1 ≥ µH1 and

µl ≤ µH`1 , (7) reads:

K2
S/B ≥ 4χ+ µ1 − 2µl−1 − 3µl ≥ 4χ+ µH1 − 5µH`1 .

If µH1 ≥ 5µH`1 we are done. If µH1 < 5µH`1 then we can repeat the argument

of the general case.

§3. The slope of non-Albanese fibrations

In this section we consider the problem of the influence of the relative

irregularity qf = q(S) − b on the lower bound of the slope. In case f is a

double cover fibration this problem has been solved in the previous section

so we will deal only with non double cover fibrations. The nice fact is that

we find a lower bound which is an increasing function of the genus g and of

qf .

If qf = 0 then the general bound λ(f) ≥ 4 − 4
g holds and it is sharp.

So we will consider fibrations with qf = q(S) − b > 0. Those are precisely

the fibrations for which the Albanese map of S does not factorize through

f (i.e., b = 0 and q > 0 or S is of Albanese general type). We call such

fibrations non-Albanese fibrations.

The two basic known results in this area are:

Theorem 3.1. Let f : S → B be a non locally trivial minimal genus

b pencil of curves of genus g.

(i) If qf = q(S) − b > 0, then λ ≥ 4

(ii) Let µ1 = deg E1/rank(E1) where E1 is the maximal semistable sub-

bundle of f∗ωS/B. If g ≥ 2 and g > qf then K2
S/B ≥ 4g(g−1)

(2g−1) µ1. In

particular λ(f) ≥ 4g(g−1)
(2g−1)(g−qf ) .

Proof. (i) is [17, Theorem 2.4]. (ii) is [10, Lemma 2.7].

We motivated our Theorem 0.7 in the introduction: here we will give

its proof.

Theorem 3.2. Let f : S → B be a minimal genus b pencil of curves of

genus g which is not locally trivial and not a double cover fibration. Assume

that g = g(F ) ≥ 5 and qf = q(S) − b ≥ 1 then the following bounds hold :
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(i) If qf ≥ 2 and g ≥ 3
2qf + 2 then

λ(f) ≥
8g(g − 1)(4g − 3qf − 10)

8g(g − 1)(g − qf − 2) + 3(qf − 2)(2g − 1)
if F is not trigonal

λ(f) ≥
4g(g − 1)(4g − 3qf − 10)

4g(g − 1)(g − qf − 2) + (g − 4)(2g − 1)
if F is trigonal

(ii) If g < 3
2qf + 2 then

λ(f) ≥
4g(g − 1)(2g − 7)

4
3g(g − 1)(g − 3) + (g − 4)(2g − 1)

Proof. (i), (ii) Consider Fujita’s decomposition f∗ωS/B = A⊕ Z with

Z = O
⊕qf
B and the Harder-Narasimhan filtration of A:

0 = A0 ⊆ A1 ⊆ . . . ⊆ A` = A.

As in §1 we produce nef Q-divisors Ni, and effective divisors Zi in a

suitable blow-up of S σ : S̃ → S such that

Ni + µiF + Zi ≡ Nj + µjF + Zj ≡ σ∗KS/B

where {µi} are the Harder-Narasimhan slopes of A. Note that we can define

N`+1 = σ∗KS/B , Z`+1 = 0, µ`+1 = 0. Observe also that, if ri = rkAi,

∑̀
i=1

ri(µi − µi+1) = degA =def χf .

Each Ni induces on F a base point free linear system of degree di with

(projective) dimension greater or equal than ri−1. Note that Ni+µiF = Hi

is induced by a map ϕi : S → PB(Ai) and restricted to fibres, it induces

the above linear system. By hypothesis ϕi is never a double cover onto the

image and so the induced map ψi on the general F is not a double cover.

