
J. Austral. Math. Soc. (Series A) 34 (1983), 234-247

PREFRATTINI GROUPS

PETER FORSTER

(Received 24 November 1981)

Communicated by H. Lausch

Abstract

We define and investigate 3Gprefrattini subgroups for Schunck classes % of finite soluble groups, and
solve a problem of Gaschiltz concerning the structure of 3tprefrattini groups for % = {1}.

1980 Mathematics subject classification (Amer. Math. Soc): 20 D 10, 20 D 25.

Introduction

In the theory of saturated formations *% of finite soluble groups, one associates
with each finite soluble group G three conjugacy classes of subgroups of G,
namely "^-projectors, 'JF-normalizers and 'JF-prefrattini subgroups. (The latter were
introduced by Hawkes in [12].) Schunck (in [15]) characterized those classes % of
finite soluble groups such that every finite soluble group possesses ^projectors,
and found that for those classes (which are now known as Schunck classes) the
Ot-projectors always form a class of conjugate subgroups. Meanwhile several
investigations of Schunck classes and their projectors have been carried out, while
%-normalizers and 3{^prefrattini subgroups have not even been defined (except
that unpublished work of Schaller [14] contains a definition of OC^prefrattini
subgroups). Therefore, in the present paper, we define J^prefrattini subgroups of
a finite soluble group (see Section 2), and then go on to prove some of their
elementary properties (Sections 2, 3). Our approach here differs from the one of
Hawkes as well as from Schaller's approach: in fact, our definition is a simple
generalization of the one Gaschiitz gave in [10], and is based on Gaschiitz's
notion of a crown (see Section 1), which turned out to be of fundamental
importance in the theory of Schunck classes (see Baer, Forster [1], Chapter 3).
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[21 Prefrattini groups 235

The next part of this paper consists of an answer to Gaschiitz's question (see
[10]) whether the structure of those groups that occur as prefrattini subgroups in
finite soluble groups is restricted: we can show that every finite soluble group is a
quotient of a prefrattini group; nevertheless, there are many examples of groups
which are not themselves prefrattini groups.

The final section of this note reveals a property of ^prefrattini subgroups (as
proved by Chambers [16] for saturated formations %) as a more general property
of so-called weakly system permutable subgroups H of finite soluble groups G:
we show that H permutes with suitable conjugates of arbitrary normally em-
bedded subgroups of G. (JGprefrattini subgroups H for Schunck classes % are
shown to enjoy this property; see Section 3.)

All groups considered here are assumed to be finite and soluble.

1. Gaschiitz's concept of a crown

A Schunck class 'X is, by definition, a class of finite soluble groups satisfying

9C= Q%(= {G/N\G(E%,N < G}), and

G e S , Pr(G) C%^G<E%;

here S denotes the class of all (finite soluble) groups and Pr(G) is the class of all
primitive factor groups of G. For basic facts concerning Schunck classes the
reader is referred to Schunck's paper [15] as well as to 1.2 of [5] and 1.1, 1.2 of [4].
Note that in these papers Schunck classes are termed "gesattigte Homomorphe"
(saturated homomorphs).

Related to the notion of a primitive group (that is, due to the hypothesis of
solubility of all groups considered here, a group with unique minimal normal
subgroup which, in addition, is complemented by a maximal subgroup) there is
Gaschiitz's concept of a crown as introduced in [10], which describes the totality
of primitive factor groups of a given type in a group. For a non-equivalent
definition of a crown see Baer, Forster [1] (Chapter 3). The definition given there
was made to work for non-soluble (finite) groups too. Our definition of %-prefrat-
tini subgroups (see 2.1 below) could have been made with this more general
concept of a crown as well, the proofs of their properties, however, would have
become less elegant.

1.1 DEFINITION. Let H/K be a complemented chief factor of a group G. Put
C = CG(H/K) and R= <1{T<G\T<C, C/T s c H/K}. Then C/R is called
the crown of G associated with H/K.
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Clearly, C/R is non-trivial, as is seen by considering T= coreG(U) for some
complement U in G of H/K.

