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A HIGHER ORDER APPROXIMATION TECHNIQUE FOR
RESTRICTED LINEAR LEAST-SQUARES PROBLEMS

HEINZ W. ENGL AND C. W. GROETSCH

An essential limitation for the method of weighting for equality constrained linear least-
squares problems is the sub-optiinality of the attainable convergence rate. In this paper,
we propose a method, related to the method of iterated Tikhonov regularisation, that
(under suitable conditions) gives rise to convergence rates which are arbitrarily near the
optimal rate. As a by-product, we develop the theory of iterated Tikhonov regularisation
for equations with unbounded linear operators.

1 INTRODUCTION

The "method of weighting" is concerned with approximating the vector x which

is a least-squares solution of

(1) Kx = g

and which, among all least-squares solutions of (1), satisfies also

(2) Lx = f

in the least-squares sense. Here K : Hi —> H^ and L : Hi —> if3 are linear op-
erators between the Hilbert spaces H\,H2,H$. K (but not L) will always be as-
sumed to be bounded. Throughout the paper we will assume that the product operator
(K, L) : Hi —* Hi X Hi has a trivial nullspace and a closed range. For a discussion of
these conditions see [2]. The "restricted least-squares solution" x can be defined more
formally by

(3) \\Kx-g\\=in{{\\Kx-g\\\xeHi}

and

(4) | | I i - / | | = inf{||Ix -f\\\x solves(3)}.
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122 H. W. Engl and C. W. Groetsch [2]

The theory of, and approximation methods for restricted least-squares solutions
have been developed in detail in [2] (see [4], [11]) independently from [17], which also
contains related results. Restricted least-squares solutions in this sense have already
been discussed in [18, p234]. As Nashed has informed us, some of the theory and
approximation results for restricted least-squares solutions can be derived from the
results of his joint paper with Lee, to be published (see the abstract [14] and [15]). In
the special case when L — I and / = 0, x = K^g, where Kt is the Moore-Penrose
generalised inverse of K (see [18]). Another special case that has received attention
is the case when / = 0 and L is a differential operator ([16], [20], [5], [7]); for this
"regularisation with a differential operator" also the case / ^ 0 could be of interest.
For other problems that fit into the framework of "restricted least-squares problems"
see [2], [11].

If / £ D(L^), then one can decompose the restricted least-squares solution as

(5) x = K*g

where K denotes the operator K acting on Hi, endowed with the inner product

(6) [x,y]:={Kx,Ky) + (Lx,Ly),

(which is again a Hilbert space), and P is the [•,•]-orthogonal projector of Hi onto
N(K) (see [4],[11]). Note that the norm induced by [•,•] is equivalent to the original
norm on Hi and played a crucial role in the special setting of [16]. Hence, we will
denote both norms on Hi by ||-||.

Since P = I — K^K, we may write (5) as

(7) x = Lif + K\g-KLif).

The method of weighting for approximating x results in approximations x€, defined
as minimisers of the functional u —> ||ifu — ^|| + e||.£u —/| | . It follows from the
representations of x€ given in [11] that x€ can be written as

(8) xf = L*f+(1 + a)[(al + K*K)-JK*](5 - KL*f),

where e and a are related by e = j ^ and K* is the adjoint of K, if Hi is equipped
with the inner product [•, •] . Comparing (7) and (8), one can interpret, the method of
weighting as an application of ordinary Tikhonov regularisation for approximating K'
in (7). This leads to the idea of designing a method with a higher rate of convergence by
replacing Tikhonov regularisation in (8) by a method that converges faster, for example,
iterated Tikhonov regularisation (of order n ) . Simultaneously, we will also approximate
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[3] Linear least-squares problems 123

in (7) by iterated Tikhonov regularisation (of order n). This leads to the following

approximation ya%n for L*/:

(9) »a,o:=O, {L*L + aI)yatj = L*f + ayatj_1 (j = l , . . . , n ) .

For approximating the second term in (7) alone (without simultaneously approximating

), we would use wa<n denned by

(10) u><,l0:=0, (K*K + aI)wa,j = K*(g

However, since we also want to approximate L^ f simultaneously, we replace wa<n by

za,n defined by

(11) *«,„:= 0, (K*K + al)zatj = K*(g - Kya,B) + aza<j^ (j = l , . . . , n )

and use

(12) £<*,„ := y a , n + z a , n

as our approximation for x. In view of (8), one might be tempted to multiply za^n

in (12) by( l + a ) ; however, this would slow down the rate of convergence to at most

O(a).
We now formulate the method in a way involving only the original operators L

and K (and not K) and their adjoints (with respect to the original inner products):

ALGORITHM. Let n E N , a > 0 and define ya<n by (9). Let zaiTl be defined by

za,o ••= 0 ,

(13)

and define xain by (12).

