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ABSTRACT. After a comparison of conventional photospheres
with circumstellar envelopes the radiation in spherical
shells is congidered. We discuss the transfer equation and
a new quasi-exact solution in term of the transition matrix.
Various methods used for the numerical evaluation of the
specific intensities are summarized. The general properties
of the radiation fields and some recent detailed model
calculations are briefly reviewed.

1. INTRODUCTION

In the usual nomenclature "circumstellar envelope” or
"circumstellar shell” designates the space around a star,
which is outside the star’s atmosphere, but where the matter
is still connected to the star. Although there is evidently
no strict separation between outer layers of the atmosphere
and the circumstellar envelopes, both have quite different
characteristics, the most important being the different
geometry and the different energy as well as momentum
balance. In all cases this means a much more complicated
behaviour of the circumstellar envelopes. Therefore, it has
not yet been possible to construct realistic models for
circumstellar envelopes from first principles and without
severe simplifications.

In Table 1 we list some details, but it is beyond the scope
of this paper to present a complete review of the field,
since recently excellent and detailed papers have appeared
summarizing the present knowlegde e.g. on the physical and
chemical state of matter in the envelopes around cool stars
( Omont, 1985 ; Gail and Sedlmayr, 1986 ), the mass loss
mechanisms for hot and cool stars ( Hearn, 1987, Holzer,
1987 ), etc..

We will focus on the radiative transfer in circumstellar
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Table 1
conventional extended
photosphere envelope
geometry plane parallel, i.e. spherical (first approximation
extension of photo- only)
sphere Ar << stellar
radius r
density hydrostatic equilibrium |hydrostatic equilibrium or
stratification steady hydrodynamic equilibrium
velocity turbulence, no macro- in- or outflow and turbulence
fields _ scopic fields o
temperature radiative + convective equilibrium of hydrodynamic +
stratification|equilibrium radiative losses and gains
(incl. e.g. dissipation of
acoustic and Alfvén waves)
state of gas, mostly in or near gas and dust, mostly far away
matter LTE from LTE

outer boundary
conditions

no incident radiation
negligible pressure at

Tout (small)

no incident radiation negli-
ibl ressure at T small
gible pressu out ( )
velocities =+ const.for T - T
out

inner boundary

diffusion approximation

prescribed energy flux

conditions for radiation continuity of density
constraint mass infall/outflow rate
= const.
parameters effective temperature luminosity
gravity mass
chemical composition radius

turbulence velocity

chemical composition
(effectively: runs of density,
velocity and temperature)
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shells, which requires a more sophisticated treatment than
in stellar atmospheres, because (i) in addition to turbu-
lence velocity fields with large scales ( in most cases
radial flows ) have to be taken into account; (ii) the
geometrical extension of the configuration has to be con-
sidered explicitly; (iii) radiative processes dominate over
collisional processes so that the absorption and scattering
coefficients are coupled directly to the radiation field
(and not only via the energy equation).

In Section 2 the radiative transfer equation for spherical
configurations with radial velocitiy fields is given and
various methods for its solution are described. The
resulting characteristics of the radiation fields are
summarized in Section 3. Finally, in Section 4 we discuss
briefly some recent calculations modeling the envelopes of
cool giants, Be stars, and supernovae.

2. THE RADIATIVE TRANSFER EQUATION FOR SPHERICALLY EXTENDED
CONFIGURATIONS AND ITS SOLUTION

We will consider subsequently spherical configurations,
because for them methods for the evaluation of the radiation
field are well established, although no standards have
emerged yet ( cf. Beckman and Crivellari, 1985 ). This
restriction to spherical geometry implies that we cannot
discuss polarisation effects and that we have to exclude
binary stars, discs, and jets. On the other hand, speckle
interferometry ( Roddier,Roddier,and Karovska, 1985 ) indi-
cates that the distribution of matter around most single
stars is approximately spherical and we therefore expect
that the majority of lines originating in the shells of
these objects are well described by this approximation. For
exceptions at highest luminosities see Wolf’s contribution
at this conference. In addition we will neglect time
dependent and stochastic effects ( for the latter see e.g.
Traving, 1975, Gierens, Traving, and Wehrse, 1986, or
Albrecht, 1986 ).