Hence we have

di ≥ 3(ri − 1) if degψi ≥ 3

di ≥ 3ri − 4 if degψi = 1 and di ≤ g − 1

di ≥ 3ri+g−4
2 if degψi = 1 and di ≥ g
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the latest two inequalities being “Clifford plus” Lemma. Considering the

above inequalities in the (r, d)-plane, we have the following two possibilities

(note that the lines d = 3r − 4 and d = 3r+g−4
2 meet exactly at the point

(r = 1
3 (g + 4), d = g)) depending on rankA = g − qf .

Case 1. g − qf ≥ 1
3(g + 4)

In the (r, d)-plane d =
2g− 3

2
qf−5

g−qf−2 r− g−4
g−qf−2 , is the line joining the point

(2,3) and the point (g− qf , 2g−
3
2qf −2). So in this case for every 1 ≤ i ≤ `,

di ≥
2g− 3

2
qf−5

g−qf−2 r− g−4
g−qf−2 except if (r1, d1) = (1, 0). Note that g− qf − 2 > 0

since g ≥ 3
2qf + 2.

By definition we have d`+1 = 2g − 2. So for 1 ≤ i ≤ ` we get (since

ri+1 ≥ ri + 1)

di + di+1 ≥
4g − 3qf − 10

g − qf − 2
ri −

3(qf − 2)

2(g − qf − 2)
=: Ari +B

except if (r1, d1) = (1, 0) and (r2, d2) = (2, 3). In this exceptional case we

get

d1 + d2 −Ar1 −B = 3 −A−B = −
g − 3

2qf − 1

g − qf − 2

If this happens F is trigonal since it has a linear system of degree 3 and

dimension 1.

Applying Xiao’s formula we get, in the general case,

K2
S/B ≥

∑̀
i=1

(di + di+1)(µi − µi+1) ≥
∑̀
i=1

Ari(µi − µi+1) +
∑̀
i=1

B(µi − µi+1) =

= Aχf +Bµ1 =
4g−3qf−10
g−qf−2 χf −

3(qf−2)
2(g−qf−2)µ1

Applying again Konno’s bound [10]:

K2
S/B ≥

4g(g − 1)

2g − 1
µ1

we can eliminate µ1 and we get

K2
S/B ≥

8g(g − 1)(4g − 3qf − 10)

8g(g − 1)(g − qf − 2) + 3(qf − 2)(2g − 1)
χf
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Note that this bound is a strictly increasing function of qf and that

K2
S/B ≥ 4χf if qf ≥ 2.

In the exceptional case (when F is trigonal) we get

K2
S/B ≥ Aχf+Bµ1−

g − 3
2qf − 1

g − qf − 2
(µ1−µ2) ≥ Aχf+

(
B −

g − 3
2qf − 1

g − qf − 2

)
µ1.

The same argument using K2
S/B ≥ 4g(g−1)

2g−1 µ1 yields

K2
S/B ≥

4g(g − 1)(4g − 3qf − 10)

4g(g − 1)(g − qf − 2) + (g − 4)(2g − 1)
χf

which is also a strictly increasing function of h. In this case we need qf ≥ 4

to get K2
S/B ≥ 4χf .

Case 2. g − qf ≤ 1
3(g + 4)

Let qf =
[

2
3g −

4
3

]
. Under our hypotheses qf ≥ qf , so we can take

A = A⊕O
⊕(qf−qf )
B instead of A. Hence, according to whether we are in the

general or in the special case, we get

K2
S/B ≥

8g(g − 1)(4g − 3qf − 10)

8g(g − 1)(g − qf − 2) + 3(qf − 2)(2g − 1)
χf

≥
8g(g − 1)(2g − 7)

8
3g(g − 1)(g − 3) + (2g − 9)(2g − 1)

χf

K2
S/B ≥

4g(g − 1)(4g − 3qf − 10)

4g(g − 1)(g − qf − 2) + (g − 4)(2g − 1)
χf

≥
4g(g − 1)(2g − 7)

4
3g(g − 1)(g − 3) + (g − 4)(2g − 1)

χf

since both expressions are increasing functions of qf and qf ≥ 2
3g− 1. Note

that the second bound is slightly smaller than the first one.

