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Human populations living during the Holocene underwent considerable microevolutionary change. It has
been theorized that the transition of Holocene populations into agrarianism and urbanization brought about
culture-gene co-evolution that favored via directional selection genetic variants associated with higher gen-
eral cognitive ability (GCA). To examine whether GCA might have risen during the Holocene, we compare
a sample of 99 ancient Eurasian genomes (ranging from 4.56 to 1.21 kyr BP) with a sample of 503 modern
European genomes (Fst = 0.013), using three different cognitive polygenic scores (130 SNP, 9 SNP and 11
SNP). Significant differences favoring the modern genomes were found for all three polygenic scores (odds
ratios = 0.92, p = 001; .81, p = 037; and .81, p = .02 respectively). These polygenic scores also outper-
formed the majority of scores assembled from random SNPs generated via a Monte Carlo model (between
76.4% and 84.6%). Furthermore, an indication of increasing positive allele count over 3.25 kyr was found
using a subsample of 66 ancient genomes (r = 0.22, pone-tailed = .04). These observations are consistent
with the expectation that GCA rose during the Holocene.
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The Holocene (11.7 kyr BP to the present) was a time
of considerable microevolutionary change among human
populations (Hawks et al., 2007). Based on various con-
verging lines of molecular evidence, it has been estimated
that the rate of adaptive evolution among these popula-
tions may have been 100 times greater than during the pre-
ceding Pleistocene (Cochran & Harpending, 2009; Frost,
2011; Hawks et al., 2007). Novel adaptations that are
known to have arisen and spread during this period in-
clude lactase persistence (McCracken, 1971) and alterations
in hemoglobin, permitting enhanced tolerance to dimin-
ished oxygen levels among populations living at high alti-
tude (Bigham et al., 2010).

Other significant adaptations that may have been fa-
vored by selection during this period are the learning and
problem-solving mechanisms that give rise to general cog-
nitive ability (GCA). At the level of individual differences
in cognitive performance, GCA is characterized by positive
correlations among different measures of cognitive abilities
(Jensen, 1998). GCA is highly heritable, with behavior

genetic twin studies indicating that between 22% and 88%
of its variance, depending on age, may be due to the action
of additive genetic effects (Bouchard, 2004). Consistent
with this, studies employing genome-wide complex trait
analysis genomic-relatedness-based restricted maximum-
likelihood (GCTA GREML) have found that a significant
amount of the variance in GCA can be directly attributed
to large numbers of variants with individually small, but
cumulatively large (additive) effects on the phenotype
(Davies et al., 2011).
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GCA is not just present in human populations, but is
present (at lower levels) also in a variety of animal taxa, in-
cluding chimpanzees and other primates, raccoons, mice,
rats, and ravens (Galsworthy et al., 2014). The existence of
these species’ differences furthermore indicates that GCA
has been under directional selection, particularly in the pri-
mate clade. This seems to be especially true in the case
of abilities associated with tool use, which in primates are
among the most strongly associated with GCA, in addi-
tion to being the most heritable. They are also associated
with the strongest signals of recent directional selection
(Fernandes et al., 2014; Woodley of Menie et al., 2015).
This is consistent with the theoretical expectation (Geary,
2005) that GCA is an adaptation to coping with evolu-
tionarily novel challenges—these being challenges that oc-
cur infrequently throughout the phylogeny of a lineage—
thus cannot be solved with recourse to specialized cog-
nitive systems adapted to coping with recurrent problems
(such as those associated with cheater detection or lan-
guage acquisition). Instead, such problems require gener-
alized and open-ended problem-solving systems, such as
learning and working memory, in order to tailor solutions
to them. The ability to innovate a solution to such a prob-
lem (via the development of a tool) is a key manifestation
of the action of these generalized problem-solving systems
(Geary, 2005).

The Holocene is believed to have been an environment
of evolutionary relevance for GCA as it was characterized by
major transitions among human populations, especially in
Eurasia, away from a hunter-gatherer mode of subsistence,
towards a sedentary agriculture-based one and beyond that
to urbanization (Cochran and Harpending, 2009; Hawks
et al., 2007). This brought with it many evolutionarily novel
problems, such as having to cope with increased popu-
lation densities (Cochran and Harpending, 2009; Hawks
et al., 2007). Innovations that played a major role in fa-
cilitating this transition would have included the domes-
tication of cultivars and animals and the development of
novel tools for raising the productivity of land (such as the
plough; Cochran and Harpending, 2009). Cultural inno-
vations such as monotheism, monarchy, aristocracy, feu-
dalism, and currency-based economics arose in response
to the need for coping with the hierarchical power distri-
bution characteristic of large, static populations (Cochran
and Harpending, 2009). Those populations that were suc-
cessful in using innovations to solve novel problems would
furthermore have had an advantage in warfare, being bet-
ter able to innovate weapons and tactics, allowing them
to replace less successful populations. Population growth
would have increased the chances of rare GCA-enhancing
mutations arising, which would have favored the aggre-
gate fitness of those populations, permitting them to ex-
pand to the greatest extent (Cochran and Harpending,
2009; Darlington, 1970; Hawks et al., 2007). Thus, posi-
tive culture-gene co-evolutionary feedback occurring during

the Holocene might have rapidly increased GCA (Cochran
and Harpending, 2009). Consistent with this, there is ev-
idence that contemporary populations, which historically
made the transition from a hunter-gatherer to an agrar-
ian subsistence paradigm, have higher frequencies of work-
ing memory-enhancing genetic variants, compared to pop-
ulations that never or only recently made this transition
(Piffer, 2013).

