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1. Introduction. In this note relations between the structure of a finite group G and
ringtheoretical properties of the group algebra FG over a field F with characteristic p > 0
are investigated. Denoting by J(R) the Jacobson radical and by Z(R) the centre of the ring
R, our aim is to prove the following theorem generalizing results of Wallace [10] and Spiegel
[9]:

THEOREM. Let G be a finite group and let F be an arbitrary field of characteristic p > 0.
Denoting by BL the principal block ideal of the group algebra FG the following statements
are equivalent:

(OfaJfr)
(ii) J{B^) is commutative,

(iii) G isp-nilpotent with abelian Sylowp-subgroups.

The equivalence of (i) and (iii) was shown in [9] and of course, Theorem 2 of [10] is an
immediate consequence of the theorem above. Its proof involves a heredity property of the
principal block discussed in §2 as well as methods of Wallace [10] and finally a result of
Morita [7] which is included with a short proof following from the other preliminaries. As
a corollary Wallace's characterization of group algebras with commutative radicals is obtained
and proved for arbitrary ground fields.

In the following all modules are finitely generated unitary right modules. To avoid
trivial statements it is always assumed that the prime/? divides the order \G\ of the finite group
G. Op.(G) is the largest normal subgroup of G with an order not divisible by p. The block
ideals of the group algebra FG are the uniquely determined as two-sided ideals indecomposable
direct summands of FG. As identity elements of the block ideals, the block idempotents are
exactly the primitive idempotents of Z(FG). A block of FG is a triple B «-> e «-> X consisting
of the block ideal B, its identity element e, and the linear character X of Z(FG) with X{e) # 0.
An indecomposable .FG-module M belongs to the block (ideal) B if Me ¥= 0. Br <-» el <-• Xt

is the principal block of FG if et does not annihilate the trivial simple FG-module. Concerning
the further terminology we refer to Michler[5] and Curtis-Reiner [1].

I am indebted to Professor G. Michler for helpful discussions.

2. A heredity property of the principal block. Throughout this section F is an arbitrary
field of characteristic p > 0 and G is a finite group. First we collect some elementary facts.
We recall that for FG-modules M and iVthe tensor product M ® f N is defined by

(m ® n)g = mg ® ng (g eG,meM,neN).
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LEMMA 2.1. Let E be an FG-module of dimension one and let S be a simple FG-module.
Then E®F Sis a simple FG-module.

Proof. There is an x e E such that E = xF. If M # 0 is a submodule of E ®F S, then
every meM can be written as m = x® y for a 7eS1. Because of the action of G onto
£ ®F S, the set

is a submodule of S and hence Mj = S. Since £ has dimension one it follows that

M = {x®y\yeMl=S} =E®FS,

which proves the lemma.

LEMMA 2.2. Let X, Y, M be FG-modules with X ^ Y. Then

Y ®F MIX ®F M & Y/X ®F M.
FG

The proof is easily given choosing suitable F-bases in the modules.

PROPOSITION 2.3. Let Ul be the indecomposable projective FG-module associated with.
the trivial representation (i.e. U1/U1J(FG) s F) and let U be any indecomposable projective
FG-module. If all composition factors of Ut have dimension one, then the dimensions of all
composition factors of U are equal.

Proof. Set UIUJ(FG) = V. It is well known that U is a direct summand of the pro-
jective FG-module U1®FV. Let

Ui = U i i > U12> U13> ... > U l n = 0

be a composition series of Ut. By Lemmas 2.1 and 2.2

t/1 ®F v = t/n ®F v > u12 ®Fv> ... > uln ®F v = 0

is a composition series of Ut ®F V and all composition factors have the same dimension,
namely dimFF. This proves the assertion.

An immediate consequence is

COROLLARY 2.4. Let F be an arbitrary field of characteristic p > 0 and let G be a finite
group. The following statements are equivalent:

(i) All irreducible representations of G over F belonging to the same block have the same
F-dimension.

(ii) All irreducible representations of G over F belonging to the principal block have F-
dimension one.
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(iii) All composition factors of the indecomposable projective FG-module associated with
the trivial representation have F-dimension one.

Proof, (iii) implies (i) by 2.3 bearing in mind the fact that the indecomposable projective
modules in a block are linked.