Combining the results of Gaschiitz's paper [10] with a characterization of
pronormality (see [13]), one obtains:

1.2 LEMMA. Let notation be as in 1.1 and denote by p the prime divisor of H/K.
Then the following holds.

(a) C/R is a completely reducible GF(p)[G]-module with all its composition
factors isomorphic to H/K.

(b) F(G/R) = Op(G/R) = S(G/R) = C/R, 9(G/R) = Op,(G/R) = 1.
(c) There exists U *£ G such that the set of all complements in G/R of C/R is

precisely the set of all G-conjugates of U/R. Moreover, to each Hall system
2 = {Gv | IT C IT{G)}, there corresponds exactly one Ux into which 2 reduces.

(d) / / (S/R)(C/R) = G/R, then S/R has the form (VX/R)(MX/R
X • • • XMS/R) with x G G and Mt/R minimal normal in G/R (i = \,...,s).

(e) / / Ho/Ko S^GH/K is a complemented chief factor of G, then H0R/K0R
= GH/K is another chief factor of G and is situated below C (and above R);
furthermore, C/R is the crown associated with Ho/Ko (and with H0R/K0R).

NOTATIONS. CR(G) denotes the set of all crowns of G. For a given Hall system
2 = {Gw 177 C TT(G)}, CC(G, 2 ) denotes the set {U =£ G | G = UC and U n C = R

for some C/R G CR(G), 2 reduces into U). (Note that by 1.2(c), for each
C/R G CR(G), there is precisely one complement in CC(G, 2) ; in turn, each
U G CC(G, 2) complements precisely one crown, namely C/R where R =
coreG(U) and C = F(Gmod R).)

1.3 LEMMA. If U G CC(G, 2 ) complements C/R G CR(G), then U= Pi {S =£
G | R *£ S, G = SC, S maximal in G, 2 reduces into S}.

In addition, for a given chief series of G, 1 = Go < G, < • • • «s Gn = G say,
U= r\"=xS,with

G, if C/R is not the crown associated with Gl/Gl _., (including the case

that Gi/Gi_i is a Frattinifactor),

an arbitrary maximal subgroup of G subject only to the conditions (i) + (ii)

below, if Gj/Gj_, is a complemented chief factor of G with C/R

being the associated crown.

(i) 2 reduces into S,-;
(ii) F(G/corec(S,)) = G,coreG(S,)/coreG(S,) and G,_, < coreG(5,).

O — •
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PROOF. U = H{S^G\R<S,G = SC, S maximal in G, 2 reduces into S} is
an obvious consequence of 1.2(a)-(d).

In order to verify the additional assertion, let the set {Xi/Y],...,Xm/Ym} =
{Gj/G^^ \i E {\,...,n}, GJGi_x is complemented in G with associated crown
C/R} be ordered such that Xt• < Yi+l for / = \,...,m— 1. Then by 1.2(e), we
have/? < YXR < XXR < Y2R < X2R < • • • < XmR «= C with complemented chief
factors XjR/YjR (i = l , . . . ,m) ; again, C/R is the crown corresponding to
XjR/YjR. Now, on the one hand, the generalized Jordan-Holder-Theorem ([2],
2.6) yields that m is the number of complemented chief factors of G (in a given
yet arbitrary chief series of G) with C/R as the associated crown. On the other
hand, we might refine the above series R < YXR < XXR < • • • < XmR < C
(namely, in case that R < YXR or XtR < Yi+]R or XmR < C), eventually obtain-
ing new chief factors (besides those m factors of the form XjR/YjR) with the
same associated crown (see 1.2(a)). This gives

R = YXR < XXR = Y2R < X2R < XmR = C.