High-resolution genome-wide association studies
(GWAS) have identified a number of single nucleotide
polymorphisms (SNPs) primarily associated with the
development of the central nervous system that predict
variance in both GCA and educational attainment—with
which GCA shares approximately 60% of its linkage-
pruned genetic variance (Davies et al., 2016; Domingue
et al., 2015; Okbay et al., 2016; Rietveld et al., 2013, 2014;
Selzam et al., 2017). These SNPs can be concatenated into
cognitive polygenic scores (henceforth POLYCOG). The term
‘cognitive’ is being used here as a broader term than GCA,
as it includes not only the cognitive ability measured by
standardized tests but also other sources of variance that
contribute to educational attainment. Polygenic scores are
more or less normally distributed and can be used as a
molecular index of GCA and educational attainment in
standard regression-type analyses.

Recent advances in the recovery of ancient DNA have
led to the accumulation of a wealth of genomic data on
ancient human and other hominid populations living in
the Holocene and prior epochs. These data permit com-
parisons to be made between ancient and modern human
populations using POLYCOG, thus permitting the question
of whether GCA rose during the Holocene to be tested di-
rectly. This analysis will here be conducted via the compar-
ison of an ancient Eurasian genome sample from between
4.56 and 1.21 kyr BP with a modern, ancestrally matched
European one.

Materials and Methods
Modern Genomes

Previous studies comparing ancient and modern genomes
have utilized the Phase3 1000 Genomes dataset (1000
Genomes Project Consortium, 2015) as amodern reference
set, on the basis that it is the most globally representative
set of genomes currently available (Allentoft et al., 2015).
The 2,504 samples in the Phase3 release are sourced from
26 populations, which can be categorized into five super-
populations by continent. These are East Asian (EAS),
South Asian (SAS), African (AFR), European (EUR), and
American (AMR). These genomes were obtained in the
form of VCF files, via the online 1000 Genomes FTP. The
EUR sample is comprised of 503 individuals from five dif-
ferent countries (Finland,Great Britain, Italy, Spain, and the
United States—specifically, north-western Europeans from
Utah).
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Ancient Genomes

Data on the ancient Holocene genomes were obtained from
the European Nucleotide Archive (Leinonen et al., 2011)
in the form of BAM files (accession number PRJEB9021).
These genomes, which have been utilized in previous re-
search to analyze the spread of variants associated with
skin and eye color, among other traits (Allentoft et al.,
2015), were aged between 4.56 and 1.21 kyr (M = 3.44 kyr,
SD = 0.62 kyr), covering the early Bronze to early Iron
Ages. Their genome-wide coverage is relatively low (0.01–
7.4X average depth, overall average = 0.7X; Allentoft et al.,
2015). There are 102 genomes in total; however, two sam-
ples (RISE507 and RISE508) were sourced from the same
individual (Allentoft et al., 2015). The total allele count was
therefore calculated employing the full sample, alternately
using each version of the genome—the results of the two
analyses were then averaged. The majority of the ancient
genomes were sourced from regions that are presently con-
sidered to be parts of Europe, the remainder being sourced
from Central Asia. Late Bronze Age European and Cen-
tral Asian gene pools resemble present-day Eurasian ge-
netic structure (Allentoft et al., 2015). Consistent with this,
the Fst values range from 0 to 0.08, when present-day 1000
Genomes EUR are compared with the various populations
comprising the Ancient samples, indicating little to mod-
est genetic differentiation (little differentiation corresponds
to an Fst range of 0 to 0.05, and modest to an Fst range of
0.05 to 0.15; Hartl & Clark, 1989). These values are lower
than the distance between present-day Europeans and East
Asians (Fst = 0.11; Allentoft et al., 2015). The two an-
cient genomes belonging to the Siberian Okunevo culture
(RISE515 and RISE516) were somewhat exceptional how-
ever, exhibiting modest differentiation relative to the EUR
sample when compared with the sample size and cover-
age weighted average Fst value computed for the additional
92 ancient genomes for which these data were available
(Fst = 0.074 vs. 0.013 for the remainder of the sample). On
this basis, they were removed from the final ancient sample
in order to reduce the genetic differentiation between the
ancient and modern samples. The final sample of ancient
genomes was therefore comprised of 99 genomes, sourced
from sites located in present-day Armenia (8%), Czech Re-
public (6%), Denmark (6%), Estonia (1%), Germany (10%),
Hungary (10%), Italy (3%), Kazakhstan (1%), Lithuania
(1%), Montenegro (2%), Poland (7%), Russia (36%), and
Sweden (8%).

Reference Genome

Paired-end reads are aligned to the reference human
genome obtained (in the form of a FASTA file) from the
UCSC database (GRCh37/hg19).

Read Realignment and Base Recalibration

After removing duplicate reads, the reads were realigned
around the known indels from the 1000Genome sample us-

ing the GenomeAnalysisTKLite-2.3-9 (GATK) toolkit. The
known indels set was obtained from the GATK resource
page (McKenna et al., 2010). After performing realignment,
the base recalibration step is performed (DePristo et al.,
2011; Van der Auwera et al., 2013). Known variant position
is taken into account to recalibrate the quality score.

Variant Calling and Computing POLYCOG

After performing realignment, the GenomeAnalysis-
TKLite-2.3-9 toolkit UnifiedGenotyper was used to iden-
tify the SNPs and short indels. The positive allele counts
(positive here refers to the sign on the β value derived from
GWAS regressions—indicating that they increase the trait
of interest) and allele frequencies of the target SNPs were
calculated from the Ancient Genome VCF files and also
from the 1000 Genomes VCF files using a custom-made
PERL script (available on request). Variant calling was used
to construct the first POLYCOG score from a list of 162
SNPs that were found to have high genome wide signifi-
cance (p ≤ 5 × 10−8) as ‘hits’ for educational attainment
in a recent large-scale, meta-analytic GWAS study (Okbay
et al., 2016). After controlling for ascertainment bias by
excluding those variants that were completely absent from
the ancient genomes (due to the ancient samples having
approximately 30% of the 1000 Genomes coverage) the
resultant POLYCOG score consisted of 130 ‘hits’ that were
present to some degree in both the ancient and modern
genomes.