Since K* = (L*L + K*K)'1 K*, (11) and (13) are equivalent.

Note that, for the moment, (9) is meaningful only for bounded L. What we mean
by (9) for unbounded L will be made clear in Section 3. For the method of weighting it
is known ([2], [11]) that if the data g and / are subject to perturbations of magnitude
8 (and the problem is ill-posed, that is, R(K) is non-closed), then the best possible
asymptotic rate of convergence for the approximants using the perturbed data is 0(8^),
no matter what choice of a = a(6) one takes and what a-priori assumptions one makes.
We will show that our algorithm can have the convergence rate O(6V) for any u < 1
under suitable conditions.
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2 T H E CASE OF BOUNDED OPERATORS

We consider first the case in which both the operators K and L are bounded. The
following facts are found in [13]: If L* f £ R((L*L)n), then :

(14) \\ya,n - & f\\ = 0(an);

if only a per turbed version fg of / satisfying \\f - fg\\ < 8 is available, then

where y*n is defined by (9) with / replaced by ft. Then similarly, if g — KL*/ 6
i?((K*K)n), the approximations wattl defined by (10) satisfy

(16) ||

Now we show by induction that

(17) | K , n - * a , n | | = 0 ( a n ) ,

where za<n is defined by (11): For all j £ ( 1 , . . . ,n),

*»«..,• - z . j = "(K*K + a / )" 1 («;„,,-_! - z . ^ ) - (K*K + aI)-lK*K{tff - ya,n).

Since

(18)

as can be seen using spectral theory, and since wai0 = zQ|0 = 0, it follows from (14) that
IIW'Q.I — za,ill = O{an). Now assume that for some j ^ 2, ||waiJ_i — za,_,_i|| = O(an).

Then it follows from the formula for wa<j - zaj, together with (14), (18) and the
estimate

(19) | | (K*K+a/)-1 | | = O( i )

that ||waii - 2ai>|| = a.O(±).O{an) + O(an) = 0{an).

This completes the induction and shows that (17) holds. Now, (16) and (17) imply

(20) ||za,n

so that by combining (14) and (20) we obtain the following convergence rate for our
algorithm for the case of exact data:
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THEOREM 1. Let K : H\ —> H2 and L : Hi —* H3 be bounded linear operators
and assume that (K, L) has a trivial nullspace and closed range. Let K be defined as
in Section 1 and assume (with an n g N j that

(21) / € D(L<)

(22) IV e R((L*l)n)

(23) K'(flf - K I f / ) e i*((K*K)n).

Then for »:<,,„ defined by the algorithm of Section 1 we have

(24) ||xOlB - x|| = O(an),

where x is defined by (3) and (4).

Thus, our algorithm is faster than the method of weighting, which, in the noise-free
case yields the convergence rate O(o) (see [2], [11])- Note that the complexity of our
algorithm is not much higher than that of the method of weighting: As a comparison
with [11, (8)] shows, both methods involve the inversion of two linear operators. We
will discuss the conditions (21)-(23) at the end of this Section.

We now turn to the case of noisy data and assume that instead of / and g, we
use fs and gs with \\f — fs\\ ̂  8, \\g — gs\\ ^ 6 in our algorithm. The approximations
resulting from (9), (11) and (12) will be denoted by y*^ ,z6

a^ and x* n , respectively.

The effect of the perturbation in / on ya,n can be seen from (15). Now, for
j e {l,...,n},zs

a<j - zaJ = (K*K + aiy'K^gs - g) + a(K*K + a / ) - 1 ^ ^ , -
za,j-i) - (K*K + a/)~1K*K(y*n — ya,n)- From this formula, it follows as above
(by induction) together with (15), (18), (19) and the estimates \\gs — g\\ ^ 8 and

(25) | | < » - za,n|| = O

Now, (15) and (25) imply together with the result from Theorem 1 that under its
assumptions,

(26) ||<n-£||=O(a") ^

and hence with the choice a ~ Sx+2n we obtain the rate ||a;^|n — x|| = O(51+2n ) , which

(for n > 1) is better than the best possible rate 0(83) for the method of weighting.

