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THE HARDY-LITTLEWOOD PROPERTY OF FLAG
VARIETIES

TAKAO WATANABE

Abstract. We study the asymptotic distribution of rational points on a gen-
eralized flag variety which are of bounded height and satisfy some congruence
conditions in the formulation analogous to a strongly Hardy-Littlewood variety.

Let X be an affine variety in an affine space V over Q and B the set
of x € X(R) with ||z|| < T for a Euclidean norm || - || on V(R). The Hardy-
Littlewood method allows us to expect that the cardinality of By N X(Z)
is asymptotically equal to the volume of Br with respect to some measure
on X(R). On the basis of such expectation, Borovoi and Rudnick [BR]
introduced the notion of a Hardy-Littlewood variety in the adelic manner.
Namely, an affine variety X is called a strongly Hardy-Littlewood variety if
the asymptotic behavior

|(BT X Bf) ﬂX(Q)| ~ WX(AQ)(BT X Bf) as T — oo

holds for any open compact subset By of the finite adele X (Aq f), where
wx(ag) denotes the measure on X (Ag) attached to a gauge form on X.
It is known that many affine symmetric spaces have the strongly Hardy-
Littlewood property.

In this paper, we study the asymptotic distribution of rational points of
bounded height on a generalized flag variety in the formulation analogous
to a strongly Hardy-Littlewood variety. Let k be an algebraic number field,
G a connected reductive algebraic group defined over k, () a maximal k-
parabolic subgroup of G and X = Q\G a generalized flag variety over k.
The adele group G(A) of G has the unimodular subgroup G(A)! consisting
of all elements g € G(A) that satisfy |x(g)|a = 1 for any k-rational character
x of G. Similarly, the unimodular subgroup Q(A)! of Q(A) is defined,
see Notation below for its precise definition. The homogeneous space Y =
Q(A)'\G(A)! is appropriate to our purpose by the reason that the set X (k)
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of k-rational points of X is naturally regarded as a subset of Y and there is
a unique right G(A)!-invariant measure wy on Y matching with Tamagawa
measures wg(a)1 and wgay of G (A)! and Q(A)!, respectively. It is observed
that Y is decomposed into the direct product of the infinite part Y., and the
finite part Yy, and Y} is naturally identified with the homogeneous space
Q(Af)\G(Ay). By a strongly k-rational representation 7 of G, the variety
X is embedded into a projective space, and the height H, is defined on
X (k). Since H is extended to a positive real valued function on Y, we can
define the “ball” B of radius T" as the set of y € Y, with H,(y) < T. Then
the main theorem of this paper is stated that the asymptotic behavior

7(Q)

wy(Br x By) asT — oo

holds for any open subset By of Y;. Here 7(G) and 7(Q) stand for the
Tamagawa numbers of G and @, respectively. In view of the equality
(Br xYy) N X(k) = {z € X(k) : Hr(x) < T}, (0.1) yields the asymptotic
distribution of rational points z € X (k) which satisfy H,(x) < T together
with congruence conditions provided by By. The volume wy (Br x By) is
explicitly computed in the following sense. If K is a good maximal com-
pact subgroup of the finite adele group G(Ay) and By is the image of an
open subgroup Dy C K¢ to Yy = Q(Af)\G(Ay), then

[Dy(KyNQ(Ay)) : Dy]Cqdq TealkQ/er
[Ky : Ds]Cqdgeq

wy(BT X Bf) =

where dg, dg and eg are positive integers depending on G and @, e, is
a positive rational numbers depending on 7 and these constants are easily
computed. Both Cg and Cg are also positive real constants depending
on G and @, however the determination of their explicit values is more
complicated than other constants. In some particular cases, e.g., the case
that G splits over k or G is a special orthogonal group, we can describe
Cq/Cq by using the special values of the Dedekind zeta function of k (cf.
Section 7).

Our result gives an affirmative partial answer to a question mentioned
in the last paragraph of [MW2, Section 4.3]. The asymptotic formula of
rational points of bounded height on any generalized flag variety was first
obtained by Franke, Manin and Tschinkel [FMT]. In the case of By = Y,
Corollary to Theorem 5 in [FMT] deduces the asymptotic behavior of the
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form |(Br x Y;)NX (k)| ~ cTe@®:Q/ex where c is a constant. However, it is
not clear in [FMT] that the leading term ¢T'¢@[:@/er is described in terms of
the volume of By x Y. In order to explain it more precisely, we mention the
difference between the method of [FMT] and that of this paper. A crucial
observation in [FMT] is that the height zeta function can be identified with
one of the Langlands-FEisenstein series. Then, by using the analytic prop-
erties of Langlands-Eisenstein series and a standard Tauberian argument,
Franke, Manin and Tschinkel established their asymptotic formula. Thus
the volume wy (Br x Yf) does not occur in [FMT]. In this paper, we inves-
tigate directly the function Fr(g) = |(Br x By) N X (k)glwy (Br x By)™!
on G(k)\G(A)!. By using the theory of constant terms of Eisenstein series,
we will prove that the inner product (f, Fr) of any pseudo-Eisenstein series
6 on G(k)\G(A)! and Fr satisfies
7(Q)

0, Fr) — m(@, 1) asT — oo.

This and the argument similar to [DRS] and [MW1] lead us to

as T — oo

for every g € G(k)\G(A)!, and hence we immediately obtain (0.1). In
view of this, the expression of the main term of |(Br x By) N X (k)| by
wy (Bt x By) is a significant point of our result.

Notation. As usual, Z, Q, R and C denote the ring of integers, the field
of rational, real and complex numbers, respectively. The group of positive
real numbers is denoted by R.