The equation for the stationary transport of unpolarized
radiation can be written

(i) in the Eulerian or observer's frame ( see e.g. Mihalas,
1978, or Cannon, 1985 ):

(,.g—,‘%u-,‘*);’?)r < - (#e5)T + (w4%)$
with

cosine between the normal and the ray direction
radial coordinate
specific intensity

H"‘}
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= absorption coefficient
= scattering coefficient

w
q
S source function

or
(ii) in the Lagrangian or comoving frame

5/,40 %_.;.-:_—“-/ui)g?/z- g‘g[{l-/'.')*/(:g—ﬁ%%]I,‘(*o*ro)(ffl;)

(2)
with
¥ = radial velocity
v = frequency.
The subscript 0 indicates quantities in the comoving frame.
For comparison with observations they have to be transformed
to the rest frame.

The absorption and the scattering coefficients as well as
the source function depend on radius, the angle coordinate,
the frequency, the temperature, mean intensities, and
particle occupation numbers. Whereas in comoving frame cal-
culations the phase function is the only source of the
direction dependence and can in most cases be neglected, in
observer’'s frame computations all these quantities are
strongly anisotropic because in addition the Doppler effect

v=V.(li/v/c) (3)

has explicitly to be taken into account. On the other hand,
this is at least partly compensated by the fact that the
observer’s frame equation is considerably simpler.

The choice of the coordinate frame is determined by
numerical ( and perhaps personal ) conveniance; the physics
to be considered ( e.g. complete or partial redistribution )
must in both cases be identical.

There is no general analytical solution of the partial
integro differential equations (1) or (2) known. However,
they can easily be solved if they are transformed to a
system of ordinary differential equations by discretizing
the angle-frequency space, i.e. by considering the specific
intensity I and the source function S as vectors

I-= (I': Iltrsl“""rI” )t
S = ( S,, Sl. S3,....,'~r“ )f

where n is the numbers of angles times the numbers of
frequencies. There are presently two schemes

used for the discretisation of the angle space ( Fig. 1 ):
(i) rays in the configuration space, i.e. the integration
follows the propagation of the light. This discretisation
has the advantage that the peaking effect ( see below ) is

(4)
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Fig. 1. Discretisation schemes for spherical radiative
transfer equations. Dotted lines indicate light rays with
"impact” parameters p= 1.0, 1.5, 2.0, and 2.5. The
logarithmic spirals represent the discretisation ,«(r)=const
for a Gaussian 4 point division.
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Fig. 2. Representation of the same discretisation schemes as
in Fig. 1, but in the r x M space. The horizontal lines

give m(r)= const for the Gaussian division and the curves
indicate the light rays.
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well represented. It has the disadvantage that the angles to
the radial direction vary with r and therefore makes diver-
gence—free formulations impossible.

(ii) constant angles to the normal direction. The corres-
ponding curves in the configuration space are logarithmic
spirals. With this discretisation a divergence-free form of
the transfer equation can be constructed ( Grant and
Peraiah, 1972, Peraiah, 1984 ) and for a Gaussian diviaion
in A the numerical accuracy is already very high for a
rather small number of number of angles, if the radiation
does not peak too much. Such a discretisation is therefore
particularly advantageous for problems of high optical
depths and small to moderate geometrical extensions.

Note that both discretisations must be considered equally
"natural”, since it depends only on the mapping whether they
are represented by straight lines ( the first one in the
configurations space, the second one in the r x u space,
see Fig. 2 ) or by curves ( r x m space for the first one,
configuration space for the second one ).

Both forms of the transfer equation ( eqs. 1 and 2 ) can
now be written in matrix notation

j-sf I, = /4,.1',.4- Q. (5)

where the coupling matrix A contains all terms proportional
to I and @ describes the photon sources.
Now the solution can be expressed in terms of the transition

matrix
e
]
If = éf,v Io + J°¢r.f. Qr’ Jf

(6)
The transition matrix ¢ is defined by the matrix
differential equation ( see Bronson, 1970 )
Av! ¢n.c: A ¢f,r‘
v ! (7

with the initial condition

cb,..'," [ (8)

This formalism for the solution of a system of differential
equations is frequently used in quantum electrodynamics (
cf. e.g. Louisell, 1973 ), but to my knowledge has not yet
been employed in radiative transfer theory. The main reason
seems to be that eq. 6 hardly can be used in numerical
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calculations because in the form given above it contains
terms that increase exponentially with the optical depth and
can hardly be manipulated by a computer ( however, see be-
low ). Therefore, either the transfer equation or the
solution has first to be transformed analytically into a
form suitable for numerical evaluations. In the literature a
large variety of such transformations are found ; they can
be summarized in the following way ( see also Kunasz,