A second POLYCOG score was constructed using data
from another GWAS study of educational attainment and
related phenotypes (Davies et al., 2016). In this study, 1,115
SNPs reached GWAS significance, of which 15 were inde-
pendent (linkage pruned) signals. Four SNPs were absent
from the ancient genomes; thus, a POLYCOG was calcu-
lated using the remaining 11 SNPs. A third POLYCOG score
was constructed utilizing a technique developed in Piffer
(2015, 2017; cf. Woodley of Menie, Piffer et al., 2016), em-
ploying only the nine GWAS hits from Okbay et al. (2016)
that were in close linkage disequilibrium (linkage cut-off
r ≥ 0.8, 500 kb linkage window) with ‘hits’ predicting ed-
ucational attainment across two other large GWAS stud-
ies (Davies et al., 2016; Rietveld et al., 2013). Linkage was
determined using the NIH LDLink program (Machiela &
Chanock, 2015) with the 1000 Genomes Phase3 CEU pop-
ulation as a reference group. These are presented in Table 1.

By focusing on only the smaller numbers of linked
replicates, the third POLYCOG score was developed as a
means of negating the likely high numbers of false positive
SNPs present in larger POLYCOG scores. This approach is
based on maximizing the signal of directional selection by
focusing on the GWAS hits with the highest significance
(or replication rate across databases), as opposed to maxi-
mizing the amount of variance explained, which instead is
the aim of the classical within-population GWAS design.
While it is true that the effect of selection on a phenotype is
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TABLE 1
Nine Linked Replicated SNPs With Linkage Disequilibrium (D′) and R2 Coefficients

Publication Index SNP Publication SNP Linked SNP source D′ R2

Davies et al. (2016) rs12042107_C rs1008078_C Okbay et al. (2016) 1 0.8
Rietveld et al. (2013) rs11584700_G rs11588857_A Okbay et al. (2016) 1 0.94
Rietveld et al. (2013) rs4851266_T rs12987662_A Okbay et al. (2016) 1 1
Davies et al. (2016) rs13086611_T rs148734725_A Okbay et al. (2016) 1 1
Davies et al. (2016) rs11130222_A rs11712056_T Okbay et al. (2016) 1 0.98
Davies et al. (2016) rs55686445_C rs62263923_G Okbay et al. (2016) 1 0.98
Davies et al. (2016) rs12553324_G rs13294439_C Okbay et al. (2016) 1 0.98
Davies et al. (2016) rs4799950_G rs12969294_G Okbay et al. (2016) 1 0.92
Rietveld et al. (2013) rs9320913_A rs9320913_A Okbay et al. (2016) 1 1

proportional to the additive genetic variance, the selection
coefficient for a given SNP is proportional to the amount of
variance explained by that SNP. Since the rate of allele fre-
quency change is proportional to the selection coefficient,
and because both GWAS data and evolutionary processes
are notoriously very noisy, it is important to maximize sig-
nal by limiting the analysis to the SNPs with higher GWAS
significance, which are also more likely to account for
phenotypic variance. This is the same reason why detecting
selection on phenotypes that are influenced by a few genes
with large effects can be accomplished with traditional, less
sensitive tools (e.g., Fst index) than detecting a signal of
polygenic selection (Berg & Coop, 2014).

Analysis

All statistical analyses were conducted using R v. 3.3.2 (R
Core Team, 2016). In order to test the hypothesis that
POLYCOG had different proportions of the positive and neg-
ative alleles between the two populations against the null
hypothesis that there would be no differences, we used
Fisher’s Exact and chi-squared tests, since the data are bi-
nary (positive vs. negative allele/ancient vs. modern popu-
lations). At the same time, the contingency table dealt with
unequal representation of genomes for each SNP within
the ancient group (i.e., some SNPs were called if they were
present in only one individual) by incorporating this infor-
mation (each SNP is assigned a weight proportional to the
number of genomes in which the SNP was called); odds ra-
tios (OR) computed utilizing Fisher’s Exact Test were pre-
ferred over the chi-squared test because it allows exact es-
timation of the likelihood of the null hypothesis, rather
than relying on an approximation. An alternative to Fisher’s
Exact test is the log-likelihood ratio G-test, which is em-
ployed here as an additional test of significance. This was
implemented using the R package DescTools (Signorell,
2016). Additional analyses were also performed on the two
smaller POLYCOG (11 and 9 SNPs) using two unconditional
tests (considered more powerful alternatives); specifically,
Barnard’s (1945, 1947) and Boschloo’s (1970) Exact tests,
utilizing the R package Exact (Calhoun, 2016).

In constructing POLYCOG for conventional GWAS-type
analyses, it is common practice to weight each SNP by its
associated GWAS regression β value, as these polygenic

scores are typically the sum of very large numbers of SNPs
with highly heterogeneous effect sizes as predictors of the
phenotype of interest (e.g., Okbay et al., 2016). These re-
gression weights were not found to significantly correlate
with the frequency differences betweenmodern and ancient
populations for the largest of our POLYCOG, however (130
SNP; r = -0.128, p = .07), likely because selecting only the
SNPs with the highest p values introduced range restric-
tion among the regressionweights. Therefore, given that the
SNPs comprising our POLYCOG could be considered to be
roughly ‘equally good’ as predictors of the trait of interest,
the inclusion of regression β in the analysis as weights is
therefore unlikely to add additional power, which in turn
justifies the use of a more straightforward and also parsi-
monious binarization approach in comparing the ancient
and modern genomes.