Finally, let S* be any maximal subgroup of G complementing Xi/Yi (and thus
XjR/YjR too, as follows from R =£ corec(S*), the latter being a consequence of
Cc( V W c o n f c ( S ; ) = ^core c (5*) /core G (5*) ^ c XJX, n confc(Sjf) =
A'yy;.) into which 2 reduces. By 1.2(c),(d), C/is contained in S*, whence S* = UC
DS* = U(C n S*). Further, C n 5* = RXm n 5* = *(*„ , n 5*) = /?7m =
^ m . . , , so that 5* n s : _ , = wufM_, n 5*_, = ram_, n s * _ r u(Xm_x n
S^_,) = t/3^,_,. A trivial induction argument may now be applied to derive the
equation n™=jS* = UYj ( = {/A}_, fory > 2). We obtain n , 1 , S* = UYX = f/«
= U, thus verifying our assertion that U— r\"=lSj whenever {S,, . . . ,Sn} is as
described in the statement of our lemma.

2. ^prefrattini subgroups

2.1 DEFINITION. Let % be a Schunck class and consider a Hall system 2 of a
group G. Recall that a complemented chief factor of G, H/K say, is called
'Xreccentric provided that the corresponding primitive factor group G/corec(f/)
s (G/CC(H/K)\H/K) (where U complements H/K in G) is not contained in
%; H/K is called %rcentral otherwise. We extend the notion of ^eccentricity
(and of %-centrality) to factors C/R £ CR{G) to mean that H/K is ^eccentric
('X-central) for some (and then, by 1.2(a), (e), each) complemented chief factor H/K
the associated crown of which is C/R. We define the 'Krprefrattini subgroup of G
corresponding to 2 as

I,,%) = P | {UG CC(G,I,)\C/R e CR(G)

is the crown complemented by U => C//J is SCeccentric}.
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2.2 THEOREM. Let %be a Schunck class and G a group with Hall system 2 0 , and
consider a chief series 1 = Go^ Gx < • • • < Gn = G.

(a) W(G, 20,DC) = r\"=1Sj, where St is a complement in G of Gi/Gl_, into
which 2 0 reduces, provided that GJG^, is a complemented ̂ eccentric chief factor
of G, and 5, = G otherwise.

(b) W{G/N, 20N/N, DC) - W{G, 2 0 , %)N/N whenever N < G.
(c) 77ie «?? {W(G, 2,DC)|2 //a// system o/ G} /s a characteristic class of

conjugate cover-avoidance subgroups of G. More precisely, a chief factor of G is
avoided if and only if it is a complemented %reccentric factor.

PROOF, (a) is an immediate consequence of 2.1 and 1.3.
(b) follows from (a), as a chief series with G, = vV for some / £ {1,... ,n} might

be considered.
(c) Conjugacy of all Hall systems of G yields conjugacy of all %-prefrattini

subgroups, when the assertion in 1.2(c) is taken into account. The set of all
W(G, 2,'JC) is invariant under automorphisms of G, since <p E Aut(G) maps
C/R G CR(G) onto Cf/R'f G CR(G) and G/R = G/R*. By (a), W =
W(G, 2, 'X) avoids each OOeccentric chief factor of G. In order to show that
Frattini factors and X-central factors are covered, we may restrict ourselves to the
case of a minimal normal subgroup M, as is shown by (b). Write W = D"=, St as
in (a). For a Frattini factor M we have M< $(G) < 5, (/ = 1,...,«), hence
M «£ W. For a complemented factor M we have M < coreG(S,) = C,•< 5,-
whenever Si ¥= G, as MCi/Ci cannot possibly be the :X-eccentric factor F(G/C,),
because here M is DC-central. Again it turns out that M «£ W.

2.3 COROLLARY. / / S is a maximal subgroup of G into which 2 reduces, then the
following statements are equivalent:

(i) W(G,1,%)^S\
(ii) S is %-abnormal (that is to say, F(G/corec(S)) is %-eccentric).

(Actually, (i) and (ii) are equivalent provided only that Gp *£ S, where p is the
prime dividing | G : S | .)