Let k be an algebraic number field of finite degree over Q, O the ring
of integers in k and U the set of all places of k. We write U, and Uy
for the sets of all infinite places and all finite places of k, respectively. For
v € Y, k, denotes the completion of k at v. If v is finite, O, denotes the
ring of integers in k,. We fix, once and for all, a Haar measure u, on k,
normalized so that p,(O,) =1 if v € Uy, py([0,1]) = 1 if v is a real place
and p,({a € k, : a@ < 1}) = 27 if v is an imaginary place. Then the
absolute value |- |, on k, is defined as |a|, = py(aC)/py(C), where C' is an
arbitrary compact subset of k, with nonzero measure. We denote by A the
adele ring of k, by Ay the finite adele ring of k and by |- |a = [[,eqs |- o
the idele norm on the idele group A*.
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Let G be a connected affine algebraic group defined over k. For any k-
algebra R, G(R) stands for the set of R-rational points of G. Let X*(G) and
X7 (G) be the free Z-modules consisting of all rational characters and all k-
rational characters of G, respectively. The absolute Galois group Gal(k/k)
acts on X*(G). The representation of Gal(k/k) in the space X*(G) ®z
Q is denoted by og and the corresponding Artin L-function is denoted
by L(s,0q) = Hvemf L,(s,0a). We set 0;(G) = lims_1(s — 1)"L(s,0q),
where n = rank X;(G). Let wY be a nonzero right invariant gauge form
on G defined over k. From w® and the fixed Haar measure p, on k,, one
can construct a right invariant Haar measure wS on G(k,). Then, the
Tamagawa measure on G(A) is well defined by w§ = |Dy|~ 4™/ 2w§0w?,
where w§ = [Toew.. W&, w? =0 (G)7! Hvemf Ly(1,06)wS and | Dy is the
absolute value of the discriminant of k. For x € X} (G), let |x|a be the
continuous homomorphism G(A) — R defined by |x|a(9) = |x(9)la. We
write G(A)! for the intersection of kernels of all such |x|a’s. If x1,...,Xn
is a Z-basis of X} (G), then the mapping

g (Ixa(@)as - Ixn(g)la)

yields an isomorphism from the quotient group G(A)'\G(A) to (RY)™. We
put the Lebesgue measure dt on R and the invariant measure dt/t on R7.
Then there exists uniquely a Haar measure wgay of G (A)! such that the
Haar measure on G(A)'\G(A) matching with w§ and wg(ay is equal to the
pull-back of the measure []?", dt;/t; on (RX)™ by the above isomorphism.
The measure wg(ay is independent of the choice of a Z-basis of X (G).
Since G(k) is a discrete subgroup of G(A)!, we put the counting measure
wak) on G(k). Then the Tamagawa number 7(G) is defined to be the
volume of the quotient space G(k)\G(A)! with respect to the measure wg =
wg(k)\wg(A)l. Here, in general, if 44 and pup denote Haar measures on a
locally compact unimodular group A and its closed unimodular subgroup B,
respectively, then pp\pa (resp. pa/pup) denotes a unique right (resp. left)
A-invariant measure on the homogeneous space B\ A (resp. A/B) matching
with s and pp.

If X is an algebraic variety defined over k, then X (k) denotes the set
of k-rational points of X. In addition, if X is affine, then X (A) and X (Ay)
stands for the adele and the finite adele of X, respectively. We say that a
subset D of X (A) is decomposable if D is of the form Dy, x Dy, where Dy,
and Dy are subsets of [[,cq_ X(ky) and X (Ay), respectively.
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If X is a locally compact topological space, Co(X) denotes the space of
all compactly supported continuous functions on X. If X is a finite set, | X]|
denotes the cardinal number of X. For two non-decreasing functions F (T),
F5(T) of real variable T', F1(T') ~ F5(T) means limp_,o F1(T)/F2(T) = 1
if F5(T) # 0 for T' large enough, otherwise, F;(T") = 0.

§1. Preliminaries

In the following, let G be a connected reductive group defined over
k. We fix a maximally k-split torus S of G, a maximal k-torus S of G
containing S, a minimal k-parabolic subgroup P of G containing S and a
Borel subgroup B of P containing S;. Then, we denote by ®; the relative
root system of G with respect to .S and by Ay, the set of simple roots of ®y
corresponding to P.

Let M be the centralizer of S in G. Then P has a Levi decomposition
P = MU, where U is the unipotent radical of P. For every standard k-
parabolic subgroup R of G, R has a unique Levi subgroup Mp containing
M. We denote by Ugr the unipotent radical of R. Throughout this paper,
we fix a maximal compact subgroup K of G(A) satisfying the following
property; For every standard k-parabolic subgroup R of G, K N Mg(A) is
a maximal compact subgroup of Mz(A) and Mpg(A) possesses an Iwasawa
decomposition (Mgr(A) NU(A))M(A)(K N Mg(A)). It is known that such
maximal compact subgroup of G(A) exists. We set K = KNR(A), KMr =
KN Mg(A), PR=MgnPand UF = MgNU.

Let R be a standard k-parabolic subgroup of G. We include the case
R = G. Let Zg be the greatest central k-split torus in M. The restriction
map Xj(Mg) — X*(Zg) is injective. Since X} (Mpg) has the same rank as
X*(ZR), the index

(1.1) dr = [X*(ZRr) : X}, (MR)]

is finite. If x1,...,x, is a Z-basis of X*(Zg), then the mapping z —
(x1(2), ..., xr(2)) yields an isomorphism from Zg(A) to (AX)". We regard
RY as a subgroup of A* by identifying ¢ € R} with the idele ¢4 = (t,) such
that t, = tifv € U and t, = 1if v € Y. Let Ar denote the inverse image
of (R})" by the isomorphism Zp(A) — (A*)". Then Mg(A) has the direct
product decomposition: Mp(A) = AgMpg(A)!. The Haar measure ji4,, on
Ap is defined to be the pull-back of the invariant measure [[;_, dt;/t; on
(RX)™ with respect to the isomorphism z — (|x1(2)|a,---,|xr(2)|a) from
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Ap onto (RY)". It follows from the definition of w Mp(a)t that the Tamagawa

measure wg/IR is decomposed into dgrfiay - Warpay- Both Ag and pay are

independent of the choice of a basis of X*(Zg). We set AG = Ag/Ac.
We define another Haar measure vy, sy of Mg(A) as follows. Let wi

and ng be the Tamagawa measures of M(A) and U®(A), respectively.
There is the function 0 pr on M (A) such that the integration formula

/ Fmum ™) dwl ™ (u) = pr(m)~! / £ () dwl” (u)
UR(A) UR(A)

holds for f € Co(U*(A)). In other words, (5;}13 is the modular character of
PE(A). Let vgumy be the Haar measure on KM® normalized so that the
total volume equals one. Then the mapping

fr— Fumh)spr(m) ™" dwl " (u)dw (m)dv g, (h)
UR(A)xM(A)x KMR

(f € Co(Mg(A)))

defines an invariant measure on Mp(A) and is denoted by vz, 4). There
exists a positive constant Cr such that

(1.2) wg/[R = CRVprg(a) -

We have the following compatibility formula:

(1.3)
/ f(9) dwS (g)
G(A)
Ca

- —/ F(umh)dp(m) =" dwy " (u)dwy' ™ (m)dvi (h)
CRr JUa(a)x Ma(A)xK

for f € Co(G(A)), where 65" is the modular character of R(A).