A second analysis was carried out on a subsample of
66 ancient genomes for which sample age was known (age
range: 1.21–4.46 kyr). The correlation was computed be-
tween individual positive allele counts derived using the 130
SNP POLYCOG with genome age (ascertained by utilizing
radiocarbon dating), in order to test for change over time.
Since on average the ancient samples had approximately
30% of the 1000 Genomes coverage, carrying out this anal-
ysis using the smaller POLYCOG would add too much noise
and produce unreliable estimates for individual genomes.
Two additional genomes for which age data were present
(RISE413 and RISE42) were identified as having signifi-
cantly outlying values of positive allele count based on the
outlier-labeling rule (Hoaglin et al., 1986) because therewas
only one target SNP present per genome. For the analysis
only genomes whose coverage was limited to two or more
of the 130 SNPs were retained. Removing these two outly-
ing genomes also reduced the skew of the regression resid-
ual from 1.16 to 0.698, making the remaining dataset more
amenable to parametric regression.

Random SNP Polygenic Scores

As an additional robustness test, a method developed by
Piffer (2017) was employed, in which the Monte Carlo
model was run using randomly drawn andnon-overlapping
sets of SNPs matched for minor allele frequency (MAF).
The expectation is that the three POLYCOG should
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TABLE 2
Two by Two Contingency Tables With Positive and Negative GWAS Effect Allele Counts for Ancient and Modern Genomes for Each of
the Three POLYCOG, Along with Fisher’s Exact Test OR and G-Test Log-Likelihood Ratios

Positive Negative Fisher’s Exact Test.
allele allele OR; 95% CI;

POLYCOG Genome grouping count count p-value G-test; p value

Nine linked-hits
POLYCOG. N = 9

Ancient genome 177 273 0.81 [0.665, 0.990];
p = .037

G = 4.445;
p = .035Modern genome 4,017 5,037

Pooled analysis
POLYCOG (Okbay
et al., 2016).
N = 130

Ancient genome 3298.5 3997.5 0.92 [0.882, 0.969];
p = .001

G = 10.486;
p = .001Modern genome 61,666 69,114

Significant hits
POLYCOG (Davies
et al., 2016). N = 11

Ancient genome 268.5 282.5 0.81 [0.683, 0.969];
p = .02

G = 5.536;
p = .019Modern genome 5,960 5,106

Note: The non-integer allele counts result from averaging the genomes of two samples (RISE507 and RISE508) that came from the same individual. The samples
had different allele counts likely resulting from different coverage.

outperform the majority of random polygenic scores in
terms of revealing a frequency difference, favoring modern
populations, consistent with theory. The random polygenic
scores were computed for non-overlapping sets of SNPs for
the modern and ancient populations and for each allele (A,
B). A 2× 2 matrix was computed for each comparison (Al-
lele A/Ancient population, Allele A/Modern population,
Allele B/Ancient population, Allele B/Modern population).
As with the POLYCOG, OR for each matrix were then com-
puted. Finally, the proportion of ORs with a weaker effect
(i.e., higherOR value) than what was observed for the three
POLYCOG was computed. Frequency matching was carried
out using SNPSnap (Pers et al., 2015), by entering the nine
linked replicate SNPs, which it must be recalled are likely
the closest SNPs to the true causal variants, and setting LD
at r2 < 0.1 (for EUR). This resulted in a total of 7,369 SNPs
being retrieved.

Results
A 2 × 2 contingency table was created for each of three al-
ternative POLYCOG assigning allele counts by GWAS effect
status (positive or negative effect) to ancient and modern
genomes. OR of the association between positive or nega-
tive alleles and ancient or modern populations were com-
puted and are reported in Table 1. As Fisher’s Exact and
chi-squared tests revealed nearly identical results, only the
former are reported. In addition, the G-test (log-likelihood
ratio) is reported as an alternative test of the significance
of the difference. As a further robustness test, the differ-
ence in POLYCOG between the two sets of genomes was ex-
amined using the unconditional Barnard’s and Boschloo’s
Exact tests. These statistics are extremely computation-
ally intensive when large numbers of pair-wise compar-
isons are employed; therefore, they could only be used
for the two smaller POLYCOG (9 and 11 SNPs). The re-
sults were identical to those obtained via the conditional
techniques.

The Monte Carlo model was run with 6,740 random
SNPs (after removal of the ones absent from the ancient
genome in order to control for ascertainment bias). Hence,
748, 613, and 52 random SNP polygenic scores (corre-
sponding to the 9, 11, and 130 SNPs POLYCOG, respec-
tively) were computed. The POLYCOG outperformed the
random polygenic scores (producing lower OR values) in
the majority of instances (9 SNPs = 76.4 % [572 out of
749 draws]; 130 SNPs = 84.6% [44 out of 52 draws]; 11
SNPs = 77.8% [477 out of 613 draws]), which indicates a
low probability that the results presented in Table 2 are due
to chance.

These results indicate that modern European genomes
have higher POLYCOG relative to ancient ones (sourced
from Europe and Central Asia).