2.4 EXAMPLE. If DC happens to be a saturated formation, then W(G, 2, Di ) is, of
course, the Dl-prefrattini subgroup of G corresponding to 2 in the sense of
Hawkes ([12], Section 3); in particular, putting % = {1}, one obtains Gaschiitz's
prefrattini subgroups (see [10], Section 6).
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2.5 THEOREM. W < G is an X-prefrattini subgroup of G (% an arbitrary Schunck
class) if and only if Wsatisfies the following two conditions:

(i) W avoids all X-eccentric complemented chief factors of G and covers the
remaining factors, and

(ii) W is weakly system permutable in G ("schwach vertauschbar " in the sense of
[9], 5.1a); in fact, Wpermutes with the elements o / 2 whenever W — W(G, 2 , X ).

PROOF. We give a proof partially different from Gillam's proof of his theorem
on %-prefrattini subgroups for saturated formations ^(see [11], 3.2).

First, let W - W(G, 2 , % ) . Then (i) holds by 2.2(c). Condition (ii) is proved by
induction on | G \ . Therefore the assumption

N < G, N< W^N= 1

is justified. In particular, <5(G) is trivial, and there is a minimal normal subgroup
of G, M say, which is avoided by W. Let S be a complement in G of M such that
2 reduces into S. 2.3 together with 5 = G/M and 2.2 implies W = W(S, 2 n
S, % ) , and W permutes with the elements of 2 n S. Since each H e 2 either is
an element of 2 D S or may be written as H — (H D S)M, we are done.

For the converse implication the reader is referred to Gillam's [11].

The author's Proposition 6.5 of [8] on D(^normalizers has an analogue for
'3C-prefrattini subgroups.

2.6 THEOREM. The following statements are equivalent in pairs.
(i) For every G G S, %-prefrattini subgroups arepronormal subgroups of G.
(ii) For every G G S, %-prefrattini subgroups are (strongly) system permutable

("(stark) vertauschbar" in the sense o/[8], 5.1).
(iii) % = S.

PROOF, (i) ^ (ii) is a consequence of [8], 6.4, together with 2.5.
(ii)=*(iii): This follows from [8], 6.3, together with the trivial fact that in

groups contained in E^CX) (where n G N and EjJ(%) is defined as in [7], 2.15)
'3C-normalizers (see [7], Section 2) and %-prefrattini subgroups coincide; indeed, if
G G Ejl(X)\E};~\%) (n G N), then F(G) is a crown with complement con-
tained in EJ!~\%)\Ej;~2(%) when n > 2 or contained in E°(%) - X when
n = 1. These considerations can be used to show that X = ^ (IT a set of primes),
the class of all groups with no non-trivial w-factor group, whenever X satisfies (ii).
The case w =f= 0 can be excluded as follows. Let p G w and q be distinct primes,
V a faithful irreducible module over GF(q) for the cyclic group C of order p2.
Consider the semidirect product 5 of CV and a faithful irreducible GF(p)[CV]-
module W. Then $(C) is a ^-prefrattini subgroup of S which is not system
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permutable: otherwise, since for any x G S the set {1, CW, Vx, S) constitutes a
Hall system of S, we should have $(C)F* = VX$(C) < S for arbitrary x E S;
clearly, this is not the case,

(iii) =» (i) is trivial.

3. A lattice of cover-avoidance subgroups

The concept of an DGprefrattini subgroup, as developed here, really depends on
the notion of a crown corresponding to a set of primitive groups rather than to a
Schunck class. One checks easily that generalized ^X-prefrattini subgroups (as
defined below for arbitrary subclasses 9C of the class of all primitive groups 9)
enjoy exactly the same properties (summarized in 2.2 and 2.5) as D(rprefrattini
subgroups for Schunck classes % do.

3.1 DEFINITIONS. Let G be a group with Hall system 2, and let 9C C <3\
(a) A complemented chief factor of G is called 'X-quasi-eccentric whenever

G/corec(U) G 9C for some (equivalently: each) of its complements U. Otherwise
the complemented chief factor is called ^quasi-central. These notions are
defined for crowns instead of chief factors in the obvious way.

(b) The generalized 9C-prefrattini subgroup of G corresponding to 2 is defined
to be

M(G, 2,6X) = Pi {U G CC(G, 2 ) | {/complements

an 9(rquasi-eccentric crown of G).