On the homogeneous space Yr = R(A)'\G(A)!, we define the right
G(A)-invariant measure wy,, by w R(A) \Wa(a)t- We note that both G(A)!
and R(A)! are unimodular. We identify Yz with AgR(A)!\G(A). Then
the mapping

ip K/K® x AG — Yr : (h,7) — AgR(A)'271h~!

is a bijection, where h = hIKf and Z = 2zAq for h € K and z € Ag. Set
VAG = HAg/HAg-
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LEMMA 1. Let D be an open subgroup of K and {hi,..., hs} be a com-
plete set of coset representatives of K/D. Then, for any right D-invariant
function f € Co(YR), one has

Cad _ _
| FWdova) = e pE e g Fer(h; ', 2)0R(2) dvsg (7).

Proof. If we set

1 S
_ /K f(ydeK(h):WiZlﬂym),

then ¢ is a right K-invariant function on Yr. By [W, Corollary to Lemma 1],

J, w ten) = Gt [ @2 dnsg 2)

Since wy,, is right G(A)!-invariant, the left hand side equals the integral of
f(y) over Yg. U

§2. Heights on flag varieties

Let V, be a finite dimensional k-vector space endowed with a k-
structure V; (k) and 7 : G — GL(V;) be an absolutely irreducible k-rational
representation. The highest weight space in V. with respect to B is denoted
by zr. Let Q be the stabilizer of 2, in G and A\, the k-rational character
of ), by which @, acts on x;. The representation 7 is said to be strongly
k-rational if x, is defined over k. Then ), is a standard k-parabolic sub-
group of G and A is a k-rational character of Q.. It is known that A,|g is a
non-negative integral linear combination of the fundamental k-weights ([W,
Section 1]). We say 7 is maximal if Q. is a standard maximal k-parabolic
subgroup. This is equivalent to the condition that A;|g is a positive integer
multiple of a single fundamental k-weight.

Let m be a strongly k-rational representation. For convenience, we use
a right action of G on Vj defined by a-g = m(g~')a for g € G and a € V.
Then the mapping g — x, - g gives rise to a k-rational embedding of Q. \G
into the projective space PV.

We write Xq, for Q\G. Since Q is a k-parabolic subgroup, Xq, (k) is
naturally identified with Q.(k)\G(k) ([B, Proposition 20.5]). Let us define
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a height on X¢, (k). We fix a k-basis e1, ..., e, of the k-vector space V (k)
and define a local height H, on V(k,) for each v € U as follows:

(|a1]? + - + |an[2)V/CEQ)  (if v is real)
Hy(are1+ - +anen) =} (|at|y + - + |an|,)/FY (if v is imaginary)
sup(|ay, - - -, |an|y)/*Q (if v € Vy)

The global height H, on V, (k) is defined to be the product of all H,, that
is, Hr(a) = [[,cqy Ho(a). By the product formula, H is invariant by scalar
multiplications. Thus, H, defines a height on PV, (k), and on X¢, (k) by
restriction. The height H is extended to GL(Vy, A)PV; (k) by

Hy(&a) = H Hy(&pa)

veY

for £ = (&) € GL(Vz,A) and @ = ka € PV (k), a € V;(k) — {0}. We set

‘I)w,f(g) = H:(§(2r - g))/Hr(Exr)

for g € G(A). Obviously, ® ¢ is a continuous function on G(A) and satisfies

O e(q9) = Me(g) Y F YD, (9)

for any ¢ € Qr(A) and g € G(A). Thus @, defines a function on
Yo, = Q-(A)"\G(A)!. It is always possible that one choose an element
£ € GL(Vx,A) so that @ is right K-invariant. In many examples, one
can take the identity as such &.

§3. The Hardy-Littlewood property of flag varieties

In the following, we assume 7 is maximal and strongly k-rational. We
fix, once and for all, an element £ € GL(V, A) such that ®, ¢ is right K-
invariant. We simply write @ for @, and ®, for ®, . Let Ag be the set
of nonzero roots 3| z,, 3 € Ay. Since @ is maximal, Ag consists of a single
element |z, . Let ng be the positive integer such that néla\zQ is a Z-base
of X*(Zc\Zg). We set ag = né1a|ZQ. Then the Haar measure v4, equals
the pull-back of the measure dt/t by the isomorphism |ag|a : Ag — RX. If
we set eqg = ngdim Ug, we have

(3.1) bo(2) =laq(2)y?, (2 € Zo(A)).
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The quotient morphism Zg — Zg\Zg induces an isomorphism X*(Z¢\Zg)
®z Q — X*(Zg N G*) ®z Q, where G** denotes the derived group of G.
Under the identification X*(Zg N G**) ®z Q = X*(Zg\Zg) ®z Q, there
exists the positive rational number e, such that

(32) ATF’ZQQGSS == eﬂ—OéQ .

Then ®x(1g(h, 7)) = |ag(2)[;” " holds for any (k%) € K/K® x AG.
For an open subset D of K and 0 < T, we set

E(D,T) = {10(h,%) : h € DKQ/K®, 7€ A§, |ag(z)|a < TkW/er)

Obviously, E.(D,T) is contained in {y € Y : ®r(y) < T}, and in particu-
lar, the set E(K,T)NXq(k) coincides with the set {x € X¢g(k) : H( x) <
H(&x;)T}. The next is the main theorem of this paper.

THEOREM 1. Let m and @ be as above and D = Dy, x Dy a decom-
posable open subset of K such that Dy equals the infinite part Ko, of K.
Then one has

(3.3) |E+(D,T) N Xo(k)g| ~ :Eg; wyy(Ex(D,T)) asT — oo

for any g € G(A)!.