A second analysis was conducted to investigate the asso-
ciation between POLYCOG and sample year within the sub-
set of 66 ancient genomes for which radiocarbon age esti-
mates were available (from Allentoft et al., 2015). If selec-
tion is operating on these variants throughout the 3.25 kyr
covered by this sample, then less ancient genomes should
have higher positive allele counts relative to more ancient
ones. The correlation of positive allele frequency with the
sample year (scaled using the BCE/CE calendar era) was in
the expected positive direction (samples from more recent
years had higher positive allele counts); the result is further-
more statistically significant when a one-tailed test is used
(r= 0.217, 95%CI [-0.026, 0.043], pone-tailed = .04), which is
theoretically justified on the basis that the direction of the
effect was anticipated (Kimmel, 1957). The scatter plot is
presented in Figure 1.

Coverage was not correlated with either genome age
(r = 0.022) or positive allele count (r = -0.054). Addition-
ally, a multiple linear regression was run, with positive al-
lele count along with coverage and age as dependent and
independent variables respectively. This did not alter the
effect size compared to the sample without the outliers for
models with andwithout coverage controlled (β = 0.209 vs.
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FIGURE 1
(Colour online) Scatter plot of 130 SNP POLYCOG positive allele counts for 66 ancient genomes as a function of year (scaled in terms of
the BCE/CE calendar eras). Note: r = 0.217, pone-tailed = .04, N = 66. Gray area around trend line corresponds to the 95% CI.

0.211). The regressionmodels were run with each duplicate
genome (RISE508 and RISE507) separately, the resultant β

values were then averaged.

Discussion
TheHolocene appears to have been an environment of evo-
lutionary relevance forGCA, asmodernEuropean genomes
have higher POLYCOG relative to those sourced (predomi-
nantly) fromBronzeAge Europe andCentral Asia. AMonte
Carlomodel employing polygenic scores comprised of non-
overlapping sets of random SNPs revealed that the three
POLYCOG outperformed between 76.4% and 84.6% of ran-
dom polygenic scores. It must be noted also that a major
strength of our analysis is that it used real allele frequency
data, as opposed to traditional Monte Carlo simulation-
based approaches, which rely on computer-generated (vir-
tual) data.

A second analysis revealed that within a subset of the an-
cient genome sample, there was a (one-tailed) significant
trend toward increased positive allele counts over time. As
was mentioned in the section Introduction, these SNPs are
assumed to exert their effects on educational attainment
mainly through GCA, but also through other traits relevant
for educational attainment.While the increase in these vari-
ants over time is certainly consistent with the expectation of
rising GCA, the possibility that their increase indicates a si-
multaneous rise in other factors thatmake unique contribu-
tions to educational attainment (such as ‘slow’ life history or
‘high-K’ social cognitive characteristics; Giosan, 2006) can-
not be ruled out.

This increase in POLYCOG can realistically be accounted
for in two different ways: (1) microevolutionary selection
pressures on standing genetic variation, resulting in soft
sweeps (Hermisson & Pennings, 2005; Orr & Betancourt,
2001), and (2) population expansion, replacement, and ad-
mixture due to migration.

The idea that selection takes many millennia to pro-
duce noticeable changes in a population is at odds with
data indicating that within human populations, changes in
the means of heritable traits such as height, weight, choles-
terol levels, blood pressure, age at first birth, and age at
menopause can occur due to selection over a relatively short
period of time (Stearns et al., 2010). Selection operating
over the course of millennia (as in the present case) would
be expected to produce quite considerable microevolution-
ary change. As was discussed in the section Introduction,
Holocene populations appear to have undergone acceler-
ated adaptive microevolution relative to those living in the
Pleistocene (Cochran & Harpending, 2009; Hawks et al.,
2007). Increasing cultural complexity and technological so-
phistication among these populations may therefore have
arisen in part from selection favoring GCA. Cultural and
technological change can in turn create, via culture-gene
co-evolutionary feedback, conditions favoring higher GCA
(Cochran & Harpending, 2009; Piffer, 2013). This process
likely continued until the Late Modern Era, where it has
been noted that amongWestern populations living between
the 15th and early 19th centuries, those with higher social
status (which shares genetic variance with, and is therefore
a proxy for GCA; Trzaskowski et al., 2014) typically pro-
duced the most surviving offspring. These in turn tended
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toward downward social mobility due to intense competi-
tion, replacing the reproductively unsuccessful low-status
stratum and effectively ‘bootstrapping’ those populations
via the application of high levels of skill to solving prob-
lems associated with production and industry, eventually
leading to the Industrial Revolution in Europe (Clark, 2007,
2014). The millennia-long microevolutionary trend favor-
ing higher GCA not only ceased, but likely went into re-
verse among European-derived populations living in the
19th century (Lynn, 1996; Lynn&Van Court, 2004), largely
in response to factors such as the asymmetric use of birth
control and prolonged exposure to education among those
with high GCA (Lynn, 1996). Consistent with this, it has
been found that various POLYCOG negatively predict re-
productive success in contemporary Western populations
(Beauchamp, 2016; Conley et al., 2016; Kong et al., 2017;
Woodley of Menie, Schwartz et al., 2016). It is important to
note that this recent microevolutionary trend (working in
the opposite direction) has likely attenuated the difference
in POLYCOG between the modern and ancient genomes
noted in the present study.

Changes in allele frequencies can also occur via popula-
tion expansion and replacement. The end of the Last Glacial
Maximum initiated major cultural changes, leading to the
development of agriculture, population growth, and the
subsequent Neolithicization process (8–5 kyr BP), which
involved the spread of genes aswell as culture from theMid-
dle East (Sokal et al., 1991). Another big cultural change as-
sociated with major population movements was the Bronze
Age, whose culture started replacing the Neolithic farming
cultures in temperate Eastern Europe 5 kyr BP (Allentoft
et al., 2015). This Pontic-Caspian Steppe genetic compo-
nent among contemporary Europeans is associatedwith the
Corded Ware and Yamnaya peoples, and possibly accounts
for the spread of Indo-European languages (Allentoft et al.,
2015). Being potentially highly fitness enhancing, admix-
ture among populations may have furthermore led to the
spread of the causal variants that are tapped by POLYCOG.
However, recent evidence suggests that the European and
Central Asian gene pools toward the end of the Bronze Age
closely mirror present-day West Eurasian genetic structure
(Allentoft et al., 2015). Hence, population movements and
replacements likely played a larger role in the evolution
of GCA prior to the period covered by the present sam-
ple. Sicily and Sardinia, and the southern fringes of Europe
in general are notable exceptions however, as they tend to
cluster genetically with Neolithic farmers (Allentoft et al.,
2015).