3.2 REMARK. Given a Schunck class %, put X(%) = <3\Pr(3C), where Pr(OC)
= DC n 9. Then we have

AX5i)-quasi-eccentric = DGeccentric,
Ar(5C)-quasi-central = DGcentral, and
M(G, 2, X(%)) = W(G, 2, DC).

3.3 THEOREM. Let G, 2, % be as in 3.1 and define M(G, 2) = {M(G, 2, 9C) | C!K
C '?}. Then M(G, 2) = {M(G, 2, %) | % C Pr(G)} is a lattice of pairwisepermu-
table subgroups of G, with intersection as a meet operation and (permutable)
product as a join. More precisely, we have

, 2 , {/>,,... ,/>r}) n M(G, 2 , {/>r+,,... ,/>,})

= Af(G, 2,{P,,. . . , .PJ}), and

M(G, 2 , {/>,,... ,P,})M(G, 2 , {Pr+ „ . . . ,/>,})

= M(G,2 ,{P , Pr) n {Pr+l Ps}).
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The proof of this theorem is omitted, because it is an easy consequence of
M(G, 2, %) C M(G, 2 , <%) whenever ty C % C 9 together with the following
elementary lemma.

3.4 LEMMA. Let V be a cover-avoidance subgroup of G, and let U be a subset of V
such that U covers each chief factor of G covered by V. Then U — V.

PROOF. By induction on | G | , it is easy to derive | U \ — \ V\ .

3.5 COROLLARY. Let W(G, 2 ) = {W(G, 2 , DC) | DC Schunck class). Then
W(G, 2) is a sublattice ofM(G, 2) .

It is clear that a similar statement does not hold for saturated formations in
place of Schunck classes.

PROOF. Using the notation introduced in 3.2, it is clear that ^ ^ ^

A-(DC,) U X(%2) = Jf(3C, nDC2) and A^DC,) n X(%2) = X(%1 U DC2);

here DC, and DC2 denote Schunck classes and % stands for the unique minimal
Schunck class containing the homomorph DC, that is to say, DC = {G G S | Pr(G)
C DC}. Combining this with 3.3, a proof of the theorem can be established.

We conclude our investigations of generalized prefrattini subgroups by stating
a criterion for prefrattini subgroups which is independent of the choice of a Hall
system. A proof may be extracted from Gaschiitz's [10], Section 6.

3.6 PROPOSITION. M e U {M(G, 2 , {/>„... ,Pn}) | 2 Hall system of G)
(P\,...,Pn are primitive groups) if and only if the following two conditions hold.

(i) M covers each Frattini factor and each complemented {P,, . . .,Pn}-quasi-central
chief factor of G;

(ii) for each complemented chief factor of G, H/K say, with
(G/CC(H/K))(H/K) ss PJor some i G {1, . . . ,«}, and for each complement U of
H/K, there is an x G G such that M < Ux.

4. On a problem of Gaschiitz

Gaschiitz [10] asked whether there are any restrictions for the structure of
prefrattini subgroups (that is, DC-prefrattini subgroups for DC = {1}). This ques-
tion was modified by Doerk [3]: is there a formation <$ ¥= S such that the class
% = { P G S I f i s a prefrattini subgroup of some G G S} is a subclass o f f ? We
answer these questions by showing that even Q99 = S holds.
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4.1 EXAMPLE. Let p be a prime, let n 6 N , and suppose that p" ¥" 2. Take a
maximal soluble subgroup H ( ^ 1, as p" ¥= 2) of GL(n, p) acting irreducibly
upon the n-dimensional GF(/?)-space V. (Such subgroups exist in each GL(n, p)
as is seen by considering, for example, the automorphism group which the
semilinear group of order p"(p" — \)n induces in its minimal normal subgroup of
order/)".) Then the semidirect product 5 = HVis not contained in %.