DEFINITION. The group algebras of finite groups characterized by Corollary 2.4 are in
the following called group rings with dimension property.

REMARK. If the underlying field F is a splitting field for the group G then FG has the
dimension property if and only if in the decomposition of any block ideal into indecomposable
projective modules all isomorphism types appear with the same multiplicity. Morita [7]
calls such rings quasi-primary decomposable.

In the following sections the subsequent observation of Spiegel [9] will be used.

LEMMA 2.5 ([9]). Let G be a p-solvable group andlet H = OP(G). Then

ei = |77j £ h

is the principal block idempotent ofFG.

Proof. ([9]). e^FG s FG/H implies that etFG is the principal block ideal because
F G/His by Fong's Theorem [2,3A] indecomposable as a two-sided ideal.

3. Group rings with dimension property. In this section K is always a splitting field of
characteristic p > 0 for all subgroups and factor groups of the finite group G (e.g. K can be
chosen to be algebraically closed). By 2.4, KG has the dimension property if and only if the
same is true for the principal block ideal of KG.

The next result, for which we give a short proof for the sake of completeness, is due to
Morita [7]; for another proof see [4].

PROPOSITION 3.1. Let H = Op.{G) and let P be a Sylow p-subgroup ofG. The following

statements are equivalent:

(i) HP is normal in G and G/HP is abelian.\
(ii) The principal block ideal Bx of KG has the dimension property.
(iii) KG has the dimension property.

Proof. (/) => (ii). Set G = G\H and P = HP/H s P. By hypothesis, G is a group
with normal Sylow ^-subgroup P and abelian factor group. Hence KG has only irreducible
representations of dimension one. In particular KG has the dimension property. By 2.5,
2?i ^ KG and (ii) is proved.

t For example, these properties are satisfied if G is supersolvable.
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(//) o (HI). This follows from 2.4.
(//•/) => (j). (cf. Morita [7], p. 188) With the notation of the first part of this proof Bt S

KG. Since all irreducible representations of £j have dimension one, the right regular repre-
sentation G of G on KG consists of lower triangular matrices. It is easily verified that exactly
those of these triangular matrices with only elements equal to one in the main diagonal
form a Sylow /^-subgroup P of G = G. Furthermore P is normal in G and G/P is abelian.
This proves (i).

The following lemma is an immediate consequence of the fact that every group ring over a
field is a symmetric algebra.

LEMMA 3.2. Let B++ e*-> X be a block of the group algebra FG over an arbitrary field
F with positive defect. Then J{B)2 = 0 if and only if there exists an (up to isomorphisms)
unique projective indecomposable B-module of composition length 2.

The next result is due to Wallace[10]. Its proof is included for the sake of completeness.

LEMMA 3.3 ([10]). If the radical J = J(B) of the block ideal B of the group algebra KG
is commutative, then either J(B)2 = 0 or every composition factor of an arbitrary indecomposable
projective B-module has K-dimension one.

Proof. If J(B)2 # 0, let V be an indecomposable projective 5-module. Since KG is a
quasi-Frobenius ring, it is sufficient to show that the socle soc Kof Khas dimension one. By
3.2 VJ2 # 0. Thus every element of soc V is a linear combination of elements x-y with
x,yeJ. Let g, h be arbitrary elements of G. Then

(xy)(gh) = x[(yg)K\ = t(xh)y]g = (yx)(hg) = (xy)(hg).

This implies, by Burnside's theorem ([1], 27.4), that

EndK(soc V) = EndKC(soc V),

and hence, by Schur's lemma, that

EndK(soc V) s K.

Therefore dimK(soc V) = 1, and the lemma is proved.

PROPOSITION 3.4. If the radicalJ(Bi) of the principal block ideal Bx of the group algebra
KG is commutative, then KG has the dimension property.

Proof. Since the principal block has highest defect, then J(B^j ^ 0. By 2.4, it suffices
to show that all composition factors of an indecomposable projective module V belonging to
the principal block have dimension one. Hence the assertion follows from 3.3 and 3.2.
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4. Proof of the theorem.

(A part of the step (ii) => (iii) is a modification of an argument in [10, p. 2]).