Also, for n sufficiently large, this rate can be arbitarily close to the optimal rate O{1>).

Of course, increasing n only makes sense as long as the conditions (22) and (23) are

fulfilled. Otherwise, the rate of convergence does not improve.

We summarise this discussion:
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126 H. W. Engl and C. W. Groetsch [6]

THEOREM 2. Let the assumptions of Theorem 1 be fulfilled. Let xs
an be defined

by the algorithm of Section 1 with f and g replaced by fg and gs and assume that

Wf-fsW^S, \ \ g - g s \ \ < 6 .
If a = a(S) ~ <5^TT , then

where x is defined by (3) and (4).

Finally, we want to discuss conditions (21)-(23): If (21) is not fulfilled, then
limc—o \\ya,n\\ = +oo (see [10,Th.2.1.2]). Also, the splittings (7) and (8) would not
be possible, although x (and also the method of weighting) are defined (see [11])-
Thus, (21) seems to be necessary for our method to work. But note that in most cases
of interest (see [2]), R(L) is closed anyway, in which case D(L^) = H% , so that (21) is
always fulfilled.

If R(L) or R{K), respectively, are non-closed, then the conditions (22) or (23)
are actually necessary for the convergence rates (14) and (16) (see [10, Theorem 3.2.1]
for n = 1 and the compact case). Thus, these conditions cannot be relaxed. Since
(23) involves the adjoint and generalised inverse with respect to the inner product (6),
we interpret this condition in terms of the original structure on Hi : First note that
because of (7), (23) is equivalent to

(27) x - L^f £ R((K*K)n).

The range of (K*K)n is described as follows:

PROPOSITION, X E R((K*K)n) if and only if there exists vectors xi,...,xn with

L*LXl e R{K*K), L*Lxj = K*KXJ_! for j 6 { 2 , . . . , n} , xn = x .

PROOF: X e R((K*K)n+1) if and only if x G R((K*K)n) and then there is a
z 6 il((K*K)n) with x = K*Kz. Since K* = {K*K + L*L)-1 K*, this is equiva-
lent to L*Lx = K*K{z - x). Hence x e i?((K*K)n+1) if and only if there exists
a v £ i2((K*K)n) with L*Lx = K*Kv. From this, we can prove the assertion by
induction. R

This proposition together with (27) gives at least some feeling for condition (23).

Finally, we note the following: If T is a selfadjoint bounded linear operator between
Hilbert spaces with closed range, then .R(rn) = R(T) and N(Tn) = N(T) for all
n e N . Hence, if R(L*L) is closed, then L f / 6 N{L)X = N^L)1- = R(L*L) =
R((L*L)n) for all n € N , so that in this case, (22) is fulfilled for all n £ N. Thus, in
this case, (23) is the only "real" condition that restricts the choice of n .
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3 T H E CASE OF UNBOUNDED L

We now indicate how the results of Section 2 extend to the case of a densely defined,
closed, but not necessarily bounded linear operator L : D(L) C Hi —» H3. First, we
must extend the basic theory of iterated Tikhoiiov regularisation for approximating L^ f
to that case. Note that since / need not be in D(L*), (9) does not have an immediate
meaning. We assign a meaning to (9) via a weak formulation: One shows as in [16]
that for any a > 0, D(L) equipped with the inner product

(28) (x,y)a:=(Lx,Ly)+a(x,y)

is a Hilbert space. We consider the linear functional

(29) v-+(f,Lv)

on this Hilbert space. If a sequence (i>fc) converges to v with respect to the norm in-
duced by (•, -)a , then, since L is continuous with respect to this norm, (Lvk) converges
to Lv and hence ((/, i/i^)) converges to (f,Lv). Hence, the linear functional in (29)
is bounded on (D(L), (•, -)Q). Thus, by the Riesz Representation Theorem, there is a
unique ya,i G D{L) such that

(30) (Lyajl,Lv) + a(ya<1,v) = (ya<1,v)a = (f,Lv)

for all v € D(L). This is the weak formulation of Tikhonov regularisation. Moreover,
if / G D(tf) and y - itf, then (f,Lv) = (Ly,Lv) for all v G D(L) (which is the
weak formulation of the normal equations) and hence (because of (30))

(31) "(l/o.i -V,v} + (L(ya,i - y),Lv) = -a(y,v)

for all v G D(L). Now, (31) implies that ya<1 -y G D(L*L) and that

(32)

holds. Because of von Neumann's Lemma (see [12]), (al + L*L)~1 is bounded and
||(a/ + L'L)-1]] ^ i . Thus, (32) can be written in the form

(33) ya,1-y = -a{aI + L*L)~1y.