1985 ):

a) one-step-solutions

They are possible if the source function is known or it can
be expressed as a linear function of the specific intensity.
This is e.g the case for line radiation from a
two-level—-atom, where

S=7“'{(I-£)_H‘RIJ/-'JW + €8} (9)

( Mihalas, 1978 ). Then the differential equation for the
transition matrix can be transformed into differential
equations for the transmission and reflection matrices

( Schmidt and Wehrse, 1987 ). The system may be stiff, but
the corresponding solutions contain only decreasing and
weakly inreasing terms. Although this method in many cases
may not be economical due to the large matrices involved and
the small integration step—-size required it provides a way
for obtaining quasi-exact solutions of the general problem.
If A and/or & have a simple structure or - on physical
grounds can be simplified - the solution of eq. can be ob-
tained by quadratures, often even analytical expressions can
be given. This is e.g. the case if the depth dependence of
the extinction coefficients and of the source function can
be approximated by polynomials ( Schmid-Burgk, 1975 ) or if
the line profile is narrow and the radial velocity field has
a large gradient ( Sobolev, 1960).

b) iterative methods

These methods, which may be used in parallel with the
solution of the rate equations, may be divided into the
following groups:

(i) moment methods, in which differential equations

for the angle-moments of the specific intensity are

solved with closure relations that are updated
iteratively. The most well-known method of this group

is the Feautrier—-methods with variable Eddington factors

( Mihalas, 1978 ).

(ii) Newton-Raphson iterations, in which the transfer
equation and the equation determining the source function
are paramterized ( or discretized ) with respect

to depth and solved by linearisation ( i.e. a Newton Raphson
method ).

(iii) operator perturbation methods, in which the matrix A
( which is considered as an operator ) is written as
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A=A°‘A. (10)

and A, is considered to be a perturbation. The seolution then
proceeds in complete analogy to the Dyson expansion in
quantum electrodynamics ( Dyson, 1949 a,b ). Note that for

the continuous depth space the iteration converges, if only
all coefficients are bounded, but that in the discrete space

in general the differentiation operator is also perturbed
and then for convergence also the condition

f11- AV A< | (11)

is required ( Kalkofen, 1985 ). This method has recently
become very popular because decompositions of A have been
devised ( Scharmer, 1984 ) in which the zero order term
contains already the largest part of the information and
still can be very quickly evaluated.

(c) Monte Carlo methods

In this method the paths of individual photons are followed
and the specific intensity is determined a posteriori by
photon statistics; for an example see Lee and Meier, 1980.
Complicated redistribution functions and/or deviations from
sphericity can easily be included, but as for the
one-step—methods the source function must begiven
explicitely or by an expression linear in the specific
intensity. For reaching a high accuracy this method is in
many cases very time consuming.

In addition to the "pure” methods summarized above, various
combinations e.g. in perturbation approaches are possible
and have been attempted.

3. SOME CHARACTERISTICS OF SPHERICAL RADIATIVE FIELDS

The radiation fields in spherical configurations differ from
those in plane-parallel geometry in many respects:

(i) The primary difference is the dilution of the field,
i.e. the fact that for a conservative system the flux is
proportional to r¥ , whereas for a plane-parallel medium it
is constant. In numerical calculations this effect can
easily be taken into account by replacing the intensity I by
I' = 4Wr*I, since the transfer equation keeps its form
under this transformation. Although it is often rather small
( e.g. in red giant atmospheres withar/r &~ 1.e-2 )it may
have severe consequences, for instance by ”switching on” the
formation of molecules like HxO, which absorb strongly and
change the temperature structure in the optically thin
layers.
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(ii) If a photon in a sphere travels outwards ( without
interactions ) its angle to the normal decreases contiuously
( "peaking effect”, Fig. 1 ). It is particularly important,
if the medium is optically thin and geometrically very
extended. In the transfer equation the second term on the
left hand side takes care of this effect. Since an accurate
discrete representation of this term is inhibited by the
requirement that no photons should be generated or lost by
the numerical evaluation of the source term, it mainly
causes the complications of spherical radiative transfer

( for details see Schmidt and Wehrse, 1987 ).