We fix a decomposable open subset D of K with Dy, = K. Since
the finite part of K is totally disconnected, there is a decomposable open
normal subgroup D; of K and by € D such that Dby Ip = by 'D and
Dy = Kx. If by,...,bs € D is a complete set of coset representatives
of DlKQ\balDKQ, then Eﬁ(balD,T) = E.(D,T)by decomposes into a
disjoint union of E;(D1,T)b;, i =1,2,...,s. It is easy to see that the truth
of (3.3) for D; implies the truth of (3.3) for D. Hence, we may assume
without loss of generality that D is an open normal subgroup of K to begin
with. Then, by Lemma 1, wy, (Er(D,T)) equals

Tlk:Ql/en

[DK® : D|Cqdg / weq @t _ [DE?: DICGdq oqiiq/e
0

(K : D]CQdG t (K : D]CQdGeQ
Let xr be the characteristic function of E(D,T). Define the function
FPr on G(K)\G(A)! as

1 _ |Ex(D,T) N Xo(K)g|

Fr(g) = v (Bn(D, D)) xe%;(k) xr(zg) = wy, (Ex(D,T))
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(3.3) is equivalent to the assertion that

: 7(Q)
lim F =
Tl~>oo T(g) T(G)
holds for every g € G(A)!. For a pair of functions 11,12 on G(k)\G(A)!,

we set
Wi = [ (gl decls)
G(R\G(A)!
if the integral has the meaning.

ProrosiTION 1. If

7(Q)
7(G)

holds for any v € Co(G(k)\G(A)!), then

\]

. (@)
A Frle) = 2

for every g € G(A)!.

Proof. Let {Up}m=123,.. be a descending family of neighborhoods of
the identity e in G(A)! such that U, is decomposable, i.e., Uy, = (Up)oo X
(Un)f, Upt = U, (Un)s = Dy, (Un)oo is compact and (re_; (Upm)oo =
{e}. Since @ is continuous and K U,, is compact, there exists the maximum

On = max ®xlg) =~ max | Prloc)

From the right K-invariance of ®, and ®,(e) = 1, it follows that 3,, | 1 as
m — 00. By Do, = K and the definition of E(D,T), it is evident that

Er(D,T)Uy, C Ex(D, BnT)
for every m. Therefore,
Ex(D,53,'T)g " 95" C Ex(D,T)gy" C Ex(D,BnT)g "9

holds for every g € U,, = U,;! and a fixed gg € G(A)'. This implies the
inequality

Wy (Bx(D, B! T))Fy-17(909) < wyg(Ex(D,T))Fr(g0)
< Wyg (Eﬂ(Da ﬁmT))FﬂmT(QOQ)
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for g € Up,. Let U/, be the image of goU,, to the quotient G(k)\G(A).
We choose a real-valued and non-negative function v, € Co(G(k)\G(A)!)
such that the support of 1, is contained in U,, and (¢,,,1) = 1. Then the
above inequality yields

Wy, (EW (D7 ﬁ;@lT))
Wy (Eﬂ(Dv T))

<¢maFg;L1T> < Fr(go)

wWyg (Eﬂ(Da ﬁmT))
wy, (Ex(D,T))

<¢m7 F,BmT> .
By wy, (Ex(D, 8 T))/wy, (Ex(D,T)) = ﬂf;?[k:@}/e" and the assumption on
Fr, one has

ﬂfeQ[k:@}/e7r T(Q) eqk:Ql/exr T(Q)

< liminf F < i F < .
m Gy = pin T(g0) < i sup 7(90) < Bm G
Hence, letting m — oo, we get the assertion. 0

For every function ¥ on G(k)\G(A)!, we set

L = u W u
I, (1) (g) = /U g ) i),
Mo (¢)(g) = / (ag) dwg )
Q(K)\Q(A)!
= It maq) dw m
/MQ<k>\MQ<A>1 Q(¥)(mg) doasg (m)

when the integrals have the meaning. By the unfolding argument and
Lemma 1, we have

(34) (), Fr) = / (9)Fr(g) dwal(g)
G(k)\G(A)!

1
- wy, (Ex(D,T)) /YQ g (¥)(y)xr (y) dwy, (y)

eq Tl e dt
=~ €Q e -1 -
e [t Tl (el 0)

for every right D-invariant ¢ € Co(G(k)\G(A)'), where |ag|," stands for
the inverse map of |agla : AG — R,
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84. Preliminaries on Eisenstein series

We recall the theory of Eisenstein series following [H], [MW]. Let R be
a standard k-parabolic subgroup of G. We set

ReaR:X*(Zg\ZR)QQzR, agr = Reap @ C = Rear + v—1Reag.

Every A € ag of the form x1 ® s1 4+ 4+ x» ® $p, Xi € X (Zc\ZR), si € C
gives rise to a quasi-character of Ag by

z— 2 = pa)E o e (@)Y

for z € A%. By this way, ag is identified with the group of quasi-characters
of A%. There is a unique pg € Reag such that 22P% = §g(z). If R’ is a stan-
dard k-parabolic subgroup of G such that R’ C R, then Zg\Zg (resp. A%)
is a subgroup of Zg\Zg: (resp. Ag,) and hence there is a natural surjection
from ap onto ap. The kernel of this surjection is denoted by ag,. Since
the quasi-characters of Mr(A)'\Mg(A) is restricted to Mp (A)'\ Mg/ (A)
(MW, 1.1.4.(2)]), there is a splitting ap — ags, and hence a direct product
decomposition: ag = ar @ ag,. The subspace ag, is identified with the
group of quasi-characters of Ag, = Ap/ /AR by the similar way as above. If
(6%)~! denotes the modular character of (Mg N R')(A), there is a unique
p%, € Reak, such that 2P = 68 (2) for z € AR, One has pr = pr + plk,.
We always consider ar as a subspace of ap and fix an admissible inner
product (-, -) on Reap. Then Rear = Rear @ Re aﬁ, is an orthogonal
decomposition. For each root 3 € ®, 3Y denotes the coroot 2(3,3)"'4.
Let Ag denote the set consisting of nonzero roots 3|z,, 8 € Ag. It is ob-
vious that Ap is contained in Re ag and spans ag as a C-vector space. We
set
Cp = {A € arR : (RGA — pR,ﬁV‘ZR) > 0 for all 6‘ZR S AR}

and

oy ={A€af: (ReA—pih,8Y]2,) >0forall 87, € Ap
with 3]z, =0} .
A map zg @ G(A) — AY = AcMp(A)'\Mg(A) is defined by zr(g) =
AcMp(A)tm if g = umh, u € Ur(A), m € Mr(A) and h € K.