Indeed, if S is a prefrattini subgroup of G, then G possesses a Frattini /7-chief
factor M/N such that the chief factor V of S appears (up to isomorphism) in
M/N. Clearly, we may assume without loss of generality that iV = 1, and then we
obtain M *£ 0^,(5), whence M coincides with the minimal normal subgroup
V = Op(S) of S. We infer that H s Auts(F) < Autc(K) s G/CG(V) and, as the
latter is a soluble group, H = G/CG(V) by choice of H. This forces that
G = HCC(V) ¥" CG(V), which is impossible for a subgroup H < S of G that
covers only Frattini factors.

In contrast to this example we have the following solution of Gaschiitz's
problem:

4.2 THEOREM. Q% = S.

PROOF. Put % - Q%.

(1) H G % implies HGF( p)[H] G % for each prime p:
Suppose that H is a prefrattini subgroup of G. Let G act on a />-group /> such

that / ) /$ ( / ) ) = c F, © F2, $(P) = P' = Z(/>) s c F, ® F2 s c F, where F, =
GF(/7)[G] and F2 = lg is the trivial irreducible GF( p)[G]-modu\e; for existence
of such a group P and its properties see 1.1 of [7]. If 5 = GP denotes the
semidirect product, then the structure of P gives the split extension

Ho = H(*(S) HP) = H{Rad(GF(p)[G]) © GF(p)[G])

as a prefrattini subgroup of S (see [7], 1.1 and 1.3). As GF(p)[G]H

= H®lG.HlGF(p)[H], the split extension HGF(p)[H] is in Q{HGF(p)[G]} C

Q%-
(2) % is an ^.-closed homomorph; here Ec denotes the closure operation

defined by Ec% = {G G S | there exists N < G such that G/./V G 9C and every
chief factor of G below N is complemented} = {G G S | there exists N < G such
that G/N G % and P C\ N = \ for a. prefrattini subgroup P of G) for each class
% of groups:

Let G G £CX. Proceeding by induction on | G | , we may assume that G/N G DC
for every normal subgroup N ¥= 1 of G. Taking N to be minimal normal in G, we
see that G = A7V with X = G/N G % a maximal subgroup of G complementing
the elementary abelian normal subgroup N. If p denotes the prime dividing \N\ ,
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then N is an irreducible X-module over GF(p), whence G = XN is a factor group
of XGF(p)[X] G Q{HGF{ p)[H]} C Q% (see (1)), where H E % is such that X
is a quotient of H.

(3) i / /W G % with JV =e $ ( / / ) elementary abelian implies HEX:
Put y = / / / # and choose a group G such that Y is a prefrattini subgroup of G.

Let /? be the prime divisor of | N \ . Gaschiitz [9] has shown that there exists a
group GQ p with the following two properties:

(i) GQ p/Ap(G) s G for some elementary abelian normal /^-subgroup A (G) of
G9tP contained in <&(G9^p).

(ii) if G*/N* ss G with TV* an elementary abelian normal /^-subgroup of G*
contained in $(G*), then there is an M<±Gq,p such that M < Ap(G) and
Gq, /M = G*. For a detailed exposition of this result and related lemmas (which
we use below) see Baer, Forster [1], chapter 4. If Y*/Ap(G) = Y denotes a
prefrattini subgroup of G9_p/Ap(G), then Y* is a prefrattini subgroup of G^ p,
and is isomorphic to a split extension Y9<pP with P being a (projective) 7-module
over GF(p). From this we deduce Y^ p G 0{7*} C Q%. Consequently, HEX
by (i) + (ii) (applied to Y in place of G).

Finally, by means of (2) + (3), we show that X = S. Aiming for a contradic-
tion, we consider a group G G S \ DC of least order. If M is a minimal normal
subgroup of G, then G/M G 5C, that is there exists P E% and Q < P such that
^Y<2 s G/M. Let A' be the direct product of G and P with amalgamated factor
group G/M. It is well known that X possesses normal subgroups Y and Z
satisfying

X/Y^G, x/z^p, y n z = i , i / y x z ^ G / M .

Clearly, Z - j t K X Z/Y is minimal normal in X. If Z is complemented in X, then
* G Ec% C g % by (2), while X G 2 % by (3) in case that Z < <&(X). There-
fore, in any case we have G = X/Y E Q{X) C Q% = X, the desired contradic-
tion.