(iii) The escape probability of photons travelling in
directions other than the normal one is larger since for
them the optical depth to the surface is lower than in plane
parallel geometry. This implies that the mean intensity
cannot build up as high in spherical geomtries and therefore
the radiation pressure ( in particular from lines ) and
fluorescence efficiences are smaller.

(iv) In a sphere all radial velocity fields lead to velocity
gradients ( at least in the transversal direction ) and
affect directly and in a depth dependent way the radiation
field whereas in slabs v(r) = const. only means a global
Doppler shift.

(v) Since the continuous absorption is usually weak in
circumstellar shells, for small velocities often the lines
are extremely optically thick and therefore deviations from
complete redistribution become significant ( Hubeny, 1985 ).

4. SOME EXAMPLES FOR MODEL CALCULATIONS

The most significant effects of spherical radiative transfer
are found for cool giants and supergiants since many of
these stars have extended photospheres ( Watanabe and
Kodaira, 1978, 1979; Schmid-Burgk, Scholz and Wehrse, 1981)
and are surounded by huge envelopes. In the photospheres of
luminous M stars the geometrical extension "switches on” the
formation of water vapor which makes the outer parts

several hundert degrees cooler than expected from plane
parallel models. This temperature decrease shows up in the
depths of the molecular lines and bands.

Main diagnostic tools for these outer layers are CO lines,
since a) they show up in all cool giants; b) they form both
in the outer photosphere (Av = 2 lines mainly withA
2.3ﬂ , see e.g Hoflich et al., 1986 ) and in the envelope
(Av =1 lines with A% 4.5x, cf. Sahai and Wannier, 1985 )
and in both spectral ranges lines of rather different
excitation potential are visible; c¢) accurate transition
probabilities are available ( Tipping, 1976 ); and d) the
profiles can be well observed by means of Fourier transform
spectroscopy ( Maillard, 1974, Hinkle, 1978 ).
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By fitting such CO QV= 2 profiles from Her Hoflich et al.

( 1986 ) can show that the lines are formed in LTE and that
the photosphere and the envelope must be separated by a
chromosphere in which the CO molecule is destroyed. The Av-=
1 emission lines from the envelope of the carbon rich object
IRC +10216 have been studied in detail by Sahai and Wannier
( 1985 ). Using radiative transfer calculations in the
Sobolev approximation ( 1960) and statistical equilibrium
level populations for several rotation lines of the P and
the R branch and taking into account different apertures
they are able to derive from the observed line strengths
reliable information on the temperature distribution and the
mass loss rate.

Whereas for these cool stars the photosphere and the enve-
lope can be calculated separately due to the small Rosseland
opacity of the shell, this is no longer possible for hotter
stars in which the envelope is ionized: By physically
consistent NLTE models for Be stars Hé6flich ( 1986 ) demon-
strates that level occupations and the temperature structure
in the photosphere are strongly influenced by the density in
the shell. If he takes this effect fully into account, he is
able to reproduce the line strenghts and profiles, Balmer
Jumps etc. of all Be stars, for which reliable data have
been published, with a smaller number of free parameters
than previously considered to be necessary.

An example for an unexpected result is provided by the
atmosphere of a supernova type II atmosphere during the
coasting phase, which may be considered as an extreme
circumstellar envelope: Although the density is very low and
Thomson scattering by far prevails over absorption, the
continuum is formed in LTE ( Hoéflich, Wehrse,and Shaviv,
1986 ). The cause for this unusual behaviour is that under
these conditions the electron scattering is so strong that
the radiation field becomes essentially local again, as
could be shown by test calculations in which the Thomson
cross—-section was artificially decreased and the level de-
parture coefficients immediately increased.

These few examples show that spectral features calculated
from present day models for spherical envelopes can
successfully be used to interpret observations. On the other
hand, our knowledge on the physics of such regions ( in
particular the hydrodynamics and its interaction with the
thermodynamics and the radiation field ) is still rather
limited since simple concepts are missing and even with a
large computer it is today just possible to calculate for a
given velocity distribution the radiation field and the
occupation numbers of a few levels ( £ 100 ) consistently.
Fortunately, this also means that much better models and new
effects can be expected in near future, when a new
generation of machines becomes available.
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