For a smooth function n € C§°(A%), its Mellin transform is defined to
be

10 = [ 02 e a).

R
R
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We choose the measure dA on ap so that the following inversion formula
holds for any n € C§°(A%):

n(z) = / AA)APR dA
A€A0+\/jl Reapr

where Ay € Reag is a base point.

Let Ao r = Ao(AGUR(A)Mp(k)\G(A)') be the space of cuspidal auto-
morphic forms on AGUR(A)Mg(k)\G(A)!. For an open subgroup D C K,
.AO?  denotes the set of right D-invariant cusp forms in Ag g. For ¢ € Ag g,
n € C(AS) and A € cp, the pseudo-Eisenstein series 6, and the Eisen-
stein series E(p, A) on G(k)\G(A)! are defined as follows:

Oom(9) = > e(vg)n(zr(v9)),

YER(K\G(k)

E@p,M(g)= Y  zr(v9)*"e(vg).
+VER(NG(k)

It is known that both series are absolutely convergent, 0, is a rapidly
decreasing function on G(k)\G(A)! and E(yp,A) is meromorphically con-
tinued on the whole ar. If Ag € Reagr N cp is fixed, then 6, is expressed
as
Oenf) = | AA)E(p, A)(g) A
A€Ag+vV—1Rear
We need intertwining operators to describe constant terms of pseudo-
Eisenstein series. Let W be the relative Weyl groups of (G, S). We take
a pair of a standard k-parabolic subgroup R’ and an element w € W such
that wMpw ™' = Mp/.. Then, for A € ¢z and ¢ € Ao r, we consider

(M (w, A)p)(g) = 2 (g) A Hor)

X / (p(w_lug)zR(w_lug)A+pR deR' (u).
(Ur (A)NwUR(A)w=1)\Ug/ (A)

The integral of the right-hand side converges absolutely and M (w, A)y is
contained in Ag r/. Moreover, the operator M (w,A) is meromorphically
continued to the whole ap. The adjoint operator M (w,A)* of M(w,A)
with respect to the L%-inner product on Ag g equals M (w™!, —wA).
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85. Proof of Theorem 1

Let w, Q, D and Fr be the same as in Section 3. On account of
Proposition 1, we must prove

_ 7(Q)
<'¢7FT> - T(G) <'¢7 1>

lim
T—oo
for every ¢ € Co(G(k)\G(A)). By [DRS, Lemma 2.4], it is enough to prove

Tlii%ow%mFﬂ = %@p,m 1)

for all pseudo-Eisenstein series 6 ,,.

PROPOSITION 2. Let R be a standard k-parabolic subgroup of G, ¢ €
Aor and n € CP(AR). If R # P, ie., R is not a minimal k-parabolic
subgroup, then

O Pr) = B 1) = 0.
Proof. First, by (1.3) and wg(ay = (dapiag)\w§, one has
(5.1)
o) = [ elghnlenlo)) e \woe )0
R(K\G(A)!

Ca

= God / p(mh)n(zr(m))
RAG JUR(K)\UR(A)xAgMRg(k)\Mpg(A)x K

x 5 (m) ! dwy, (Wd(pagwaw \wa ) (m)dvi ()

= w(mh n(2)z7 PR dv 4c (2
CRAG JMp(k)\Mr(A) xK (mh) AS =) AR( )

X dwpr, (m)dvi (h)

Cadp
= 1
Crde n(pr){e, )R,

where we set
(o 1)p = / p(mh) dwag, (m)dvic (h)
Mp(k)\Mp(A) x K

From the cuspidality of ¢, it follows (p, 1) g = 0, and hence (0, ,,1) = 0.
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Next we compute I1g(f,.,). Since @ is maximal, there is an only one
simple root a € Ay, such that afz, # 0. We define a subset W (Mg, Mg)
of the Weyl group W¢g by

W (Mg, Mg) = {w € Wg : w™(B) >0 for all 3 € Ay, — {a}
and wRw™! C Q}.

Then the constant term of the Eisenstein series E(y, A) along Ug is given
by the formula

L (E(p, A))(9)
= > > (M (w, A)p) (v9)zrw (vg)“NHPme

weW(Mg,Mq) veMq(k)NR* (k)\Mq (k)

where R¥ denotes wRw™! ([MW, Proposition 11.1.7]). If W (Mg, Mg) is
empty, this constant term is zero. Thus Hb(ﬂ%n)(g) equals

(5.2)

3 /A )

U.)GW(M M €ANo++v/—1Reagr

X > (M (w, A)p)(vg)zre (vg)" HPre dA
YEMq (k)NR¥ (k)\Mq (k)

-3 /A w1 A)

wEW(M M EwA0+\/71ReCIRw

x > (M (w, w™ " A)p) (vg) 2w (vg) 77 dA
YEMg(k)NRY (k)\Mg (k)

We take m € Ag\Mg(A) and my € Mg(A)! so that m = myzg(m). Then
one has zgw (ym) = zg(m)zgre (ym1) and zge (Ym)* = 20 (m)™ 2gw (ymy)A2
for A=Ay + Az, Ay € ag and Ay € agu, because of ymy € MQ(A)I. We
choose a base point Ajp € Reag and Ay,o € Re agw as follows:
(=A10,0|z,) is sufficiently large, and (Ay,0 — pgw,ﬁvlsz) > 0 for all
B|Zgw € Arw with 3|z, = 0. Then we can shift the integral domain of (5.2)
from wAg++v/—1Reagw to A1 g+Ayo+v—1Reagw (MW, Lemma I1.2.2]).
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Summing up, (5.2) at g = m is equal to

> /A zq(m)Ptee

weW (Mp,Mgq) 1€A10+vV—1Reaq

X Z Wy (Ay,ymy) dAy
yEMq (k)NR¥ (k)\Mq (k)

where

Vo (Ay,my) = / Aw L (Ar + As))
A2 eAw,O“l’\/*_1 Re qgw

_ Q
X (M (w,w™ (A + A2))@)(m1)zre (my)A2HPRe dA, .