4.3 REMARKS, (a) Some trivial modifications of our proof of 4.2 show that
Q*$9(X) = S for every Schunck class X, where

%(X)= {XE$>\XDC-prefrattini subgroup of some G G S} .

(b) The method used in part (1) of the above proof also shows that W099 C Q6?®,
where the closure operation Wo is defined by

WQ%= U wo% with
«<EN0

wo% = {A 'V G I A abelian with elementary Sylow subgroups, G E %}.
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From this it is easy to deduce the following assertions:

Q% = W0Q% = QW0% = E%\

in fact, these assertions are true whenever % (in place of (?%) is a W^-closed
homomorph. This closure property of a homomorph %, though being rather
strong, is not sufficient to conclude that % = S, as we have shown by an example
given in [6]. Thus we cannot avoid the use of Gaschiitz's [9].

(For a detailed investigation of W^-closed homomorphs see [18].)

5. Products of normally embedded subgroups with
weakly system permutable subgroups

A ^-subgroup P < G is said to be normally embedded in G, if P E Sylp(P
G)

(or, equivalently, if PGSylp(N) for some N<G). An arbitrary subgroup
H < G is said to be p-normally embedded in G (H p-ne G), if Hp G Sy\p{H) is
normally embedded in G, and H is said to be normally embedded in G (H ne G), if
it is /^-normally embedded for all primes/?. If 2 is a Hall system of G, then H *£ G
is called 2-permutable, if HGp - GpH (that is, HGp < G) for all Sylow groups Gp

in 2 . It is well known that H ne G is 2-permutable in G for each Hall system 2
such that H n 2 is a Hall system of / / . Two 2-permutable subgroups H and K of
G always satisfy HK = AT/, provided only that both H and A" are normally
embedded in G, whereas this does not hold generally if H and A" are assumed to
be 2-permutable only. In [16] Chambers has shown (generalizing results of
Makan [17]) that each 2-permutable normally embedded subgroup of G permutes
with an ^-prefrattini subgroup of G (as well as with an 'f-normalizer of G)
corresponding to 2 and to a saturated formation <3. Our aim here is to generalize
this result further: indeed, not only O^prefrattini subgroups (% a Schunck class),
but even an arbitrary 2-permutable subgroup H of G permutes with each
2-permutable normally embedded subgroup K of G, and HK is a cover-avoidance
subgroup of G whenever H has this property. (A special case of this last statement
is contained in Chambers' paper.)

The property of normally embedded subgroups that we shall need in our proof
of this theorem characterizes normally embedded subgroups (of finite soluble
groups—a counterexample for the case of insoluble finite groups is given by a
cyclic maximal subgroup of a Sylow 2-subgroup of PSL(2,17)):

5.1 PROPOSITION. Let P be a p-subgroup of G. Then P ne G if and only if for all
pairs Y <l X of subgroups of G with p-factor group X/ Y such that P normalizes both
X and Y the following two conditions hold:

(i) X fl PY < NC(X/Y) (= N c (*) n Nc(r));
(ii) XD PY= Y and Cc(X/Y)/Y < X/Y implies P<Y.
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PROOF. First assume that P ne G and let X, Y be as above. Since Nc( X/Y) is a
subgroup of G with PY/Y ne NG(X/Y)/Y, we may assume that Y = 1 and
X <, G, that is, I is a normal /^-subgroup of G. Then P(~)X<PGnX^
Op(P

G) r\X<PnXandPr\X=PGnX<G, which proves (i). Further, if
X n PY = Y and CC(X/Y) < A" then (assuming again that X < G and Y = \)
we have as previously PGC\X=PC\X — 1, from which we get that [P, X] <
[P c , X]<PG D X= \. Consequently, P < CG(X) =£ X and P = P n A' = 1 <
y. Thus (ii) holds as well.