(i) => (ii) clear.
(ii) => (Hi). Let K be the algebraic closure of F. Then

with block ideals B*,.. ., B* of KG; we may assume that B* is the principal block ideal of
KG. Since FG/J(FG) is a separable algebra (cf. [5], 12.11), we conclude that

K ®F J(Bi) = J(K ®f Bi)

by [5, 12.12]. Hence J(Bf) is commutative also. By 3.2, KG has the dimension property.
Let H = Op,(G) and let P be a Sylow /^-subgroup of G. 3.1 implies that A = //P is normal in
G and that G/HP is abelian. It remains to show that HP = G. Because G is ^-solvable,
2.5 yields that

I /

is the principal block idempotent of KG and of FG (in particular, 5 = 1). The nilpotent ideal
eJ(FP) of FA is contained in J(FA). Hence by Villamayor's Theorem (cf. [5], 11.8),

e J(FP) = e J(FG) = ./(J^).

Therefore eJ(FP) is commutative.
To apply Burnside's criterion for />-nilpotence, choose arbitrary seP and ueNG(P).

Putting usu'1 = $! eP, we have

e(l-s)(l-Si) = e(l-s)e-u(l-s)u~1 =

= e ( l - s ) 2 .

As P is a right transversal of //in ,4, this implies that

hence

—- 5 *•"" S •

If/? ^ 2, this yields ̂  = s. This is true forp = 2 also, because otherwise sst = $ and hence
st = 1 = s.

Therefore always sY = usu~x = sis valid, i.e. Pis contained in the centre of its normalizes
Burnside's criterion now finishes the proof of (iii).

(/»)=> (i). With the preceding notation, 2.5 again gives Bt s FG/Hz FP and (i)
follows.
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5. Group algebras with commutative radicals. As an application of the theorem above
we prove in this section the result of Wallace [10] characterizing group algebras with com-
mutative radicals.

PROPOSITION 5.1. Let F be an arbitrary field of characteristic p # 2 and let the radical
J(FG) of the group algebra FG be commutative. Denoting by G' the commutator subgroup and
by Pa Sylow p-subgroup ofG the following hold: p does not divide \G'\ and, setting

|G|X6C-

wehaveJ(FG) = J(fFG); in particular

\G\ .dimF J(FG) = dimf J{FGIG') = ( |P | -
\G'\\P\

Proof. By [5, 12.12] there is no loss of generality in assuming for the proof of this
assertion that Fis algebraically closed. For every block B *-* e «-+ X of FG with positive defect,
we have J(B)2 i= 0, because otherwise, by 3.1, the Cartan matrix C(B) of B has just one entry,
namely 2, and this implies, by [1, 84.17], that p = 2, contradicting our assumption. The
commutativity of J(FG) implies by the theorem that G is /j-nilpotent with P abelian. So p
does not divide \G'\. Clearly f-FG^F GjG'. From FG =fFG® (1 -f)FG and the fact
that the one-dimensional FG-modules and the irreducible (hence one-dimensional) modules
of FG/G' ^f-FG correspond in a one-to-one manner, we conclude, by 3.3, that all blocks
B <-> e *-* X of FG with e{\ —/) = e have defect zero. Hence (1 —f)FG is semisimple (see e.g.
[3], Cor. 3.4). This yields/(FG) = J(fFG).

Denoting by P = G'P\G' the Sylow p-subgroup of the abelian group GjG' it is easily
shown that J(FP)FGIG' =J(FGIG'). Thus

dim, J(FG) - (|P|-1) J |

and the assertion is proved.
We recall that a finite />-nilpotent group G with a Sylow p-subgroup P and normal p-

complement N is a Frobenius group for P,ifnj± qnq~l for every 1 ^ q e P and every 1 # n e
N.

Quoting elementary facts written up for example in [5], we obtain as a corollary by means
of the preceding results the following.

COROLLARY 5.2 (Wallace [10]). Let G be a finite group and let F be afield with prime
characteristic p ^ 2. Denoting by P a Sylow p-subgroup and by G' the commutator subgroup
ofG, the following statements are equivalent:

(i)J(FG)£Z(FG),
(ii) J(FG) is commutative,
(iii) p does not divide | G' | and G'P is a Frobenius group for P.
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Proof. Clearly (i) implies (ii).

(ii) => (iii) follows from 5.1 and Villamayor's Theorem (cf. [5], 11.8), applying 13.6 of
[5].

(iii) => (i) follows from 13.8 of [5].
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