Remark 3.3. In the case (ii) of the theorem 0.7 we could consider that

for 1 ≤ i ≤ `, di ≥ 3ri − 4 and hence di + di+1 ≥ 6ri − 5 for 1 ≤ i ≤ `− 1.

But for i = ` we would have d` + d`+1 ≥ 2d` + 1 ≥ 6r` − 7 which produces

K2
S/B ≥ 6χf − (5µ1 + 2µ`)
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Hence using Xiao’s inequality with indexes {1, `}

K2
S/B ≥ (d1+d`)(µ1−µ`)+(d`+d`+1)µ` ≥ d`(µ1+µ`) ≥ (3g−3qf−4)(µ1+µ`)

we get

K2
S/B ≥ 6

3g − 3qf − 4

3g − 3qf + 1
χf

which depends on qf and it is better than (ii) for some special values of

(g, qf ) but it is a decreasing function of qf .

Nevertheless we point out that case (ii) of the theorem 0.7 is doubtful

to happen. Indeed, by a conjecture of Xiao (cf. [18]) the following inequality

should hold: qf ≤ 1
2(g+1). This inequality is true when b = 0 but is known

to be false in general (cf. [15]) although it seems that only the constant

term should be modified.

Remark 3.4. In Theorem 3.2 we worked with Z = O
⊕(q(S)−b)
B ; but

in most parts of the proof we only use that degZ = 0. Hence, we get the

same bounds in (ii) if we define h to be the rank of the degree zero part

in Fujita’s decomposition of E = f∗ωS/B (h ≥ q(S) − b = qf ). Note that

then the argument of Theorem 3.2 (ii) does not work since we do not know

whether Z can be cut in pieces of the length we need. In any case the bound

of the previous remark holds for this definition of h (just putting h instead

of qf ).

Remark 3.5. Remember that if F is trigonal we have (cf. [11] and

[16]):

λ(f) ≥
14(g − 1)

3g + 1

which is better than Theorem 3.2 for g � q − b and that gives λ(f) ≥ 4 if

g ≥ 9.

On the other hand we have:

Remark 3.6. As a function on g (fixing qf ) the bounds contained in

0.7 tend to be 4 when g grows (compare Theorem 3.1 (ii) where this limit

is 2).

Example 3.7. Let Y be a smooth surface, let B be a smooth curve

of genus b, Z = Y × B and let πY : Z → Y , πB : Z → B be the natural
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projections. If F ∈ Div(Y ) is smooth of genus g, D ∈ Div(B) and there

exists an ample and smooth divisor S ∈| π∗Y (F ) + π∗B(D) | then the slope

of the fibration f : S → B induced on S by πB is

λ(f) =
6g − 6 +K2

Y +KY F

χ(OY ) + g − 1
.

Now if ρ : Y = IP (E) → C is a ruled surface, H is a section such that

H2 = deg(E) and F ≡ 3H the fibration fm : Sm → B (m = degD) has

slope:

λ(fm) =
15m+ 16(g(C) − 1))

3m+ 2(g(C) − 1))

and verifies that qf = q(Sm) − b = g(C). In particular λ(fm) ≥ 5 and

limm→∞ λ(fm) = 5. This result shows the non obvious result that for any

qf , a general lower bound of λ(f) is below 5.

From Theorem 3.2 we deduce Theorem 0.8 in the introduction which

shows that λ(f) controls the existence of other fibrations on S:

Theorem 3.8. Let f : S → B be a minimal genus b pencil of curves

of genus g which is not locally trivial and not a double cover fibration. Let

C = {πi : S → Ci fibrations, ci = g(Ci) ≥ 2, πi 6= f}i∈I . Assume C 6= ∅ and

let c = max{ci|i ∈ I}. If qf = q−b ≥ 1 (i.e., f is not an Albanese fibration)

then

λ(f) ≥ 4 +
c− 1

g − c
.