Therefore, for z € Ag,

HQ(G%H)(Z)

/ 1L (8,0 (1 2) deopgg (1)
Mo ()\Mo(4)!

- ¥ / Aito
A

wEW(MR MQ 1€A1,0+\/71ReaQ

X / Wy (Mg, yma )dway, (ml)}dAl-
{ Mg ()\ Mg (A)! 2 °

YEMq (R)NR (k)\Mq (k)
By the calculation similar to (5.1), the inner integral equals

Codpw
Cadr. / { / Wi (Ar, z2msh)
CR“’dQ Agw MRU,(k)\MRu;(A)lxKMQ

X dop e () i <h>}<6§%w>1<m djtag i )(22)

Codprw o
e [ ] ™ (A1 +A2))
~ Credg A2, J ANy 0+ =T Re P,

% {/ y (M (w,w™ (A1 + Az2))p)(mah)
Mpw (E)\Mpw (A) x K@

Ao—p%,
xdeRw(mg)dl/KMQ(h)}222 PR dAad(pag\pap )(22)
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The cuspidality of M (w,w™'A)p implies

/ (M (1, 0™ A)p)(mah) dwng (ma)dv g (h) = 0.
Mpw ()\Mpw (A)! x KMQ

Hence I1g(0yp,5)|r1q(a) = 0. This implies (0, Fr) = 0 by (3.4). [

Next, we consider the case R = P. Since P is a minimal k-parabolic
subgroup, the constant function ¢y = 1 is contained in Ag p. We define the
inner product on A(pr = AO(M(k)\M(A)l)KM by

(1, ) s = / b (m) () dwns (m) (41,402 € AK).

M (k)\M(A)*!

Let Wy, be the relative Weyl group of (Mg, S). As a subgroup of W,
Wy, is identified with the point wise stabilizer of ag in Wg. For w € Wg
and a generic A € ap, the operator M (w, A) maps A(?IID(Q into itself. If w €
Wiy, then the equality M (w, A1 +Ag) = M(w, A) holds for A €ag, Ay €
an;, and M (w, Ag) is regarded as an operator on AO(AgU(A)M(k)\Q(A)l).
We denote by wg (resp. w1) the longest element of Wg (resp. Wy, ). It is
known from the theory of local intertwining operators and the Langlands
classification theorem that the residue

M) = tim (T (4= pr. %)) M. )

Aecp
A—pp peEAL

exists and yields a projection from A p onto the trivial representation Cepq
of G(A) ([FMT, Section 10 (b)]). By the argument of [L] or [Lai], one has

Cadpt(P)

M (wo)po = JorG) o

In a similar fashion, the residue

M(wy) = lim ( H (A — pg,ﬁv))M(wl,AQ)
Ar€cE N BeA, ~{a}
Aa—pp

yields a projection from .AO(AjQ;.U(A)M(k:)\Q(A)l) onto Cyp and one has

_ Cadpr(P)

M (w1)po = ior@) P
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LEMMA 2. For any ¢ € Ao.p,

Cad
M(U}O)SO = dGii(g)@,l)PSOo-

Proof. If M(woy)p = cgpp, then

1 1 Cadp

c= -(P) (M (wo)p, po)p = Tp)<%M(wo)*Sﬁo>P = m(% ©o)P -

Here note that the constant Cgadp/(dg7(QG)) is a positive real value. U

LEMMA 3. LetT € W(M,Mg), o =7 tw; € Wg and ¢ € AggQ. If
we fix a A1 € ag with (—Re Al,on]ZQ) > 0, then the function

Ag — (M (7,77 (A1 + M2))) [ arayt> o)

18 holomorphic at Ay = pg. Moreover, one has

(M (r,77 (A1 + pB) @) ayr po) v

- %“Mﬂal’ o(A1 — piQJ))‘P)’M(A)l ,00) M

where M1(c™1, o(Ay — pg)) is defined by

lim ( I @- p2,5V))M(o——1,o—(A1 —Ap)).
A2ec? \Ben,—{a}
A2—>pP

Proof. By [MW, Lemma 11.2.2], the function M (7,7 1(A; + A2))p in
A5 is holomorphic on the tube domain of the form {A5 € an;. i (ReAg,Re )
< c&}, where ¢j is a positive real constant with ¢z > (pp,pp). By the
functional equations of M (w, A),

T 1A)@)’M(A)1a900>M

M (wy, wi ' A)M (0™ ow ' A)@) | areay > po)ur

Myt M(wi, witA) o) m
¥ M(A)lvM(wl_lv —N)o)nr -
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Here we identify AK, with Ao(AQU(A)M(K\Q(A))E"® and regard
M (wy,w;'A) as an operator on it. Therefore,

(M, 77 (A1 + 92)@) arcayts o) ar

equals

<<M1<0-1, o(Ar — 12D arcat

—1

lim ( 11 (Az—pfi,ﬂv)) M(w117—A2)soo> :

A2€E pen,—{a} M
P k

A2_’pp

If we regard M (w; !, —Ay) acting on Cypy as a scalar valued function, then

—1 _
lim( 11 (Ag—pfﬁ,ﬁV)) M(wit, —Ry)

AQECg

peAy—{a}
Aa—pg

= hm < H (AQ — pg,ﬂv)> M(wl, —wflAg)
AzEc% BeAL—{a}
Ag—)pP
—1

= M (w1)

This implies the assertion. O

LEMMA 4. Being the notation as above, one has

M =
lim (A; + pQ,av)Ml(a_lag(Al _ PQ))@ _ (wo)p (0= wy)
Aie—cq 0 (O’ #wo)
Al"*PQ

If 0 < € is sufficiently small, then the function
Ay (Mo 0 (Ar = p2))@)wrayt eo)u

is holomorphic on {A1 € ag : 1 — € < (RelA1,pQ)/(pq,pq) < 1} with
polynomial growth as |SA1| — oo.
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Proof. For any 1) € A@?Q,