The first theoretical scenario (microevolutionary change
involving standing genetic variation) most likely therefore
played the largest role in the POLYCOG increase during the
time period covered by our samples.

It has been noted that concomitant in time with the ap-
parent increase in POLYCOG observed presently is an appar-
ent parallel selection trend favoring smaller brains (Hawks,

2011). These trends may at first appear to be contradic-
tory, as GCA is positively associated with brain volume. It
must be noted, however, that meta-analysis reveals that the
phenotypic association is weak (ρ = .24; Pietschnig et al.,
2015) with the genetic correlation being slightly stronger
(rg ∼0.30; Okbay et al., 2016), indicating that the majority
of the phenotypic and genotypic variance in brain volume is
unrelated to variance in GCA. Furthermore, studies utiliz-
ing POLYCOG have found that it does not predict variation
in brain volume, despite both POLYCOG and brain volume
making independent contributions to GCA (Deary et al.,
2016). These findings suggest that declining brain volume
during the Holocene may have been a consequence of en-
hanced brain efficiency stemming from increased cortical-
ization and neuronal connectivity, with more bioenergeti-
cally optimized brains simply requiring less mass to achieve
greater processing power. It may therefore be this process
that the increase in POLYCOG is tracking in our samples.
A prediction stemming from Hawks (2011) is that variants
that predict brain volume and not GCA should show the
opposite trend in time to POLYCOG when examined in the
context of the present samples.

A potential limitation of the present work is linkage dis-
equilibrium (LD) decay. This takes place when a pair of
SNPs on a chromosome in a population moves from link-
age disequilibrium to linkage equilibrium over time, due to
recombination events eventually occurring between every
possible point on the chromosome (Bush & Moore, 2012).
LD decay can be an issue when comparing polygenic scores
computed using genetically different populations (i.e., ei-
ther across time or space). Since most GWAS hits are ac-
tually tag SNPs, decay in LD implies that the causal SNPs
will be less efficiently flagged by the tag SNPs, resulting
in the tag SNPs coming to resemble a sample of random
SNPs. Since the frequency of the average SNP allele is 50%,
the GWAS hits will tend to converge towards an average
frequency of 50%, with increasing LD decay. The impli-
cation of this for our analysis is that our estimates of the
difference in POLYCOG between the reference population
(modern European) and the ancient population are there-
fore conservative when the mean frequency is lower than
50%,while the opposite is truewhen the frequency is higher
(the mean frequencies in the modern 1000 Genomes sam-
ples were the following: for the 130 SNPPOLYCOG = 47%, 9
SNP POLYCOG = 44%, and the 11 SNP POLYCOG = 53%).
Furthermore, because GCA likely involves around 10,000
causal variants (Hsu, 2014), and as there is relatively lit-
tle genetic differentiation between the ancient and mod-
ern genomes, as indicated by the sample size and coverage
weighted Fst value of 0.013, the results of simulations in-
dicate that LD decay is ultimately expected to be minimal
(Scutari et al., 2016) and should not be confounding the re-
sults.

The present effort constitutes a direct attempt to show
the theoretically anticipated change in POLYCOG over
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time utilizing relatively simple methodology, which makes
few modeling assumptions. The difference in POLYCOG
between the ancient and modern genomes is indifferent
to the use of alternate versions of POLYCOG and to the
use of various statistical techniques for quantifying the
significance of the group difference. The results of the
Monte Carlomodel indicate that themajority of frequency-
matched random SNP polygenic scores underperform rel-
ative to the POLYCOG. Among a subsample of the ancient
genomes, indications of increasing positive allele counts as
a function of time are also present. It is acknowledged that
there are limitations in the data employed—larger samples
of ancient genomes would certainly increase confidence in
the present finding. Furthermore, it is acknowledged that
any of the discrete lines of evidence that have been brought
to bear on the question can, in isolation, of course be criti-
cized, with some lines being consideredweaker than others.
It must be noted, however, thatmultiple operationalizations
of the variable of interest and multiple methods have been
employed here, which, even if each individual line of evi-
dence is to be considered ‘weak’, should nevertheless greatly
increase confidence in our conclusion when the evidence is
considered collectively as part of a larger nomological net
work (Cronbach & Meehl, 1955).

References
1000Genomes Project Consortium. (2015). A global reference

for human genetic variation. Nature, 526, 68–74.
Allentoft, M. E., Sikora, M., Sjögren, K.-G., Rasmussen, S.,

Rasmussen, M., … Willerslev, E. (2015). Population ge-
nomics of Bronze Age Eurasia. Nature, 522, 167–174.

Barnard, G. A. (1945). A new test for 2× 2 tables.Nature, 156,
783–784.

Barnard, G. A. (1947). Significance tests for 2 × 2 tables.
Biometrika, 34, 123–138.

Beauchamp, J. P. (2016). Genetic evidence for natural selection
in humans in the contemporary United States. Proceedings
of the National Academy of Sciences of the United States of
America, 113, 7774–7779.