Now suppose that P satisfies the above conditions. We prove P ne G by
induction on \G\. If JV = O ^ G ) ^ 1, then /W/JV £ Sylp(M/N) for some
M < G, and we get P G Syl^M), as desired. If Op,(G) = 1, then L = F(G) =
Op(G)¥:\. The case f f l L ^ l is handled by appealing to our inductive
hypothesis, since P n L < NC(L) = G by (i). If P n L = 1, then (ii) applies
(with X — L and Y = 1) and gives /" = 1, whence the assertion holds trivially.

5.2 THEOREM. Let I, be a Hall system of G, and let K ne G and H «s G be
1-permutable subgroups.

(a) HK is a L-permutable subgroup of G.
(b) / / H is a cover-avoidance subgroup of G, then so is HK.

PROOF, (a) It suffices to show that HK is a subgroup of G. Since (by
definition) the Sylow subgroups of a normally embedded subgroup of G are
themselves normally embedded in G, we may assume that K is a /7-subgroup for
some prime p. We proceed by induction on | G \ + \ G: H | .

Case 1: | G: H \ is a power of a prime q.
In this case we have Oq.(G) < H, whence the assumption that Oq,(G) = 1 is

justified by our inductive hypothesis. We get F(G) = Oq(G). Moreover, without
loss of generality, q = p, as otherwise K *s Gp < G^ < / / ; here (?„ denotes a Hall
77-subgroup of G from 2. Now 5.1(i) yields that K n Op(G) = K n ¥(G) = 1,
and 5.1(ii) then gives K = 1, as CG(F(G)) < F(G).

Case 2: There are (at least) two distinct primes q, r dividing \G : H \ .
By induction, we know that GqHK and GrHK are subgroups of G, and so is

D = GqHK n GrHK = (GqHK D Gr//)A: = (G?//A: n

If <7 = />, then AT < Ĝ  and G^T/A: f lC r = //G^AT D Gr = HGp DGr = H DGr (as
the latter is a Sylow r-subgroup of / / ) , whence HK = (H n Gr)HK = D < G; the
case r = /7 is treated similarly. Now we may suppose that q ¥= p ¥= r. From

\Hn G»K\
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(with GqK an {q, p}- and hence /-'-subgroup of G) we infer that | GqHK \r—\H \r.
Consequently, GqHK n Gr = H n Gr, and we are done as previously.

(b) Again we may assume that K is a/?-group. Here we proceed .by induction on
| G | . Therefore it suffices to show that each minimal normal subgroup M of G is
covered or avoided by HK. If | M | is a power of a prime q, then HK D M is a
normal ^-subgroup of HK, and thus is contained in each Sylow ^-subgroup. Thus
the assertion follows in case that q ¥= p. Now let M be a p-group, and suppose
that 1 =£ HK H M ¥= M. U N is a minimal normal qr-subgroup of G with q ¥= p,
then MN/N is covered by //AT, since HK C\ M ¥= \ forces that MN/N is not
avoided by HK. If ,/V, too, is covered by HK, then A/TV < HK against our choice
of M. If N is avoided by HK, then it is easy to see that \HKD M\ = \ HKN/N n
MN/N | , which gives the contradiction that M is contained in HK. Therefore we
may assume that Op,(G) = 1. Then F(G) = O^G) and AT n F(G) < G. The case
K D F(G) =£ \ leads to another contradiction, when the inductive hypothesis is
taken into account. Finally, as AT is a normally embedded p-subgroup of G,
K n F(G) — 1 implies that K = 1. Thus HK — H covers or avoids M, this being
a final contradiction.

5.3 REMARK. In general, it does not seem to be easy to give a description of
those chief factors of G which are avoided by HK (where H, K, G are as in 5.2) in
terms of //-avoided and AT-avoided chief factors of G and by further conditions
concerning the embedding in G of H and K. If H is an ')Gprefrattini subgroup of
G for a Schunck class %, however, one can easily check that the result of
Chambers [16] (where % was supposed to be a saturated formation) is still valid;
in fact, one may take generalized 9C-prefrattini subgroups here. (The proof given
by Chambers is not suitable in this context, because 3C-normalizers are not
available, but it is easy to give a direct proof here.)
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