From (33), convergence rates can be derived. For example, if y G R(L"L), then with
L*Lz -y we obtain j/a,i -y = -a(al + L*L)'1 L*Lz = -az + a2(al + L*L)~^z and
hence ||ya,i — t/|| = O(a). Analogously, we can define iterated Tikhonov regularisation
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via this weak formulation: Let 2/Qio = 0 and let, for j £ { 1 , . . . ,n}, yaj be the unique
element in D(L) satisfying

(34) (LyaJ,Lv) + a(yaij,v) = (f,Lv) + a(yaii_uv)

for all v £ D{L). It follows as above that yaj — y £ D(L*L) and that

(35) yatj-y=-a(aI + L*Ly1(y~yaJ_1)

holds for all j £ { 1 , . . . , n}. Hence we can prove as above that if y £ R((L*L)n), then

| | y - , n - y | | = o ( a n ) .
Now assume that \\f — fg\\ < S and define y5

a n by (34) with / replaced by fs •

Then

(36) (L(yaJ - ys
aij), Lv) + a(yaJ - yitj,v) = (f - fs,Lv) + a(yaii_, - yij^v)

for all v £ D(L) and j £ { 1 , . . . , n}. We claim that for all j £ {1 , . . . , n} ,

(37) \\yaj-y
6
aJ\\=O(^=)

holds. For j = 1 we obtain from (36) with v := t/aii — ys
al,

\ \ L ( y a > 1 - y S
a A ) \ \ 2 + a | | y a , i - y i j 2 ={f- f t , L ( y a t l - ys

a>1)) ^ 6 \ \ L { y a i l - y 6
a A ) \ \ .

From tins, we first obtain ||i(j/a,i — 3/a,i)|| ^ ^ an<^ then a ||ya,i — 2/a,i|| ^ &2 , that

is, (37) with j = 1. Now we can proceed by induction: Assume that (37) holds for

j — 1 and use (36) with v :— yaj — j / * ^ - . Then we obtain (with the abbreviations a :=

\\L(ya,j ~ yi,j)\\ , t> ••= \\ya,j - yS
aj\\ )•• a,2 + ab2 ^6a + a-^b with a suitable constant

c > 0. The right-hand side of this inequality is dominated by ^ + T" + ^~2~ + ̂  • W e

thus obtain ^ + ^ < S2.(£ + ^ ) - This now implies that b = O(^=). By definition

of b, this is just (37) for j , which completes the induction. Thus (37) is verified.

We summarise these results:

THEOREM 3. Let L be a densely defined closed linear operator between Hilbert

spaces, f £ D(L^) and assume that (22) holds for an n £ N . Let yain be defined by

(36). Then

(38) ||»a,n

holds. If | | / - fs || O and y6
an is defined by (34) with f replaced by fs , then

(39) | | f f « . » - U | 4
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holds. Hence, if a = a(6) ~ Si+m , then

(40) K,n

This theorem extends the theory of iterated Tikhonov regularisation developed in
[13] to the case of an unbounded operator L. Now, we come back to our algorithm of
Section 1 for approximating the restricted least-squares solution x. The fact that L is
now unbounded affects only the y* . The other part of the iteration, namely z6

an,
can be handled as in Section 2. This implies:

THEOREM 4. Tie statements of Theorems 1 and 2 hold if (with all other assump-
tions unchanged) L is closed and densely defined, if (ya,n) an<^ (vt,n) a r e defined by
(34) (with f and fg ) instead of (9), the rest of the algorithm being unchanged.

The following extensions should be possible (both for our algorithm and for the
weak form of iterated Tikhonov regularisation per se):
(1) A posteriori parameter choice rules like the ones in [6], [9].
(2) Superconvergence results as in[19], and a posteriori parameter choice rules for

getting superconvergence with optimal rates ([8]). This is relevant for the "linear
functional strategy" for solving ill-posed problems (see [1]).

(3) Finite element realisations of our algorithm like the one given for the method of
weighting in [3].

(4) Projection methods for approximating x in the spirit of [7].
We do not elaborate on these points.
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