Berg, J. J., & Coop, G. (2014). A population genetic signal of
polygenic adaptation. PLoS Genetics, 10, e1004412.

Bigham, A., Bauchet, M., Pinto, D., Mao, X., Akey, J. M., …
Shriver, M. D. (2010). Identifying signatures of natural se-
lection in Tibetan and Andean populations using dense
genome scan data. PLOS Genetics, 6, e1001116.

Boschloo, R. D. (1970). Raised conditional level of significance
for the 2 × 2-table when testing the equality of two proba-
bilities. Statistics Neerlandica, 24, 1–35.

Bouchard, T. J. Jr. (2004). Genetic influence on human psycho-
logical traits – A survey. Current Directions in Psychological
Science, 13, 148–151.

Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-
wide association studies. PLoS Computational Biology, 8,
e1002822.

Calhoun, P. (2016). Exact: unconditional exact test. R Pack-
age Version 1.7. Retrieved from https://CRAN.R-project.
org/package=Exact

Clark, G. (2007). Farewell to alms: A brief economic history of
the world. Princeton, NJ: Princeton University Press.

Clark, G. (2014). The son also rises: Surnames and the his-
tory of social mobility. Princeton, NJ; Princeton University
Press.

Cochran, G., & Harpending, H. (2009). The 10,000 year ex-
plosion: How civilization accelerated human evolution. New
York, NY: Basic Books.

Conley, D., Laidley, T., Belsky, D. W., Fletcher, J. M.,
Boardman, J. D., & Domingue, B. J. (2016). Assortative
mating and differential fertility by phenotype and geno-
type across the 20th century. Proceedings of the National
Academy of Sciences of the United States of America, 113,
6647–6652.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity
in psychological tests. Psychological Bulletin, 52, 281–
302.

Darlington, C. D. (1970). The evolution of man and society.
New York, NY: Simon & Schuster.

Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D.,
Hagenaars, S. P., … Deary, I. J. (2016). Genome-wide asso-
ciation study of cognitive functions and educational attain-
ment in UK Biobank (N = 112151). Molecular Psychiatry,
21, 758–767.

Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., …
Deary, I. J. (2011). Genome-wide association studies estab-
lish that human intelligence is highly heritable and poly-
genic.Molecular Psychiatry, 16, 996–1005.

Deary, I. J., Cox, S. R., & Ritchie, S. J. (2016). Getting Spear-
man off the skyhook: One more in a century (since Thom-
son, 1916) of attempts to vanquish g. Psychological Inquiry,
27, 192–199.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V.,
Maguire, J. R.,…Daly,M. J. (2011). A framework for varia-
tion discovery and genotyping using next-generation DNA
sequencing data. Nature Genetics, 43, 491–498.

Domingue, B. W., Belsky, D. W., Conley, D., Harris, K. M., &
Boardman, J. D. (2015). Polygenic influence on educational
attainment. AERA Open, 1, e13.

Fernandes, H. B. F., Woodley, M. A., & te Nijenhuis, J. (2014).
Differences in cognitive abilities among primates are con-
centrated on G: Phenotypic and phylogenetic comparisons
with two meta-analytical databases. Intelligence, 46, 311–
322.

Frost, P. (2011). Human nature or human natures? Futures, 43,
740–748.

Galsworthy, M. J., Arden, R., & Chabris, C. F. (2014). Animal
models of general cognitive ability for genetic research into
cognitive functioning. InD. Finkel &C. A. Reynolds (Eds.),
Behavior genetics of cognition across the lifespan (pp. 257–
278). New York, NY: Springer.

Geary, D. C. (2005).The origin ofmind: Evolution of brain, cog-
nition, and general intelligence. Washington, DC: American
Psychological Association.

278 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2017.37 Published online by Cambridge University Press

https://CRAN.R-project.org/package=Exact
https://doi.org/10.1017/thg.2017.37


GCA-Associated Variants Increased in Prevalence Since the Bronze Age

Giosan, C. (2006). High-K strategy scale: A measure of the
high-K independent criterion of fitness. Evolutionary Psy-
chology, 4, 394–405.

Hartl, D. L., & Clark, A. G. (1989). Principles of population ge-
netics (2nd ed.). Sunderland, MA: Sinauer Associates.

Hawks, J. (2011). Selection for smaller brains in Holocene hu-
man evolution. arXiv: 1102.5604.

Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C.,
& Moyzis, R. K. (2007). Recent acceleration of human
adaptive evolution. Proceedings of the National Academy
of Sciences of the United States of America, 104, 20753–
20758.

Hermisson, J., & Pennings, P. S. (2005). Soft sweeps: Molecu-
lar population genetics of adaptation from standing genetic
variation. Genetics, 169, 2335–2352.

Hoaglin, D. C., Iglewicz, B., & Tukey, J. W. (1986). Perfor-
mance of some resistant rules for outlier labeling. Journal
of the American Statistical Association, 81, 991–999.

Hsu, S. D. H. (2014). On the genetic architecture of intelli-
gence and other quantitative traits. arXiv: 1408.3421.

Jensen, A. R. (1998). The g factor: The science of mental ability.
Westport, CT: Praeger.

Kimmel, H. D. (1957). Three criteria for the use of one-tailed
tests. Psychological Bulletin, 54, 351–353.

Kong, A., Banks, E., Poplin, R., Garimella, K. V., Maguire,
J. R., … Daly, M. J. (2017). Selection against variants in the
genome associated with educational attainment. Proceed-
ings of the National Academy of Sciences of the United States
of America, 114, E727–E732.

Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cedeno-
Tárraga, A., … Cochrane, G. (2011). The European
Nucleotide Archive. Nucleic Acids Research, 39, D28–
D31.