< lim (A1+pQ,aV)M1(01,0(A1—Pg))<ﬂaw>

A1€*CQ P
A——pg
— (i m T pgua bl o(hr - 490
AlE*CQ P
A1—>—pQ
= <g0, lim (Al +pQ,aV)M1(O', —Kl +pg))1/}>
Ai€—cq P
A1——pg
= <<p, lim ( H (A_ppaﬁv))M(07K)¢> :
Aecp BEA P
A—pp

It is known that

lim ( 11 (A—pp,ﬁv)>M(0,A) =

A€cp
A—pp Pl

{M(wo) (0 = wp)
0 (o # wo)

(cf. [FMT, Lemma 7]). By this and Lemma 2, the equalities

(M (wo)p, ) p = (p, M (wo)) p

= < lim (A1 + pg,@")Mi(o™t oAy — Pjg))%w>
A1€7CQ
A1——pq

P

hold for all ¢ € AgﬁQ. The remains of the assertion follows from [H,
Lemma 118]. a

PROPOSITION 3. Let ¢ € Agp and 1 € C§°(AG). Then one has

Thf;ow%mFﬂ = :E?D; (Opm: 1) -

Proof. Tt is sufficient to prove the assertion for right DK @-invariant
¢ € Ag,p. The calculations of (0, ,,1) and IIg(6, ) are the same as in the
proof of Proposition 2. We have

Cgdp .
<6§D,777 1> = Cpda W(PP)<80, 1>P .
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We need a further calculation of IIg(f, ). Since ¢ is right DK Q_invariant,
IIo(0,,,)(2) equals

d ~
D | MF () dA
CrPdQ _ cwhi ag) ! Metotv=TReag
where
Foan=[, | A (A + A2))
A JAz€A- 0+ ~TRea?

-1 Ar—p%
X (M (7, 77 (A1 + A2))o) [ar(ayr o) 2y

x dAad(pag\pap)(22) -
If Ay € A g+ V/—1Reag is fixed, the function
Ag +— (T (Ar + M) (M (7, 77 (A1 + A2))) [ ar(ay» 00)

is holomorphic on the tube domain {As € ag : (ReAg,ReAs) < 3} as
mentioned in the proof of Lemma 3. We can take A, in this domain.
Then, from the inversion formula, it follows

Fr(Aa) =5 A1+ PR (ro 7 (Ar + p2))9)ar(ay s p0) o -

We shift the integral domain in (5.3) from A9+ +/—1Reag to (e—1)pg +
v —1Reag, where € is a sufficiently small positive number so that all f; are
holomorphic on the domain B. = {A; € ag : 1—-2¢ < (—Re Ay, p9)/(pg. pq)

< 1}. Taking account the residue at —pq, we obtain

/ ZA1+pQﬁ—(A1) dAl
Aq €A1,0+\/—_1Re aQ

= / AP f(A)) dA, + Resp,=—po Fr(Ay).
A1€(6—1)pQ+\/—_1Re ag

We write fr(z) for the first term. By Lemmas 2, 3 and 4, IIg(0,,,)(2) equals

Cale 5~ p ()4 Sede | _dor(@)

N M
Cpdq Crdg  Codpr(P) 1PV M (w0)¢larcays, S0l

TEW (M, Mg)
~ Codp Cadpt(Q)
—Cae 2 S+ e e e

TEW(M,Mg)
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Here note that (g, po)ym = 7(M) = 7(P). Since 7 is a function of Paley —
Wiener type and f-(A1)/7(771 (A1 + p}3)) is of polynomial growth on B, as
|SA1] — oo by Lemma 4, we have an estimate of the formula

(5.4)  |fr(x)] < 2@ / M1 F- (e = Dpg + A)|dA < 129,
vV—1Reag

where ¢ is a constant depending on ﬁ- This implies

e Tlk:Q)/en dt
i S S €Q e —1 -
timsup o [ 9 ool ()1
TlkQl fen
: €Q (1—¢/2)e A
< . @ — =0.
< lmsup o e /0 at .
As a consequence, we have
. Cedpt(Q) 7(Q)
1 Opn, Fp) = —— == Hp=—>=-~t 1).
TE)%Q( LU T> CPdGT(G) n(pp)“&? >P T(G) < P51 >
This completes the proof of Proposition 3, and therefore we are led to
Theorem 1. [

§6. Error terms

We give some estimates of error terms of (3.3).

LEMMA 5. Let a > 0 be a constant. If

: Fr —7(Q)/7(G)
Tlféo@’ T ) =0
holds for any 1 € Co(G(k)\G(A)!), then one has
6.1) Jim Fr(g) —;2@)/7((;) _0

for every g € G(A)!.

Proof. Using the same notations as in the proof of Proposition 1, we
have
soa-cali e W Far ~7(@QUr(@) - (™ —1)r(Q)/(@)
m (ﬂrﬁl T)a TCI
< Fr(go) — 7(Q)/7(G)
< Ta
ateqliclfex Wms P =7(Q)/r(G)) (2™ — 1)7(Q)/7(G)
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The assertion follows immediately from this. 0

By [DRS, Lemma 2.4] and Proposition 2, if

Jin (1o ST

holds for all 0, ,, ¢ € AggQ, n € C$°(A%), then we get (6.1). Let €y be the
superior of € € (0,1/2) such that all M (7,7~ (A, +5g)), T € W(M,Mg) are
holomorphic on B, where B, is the same as in the proof of Proposition 3.
Then, for any 0 < a < €y, we can shift the integral domain of (5.3) from
Ao+ vV—1Reag to (2a — 1)pg + vV—1Reag and the estimate similar to
(5.4) leads to

. <FT7 fT> o
P e Fgljer — O

Thus we proved the following.

PROPOSITION 4. For any 0 < a < €y, one has

7(Q)

‘EW(D7T) N XQ(k)g‘ = m

Wy, (Ex(D,T)) + o(T !~ ealk:Ql/exy

We note that, in some cases, the holomorphic domain of M (7,7~ (Ay +
pg)) is extendable to the right side of the imaginary axis /—1Reag, how-
ever we do not know in general the asymptotic behavior of f, as |SA1| — oo

in this region.