Moreover if dim alb(S) = 1 (then necessarily b = 0) we have

λ(f) ≥ 4 +
q − 1

g − q
.

Proof. We recall that if f is not an Albanese fibration then either

dim alb(S) = 2 or b = 0 (provided q(S) 6= 0).

Let π : S → C be the fibration with maximal base genus c ≥ 2 (if

dim alb(S) = 1, then c = q and π = alb).

Since both the fibre of f and π are connected and g(C) ≥ 2 then

f∗ Pic0(B) does not include π∗ Pic0(C). In particular we can choose for

n � 0, a n-torsion element L ∈ Pic0(C) such that π∗L⊗i /∈ f∗ Pic0(B) for
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1 ≤ i ≤ n − 1. From the base change α : C̃ → C we can construct the

following diagram:

B
?
f

S - C
π

S̃

?
α̃

-
π̃

C̃

?
α

We set f̃ = f ◦ α̃. Since L⊗i
|F 6= OF for 1 ≤ i ≤ n − 1, f̃ has connected

fibres and so f̃ is again a fibration over B. Let F̃ be the fibre of f̃ . Then if

g̃ = g(F̃ ),

g̃ − 1 = n(g − 1)

Moreover we have

q(S̃) = h1(S̃,O
S̃
) = h1(S,OS) +

n−1∑

i=1

h1(S, (π∗L−i))

From the exact sequence

0 −→ H1(B,L−i) −→ H1(S, π∗L−i) −→ H0(B, (R1π∗OS) ⊗L−i) −→ 0

and using that h0(B, (R1π∗OS) ⊗ L−i) = 0 except for a finite number of

sheaves L−i ∈ Pic0(C) (which can be avoided with the election of L (see [5,

Lemma 3.1] and [2, §3]) we get

q̃f = q(S̃) − b = q(S) − b+ (n− 1)(c− 1) = qf + (n− 1)(c− 1)

since h1(B,L−i) = c− 1 by Riemann-Roch. In particular, q̃f ≥ 2 if n ≥ 2.

It is easy to check that if F is trigonal then F̃ is not trigonal if n � 0

(see for example [2, Lemma 5.12] ). On the other hand

lim
n→∞

g̃

q̃f
=
g − 1

c− 1
≥ 2

since the map π|F : F → C is at least of degree two (if it were of degree 1

clearly F ∼= C and S = B × C). Hence if n � 0 the case g̃ < 3
2 q̃f + 2 can

not occur.
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So if n � 0 we are under the hypotheses of Theorem 3.2 (i) (non

trigonal case). On the other hand the slope is invariant under étale base

changes (cf. [17]), then we get

λ(f) = λ(f̃) ≥
8g̃(g̃ − 1)(4g̃ − q̃f − 14)

8g̃(g̃ − 1)(g̃ − q̃f − 3) + 5(q̃f − 2)(2g̃ − 1)

where g̃ = n(g − 1) + 1, q̃f = qf + (n − 1)(c − 1) and n ∈ N is arbitrarily

large. So we can take limit as n grows and we get

λ(f) ≥ 4 +
c− 1

g − c

In case dim alb(S) = 1 then clearly c = q. Note that if this happens and

b ≥ 1, then alb(S) = B by the universal property of Albanese variety.

Corollary 3.9. Let f : S → B be as in Theorem 3.8. Assume λ(f) <

4 + 1
g−2 . Then S has no other fibration onto a curve C with g(C) = c ≥ 2.

Corollary 3.10. Let S be a minimal surface with q(S) ≥ 2 and let

F ⊆ S be an irreducible curve of geometric genus g such that h0(S,OS(F )) ≥
2. Let f : S̃ → P1 be a relatively minimal fibration with fibre F . If F is not

a double cover and λ(f) < 4 + q−1
g−q then S is of Albanese general type.
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Miguel Ángel Barja
Departament de Matmática Aplicada I
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