Lynn, R. (1996). Dysgenics: Genetic deterioration in modern
populations. Westport, CT: Praeger.

Lynn, R., & Van Court, M. (2004). New evidence of dysgenic
fertility for intelligence in the United States. Intelligence, 32,
193–201.

Machiela, M. J., & Chanock, S. J. (2015). LDlink: A web-
based application for exploring population-specific hap-
lotype structure and linking correlated alleles of possible
functional variants. Bioinformatics, 31, 3555–3557.

McCracken, R. D. (1971). Lactase deficiency: An exam-
ple of dietary evolution. Current Anthropology, 12,
479–517.

McKenna, A., Hanna,M., Banks, E., Sivachenko, A., Cibulskis,
K., … DePristo, M. A. (2010). The Genome Analysis
Toolkit: A MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Research, 20,
1297–1303.

Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers,
T. H., … Benjamin, D. J. (2016). Genome-wide association
study identifies 74 loci associated with educational attain-
ment. Nature, 533, 539–542.

Orr, H. A., & Betancourt, A. J. (2001). Haldane’s sieve and
adaptation from the standing gene variation. Genetics, 157,
875–884.

Pers, T. H., Timshel, P., & Hirschhorn, J. N. (2015). SNPsnap:
Aweb-based tool for identification and annotation of SNPs.
Bioinformatics, 31, 418–420.

Pietschnig, J., Penke, L.,Wicherts, J. M., Zeiler, M., & Voracek,
M. (2015). Meta-analysis of associations between human
brain volume and intelligence differences: How strong are
they and what do theymean?Neuroscience & Biobehavioral
Reviews, 57, 411–432.

Piffer, D. (2013). Correlation of the COMT Val158Met poly-
morphismwith latitude and a hunter-gatherer lifestyle sug-
gests culture-gene coevolution and selective pressure on
cognition genes due to climate. Anthropological Science,
121, 161–171.

Piffer, D. (2015). A review of intelligence GWAS hits: Their
relationship to country IQ and the issue of spatial autocor-
relation. Intelligence, 53, 43–50.

Piffer, D. (2017). Evidence for recent polygenic selection
on educational attainment and underlying cognitive abil-
ities inferred from GWAS hits: A Monte Carlo simu-
lation using random SNPs. Preprints 2017, 2017010127,
doi:10.20944/preprints201701.0127.v3.

R Core Team. (2016). R: A language and environment for statis-
tical computing. Vienna, Austria: R Foundation for Statisti-
cal Computing.

Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., …
Koellinger, P. D. (2014). Common genetic variants associ-
atedwith cognitive performance identified using the proxy-
phenotype method. Proceedings of the National Academy of
Sciences of the United States America, 111, 13790–13794.

Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T.,
… Koellinger, P. D. (2013). GWAS of 126,559 individuals
identifies genetic variants associated with educational at-
tainment. Science, 340, 1467–1471.

Scutari, M., Mackay, I., & Balding, D. (2016). Using genetic
distance to infer the accuracy of genomic prediction. PLOS
Genetics, 12, e1006288.

Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld,
K., … Plomin, R. (2017). Predicting educational achieve-
ment from DNA.Molecular Psychiatry, 22, 267–272.

Signorell, A. (2016). DescTools: Tools for descriptive statis-
tics. R package version 0.99.18. Retrieved fromhttps://cran.
r-project.org/package=DescTools

Sokal, R. R., Oden, N. L., & Wilson, C. (1991). Genetic evi-
dence for the spread of agriculture in Europe by demic dif-
fusion. Nature, 351, 143–145.

Stearns, S. C., Byars, S. G., Govindaraju, D. R., & Ewbank, D.
(2010). Measuring selection in contemporary human pop-
ulations. Nature Reviews Genetics, 11, 611–622.

Trzaskowski, M., Harlaar, N., Arden, R., Krapohl, E., Rimfeld,
K., … Plomin, R. (2014). Genetic influence on family so-
cioeconomic status and children’s intelligence. Intelligence,
42, 83–88.

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin,
R., Del Angel, G., … DePristo, M. A. (2013). From FastQ
data to high-confidence variant calls: The genome analysis
toolkit best practices pipeline.Current Protocols in Bioinfor-
matics, 43, 11.10.1–11.10.33.

TWIN RESEARCH AND HUMAN GENETICS 279

https://doi.org/10.1017/thg.2017.37 Published online by Cambridge University Press

https://doi.org/10.20944/preprints201701.0127.v3
https://cran.r-project.org/package=DescTools
https://doi.org/10.1017/thg.2017.37


Michael A. Woodley of Menie et al.

Woodley of Menie, M. A., Fernandes, H. B. F., & Hopkins,
W. D. (2015). The more g-loaded, the more heritable,
evolvable, and phenotypically variable: Homology with hu-
mans in chimpanzee cognitive abilities. Intelligence, 50,
159–163.

Woodley of Menie, M. A., Piffer, D., Peñaherrera, M. A., &
Rindermann, H. (2016). Evidence of contemporary poly-

genic selection on the Big G of national cognitive ability: A
cross-cultural sociogenetic analysis. Personality & Individ-
ual Differences, 102, 90–97.

Woodley of Menie, M. A., Schwartz, J. A., & Beaver, K. M.
(2016). How cognitive genetic factors influence fertility
outcomes: A mediational SEM analysis. Twin Research &
Human Genetics, 19, 628–637.

280 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.37

	Materials and Methods
	Modern Genomes
	Ancient Genomes
	Reference Genome
	Read Realignment and Base Recalibration
	Variant Calling and Computing POLYCOG
	Analysis
	Random SNP Polygenic Scores

	Results
	Discussion
	References