§7. Examples

ExaMpPLE 1. Let V be an n-dimensional vector space defined over k,
G a group of linear automorphisms of V and w : G — G the natural
representation. We fix a free O-lattice L in V (k) and its O-basis eq, ..., e,.
Then V (k) and G are identified with the column vector space k™ and the
general linear group GL,, respectively. Let P be the subgroup of upper
triangular matrices and ) the stabilizer in G of the line spanned by e;.
Then the map g — e; - ¢ = g~ 'e; yields an isomorphism from Xg =0Q\G
to the projective space PV = P"~1. Let H, be a height on X¢(k) defined
as in Section 2. We take a maximal compact subgroup K = [], .o Ky as

follows:
GLn(Ov) (v e DTy)
K, = ¢ 0(n) (v is a real place)
U(n) (v is an imaginary place)
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For each v € Uy, p, and §, stand for the maximal ideal of O, and the
residual field O, /p,, respectively. If we set

* *
0

Dv:{gEKU:gE modpv},
: *
0

then D,\K, is isomorphic to P"~(f,) by the reduction homomorphism.
For every z € P"!(k,), there is an h, € K, such that = = k,(e; - h,). We
denote by [z], the reduction of x modulo p,, i.e., [z], = f,(e1-h; mod p,).
Let & be a finite subset of V. We fix a point (ay)ves in [[,ceP" ' (ky)
and set
N(Pn_l(k)v T7 (av)vEG)
=z e P 1(k): Hi(z) < T and [z], = [ay], for all v € G}|.

It is obvious that

NE" k), T (ay)ves) = [Ex(D,T) - hn X (k)|

where D = Koo X HveG DU X Hve‘l]ffG KU and h = (hav)vEG X (e)vE‘HfG c
K. By Theorem 1 and the calculation of [W, Example 2], we have

n—1 |fv - ) Resg=1 Ck(s) . m[k:Q]
NP (k), T, (av)uee) £|fv|n_1 YA

as T — oo.

Here (j(s) is the Dedekind zeta function of k,
Z(s) = (r*/°L(s/2))" ((2m) ' 7°L(5))"* Gu(s)

and r1 (resp. r2) denotes a number of real (resp. imaginary) places of k. If
k = Q, this formula was proved in [S].

ExaAMPLE 2. Let V, L and eq,...,e, be the same as in Example 1.
Let ® be a non-degenerate isotropic quadratic form on V(k), G = SO the
special orthogonal group of ® and 7w : G — GL(V) the natural representa-
tion. The height H, is the same as Example 1. We assume n > 4 and ®
has the following matrix form with respect to the basis ey, ..., e,:

1
¢ = D )
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where ®( is a non-degenerate (n — 2) x (n — 2) symmetric matrix. Thus
e is an isotropic vector of ®. Let ) be the stabilizer in G of the isotropic
line spanned by e;. The map ¢g — e - g = g 'e; gives rise to a k-rational
embedding from X¢ = Q\G into P*~1. The image of X (k) is the set of
all ®-isotropic lines = € P"~1(k). We put

N(Xo(k),T) = [{z € Xo(k) : Hp(z) <T}.

Since the Levi-subgroup Mg is isomorphic to GLi x SOg,, we have 7(G) =
7(Q) = 2 and dg = dg = 1, and furthermore, eg = dimUg = n — 2 and
er = 1. Therefore, Theorem 1 implies

N(Xg(k),T) ~ m_cig)%T(”—W“@] as T — c0.
Here we supposed that H is invariant by a good maximal compact sub-
group K of G(A). The formula due to Ikeda [I, Theorems 9.6 and 9.7]
deduces an explicit value of Cz/Cq for some choice of K. In the following,
we state this formula. Let U’ be the set of all real places of k. For every
v € U, H(k,) denotes the hyperbolic plane k2 endowed with the quadratic
form (9 §). Then V(k,) is decomposed into the following form on k:

V(kv) - H(kv)mv @ VUO )

where V! is a ®-anisotropic subspace. We put £, = dim V2. In other words,
(n—~y)/2 is the Witt index of ® on V'(k,). If v € Uy, then ¢, is at most 4. If
v € YUy and £, = 3, then VY is identified with the space of pure quaternions
of the division quaternion algebra D, over k,.

First, let n be odd. We may assume without loss of generality that
det &g = 2(—1)=3/2 module (k*)? ([I, p. 207]). For every v € U, with
¢, = 3, we take a maximal compact subgroup K, as the stabilizer in G(k,)
of the lattice H(D,)"%/2 @ (Op, N V). Here Op, denotes the maximal
order of D,,. In other places v, we take K, as in [I, pp. 209-210]. Then

Ca _ Ress—1 Cx () H 1 — [f,|7F3
Co  |Dy|=2/2Zy(n — 1) ol (1 = [fol7F1)
’L)E‘Z]f
ly,=3
B T e
e i1 n+l,—4i—2"
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Next, let n be even. We take a maximal compact subgroup K, as in [I,
pp. 209-210] for every v € U. Let k' = k(1/(—1)"/2 det ®) be an extension
of degree at most 2 over k£ and let Q]} (resp. Q?’jﬁ) be the set of v € U such
that £, = 2 (resp. £, = 4), v is unramified (resp. split) over k'/k and @[y is
equivalent to the form 2w, - Normy, /i, where @, is a prime element of k,
and Normy, /i, the norm form of the unramified quadratic extension kL [ky.

Then
Ca 1 Ress=1 (x(s) L(=1+4+1n/2,x9)
Co  lixelV2IDy|("=2/2 Z(n —2) L(n/2,xs)
« T =2 ] 1 — Jf,[*/
’UE%’ ’UEW” |fU 1 - H |_n/2)
0y /4 .
SIS 1T e
n—|—4z . n-+4i—2
veﬁ/ i=1 veYl,
,=0 (1) 0o=2 (4)

Here o is the quadratic character of A* associated with @, i.e.,
xa(a) = ((—1)"/% det @, a)

for @ € A*, where (-, -) is the Hilbert symbol, and f,, denotes the con-
ductor of x¢ and L(s, xo) the Hecke L-function of xg.
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