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MEROTOPIC SPACES AND EXTENSIONS OF 
CLOSURE SPACES 

K. C. CHATTOPADHYAY. OLAV NJASTAD AND W. J. THRON 

1. Introduction. Proximity spaces and contiguity spaces, and more 
recently nearness spaces, have been studied not just because they provide 
various approaches to uniform structure. Possibly of greater importance is 
that they can be used as a means of introducing compactifications and 
more general extensions of the topological spaces on which they are 
defined. Riesz [20] was probably the first to recognize this connection. 
Since then the idea was used by Freudenthal [9], Alexandroff [1], Smirnov 
[21], Leader [17] and Ivanov and Ivanova [13, 14, 15] among others. 

Recently Reed [19] using work of Bentley [2, 4] and Herrlich [11, 12] 
studied the 1 — 1 correspondence between the class JV\^ of all cluster 
generated nearness spaces and the class <^of all principal T\ -extensions of 
a given T\ -space. She succeeded in showing that the mapping induces a 1 
— 1 correspondence between the contingual nearness spaces in JVL^ and 
the compactifications in êT. The proximal nearness spaces are mapped 
onto the linkage compactifications (she called them clan complete 
extensions). The Efremovic proximal nearness spaces correspond to the 
T2-compactifications. 

As was pointed out by Cech [6], closure spaces, rather than topological 
spaces, provide the natural substructure for proximity relations. Similarly, 
general merotopic spaces induce closure spaces rather than topological 
spaces. The question thus arose whether results analogous to those of 
Bentley, Herrlich and Reed would also be valid for extensions of closure 
spaces. Extensions of closure spaces were recently studied in [7]. This 
article will be referred to as CT and will be extensively used in the 
sequel. 

Even though the role of principal extensions is not as convincing in the 
theory of extensions of closure spaces (they have only rather involved 
extremal properties, for example) as it is for topological spaces, we are 
nevertheless able to use principal extensions to establish a 1 — 1 
correspondence between the class Jij^j of cluster generated Riesz 
merotopic spaces on a given T\ -closure space and the class <f of principal 
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614 MEROTOPIC SPACES 

7]-extensions of the space. Since compact closure spaces are not in general 
conjointly compact and since contigual merotopic spaces in JfRj 

correspond to conjoint compactifications in ^ a new class of merotopic 
spaces needs to be introduced. These are the concrete weakly contigual 
merotopic spaces. They correspond to the compactifications. Finally, as in 
Reed [19], the proximal merotopic spaces correspond to the linkage 
compactifications. 

We shall be concerned with sets X and 7, their elements shall be 
denoted by lower case roman letters. Roman capitals shall denote subsets 
of X or 7, that is elements of &>X or &> Y. Elements of &2 X shall be script 
capitals. For elements of ^ 3 X we use lower case greek letters and in 
special cases X* or Xv, and for elements of ^ 4 X we use capital greek 
letters. 

2. Closure spaces. A closure operator c on X is a mapping from 0>X into 
&X satisfying 

c <f> = <f>, cA z> A , c(A U B) = cA U cB. 

A pair (X, c) where c is a closure operator on X is called a closure space. 
We note that all topological spaces are closure spaces but that the closure 
operator defining a topological space also satisfies 

ccA c cA, 

which need not be true in a closure space. 
A grill & on X is a collection of subsets satisfying 

Grills were introduced by Choquet [8]. They were extensively studied in 
[22]. Here it suffices to observe that every grill is the union of ultrafilters 
and that every union of ultrafilters is a grill. By T(X) we shall mean the set 
of all grills on X, and by £l(X) we shall mean the set of all ultrafilters on X. 
A 1 — 1 correspondence can be established between the set of all filters on 
X and T(X) by the mapping sec, defined by 

secJ*" = {B c X\B n F ¥= 0 for all F e F} 
= U {^ €= tt (X):<% D JF}. 

A subset ^ of Q(X) is defined for every ^ G T(^) as follows: 

^ = { « G 8 {X)'M C ^ } . 

For a given closure operator c o n l and every point x G X we define the 
adherence grill of JC to be 
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^(c, x) = {A.x e CA). 

Note that ^(c, x) e T(X). Moreover, knowledge of {^(c, x):x G X} 
completely determines c, for we have cvJ = [x:A e ^(c, x) }. 

A point x is said to be an adherence point for a grill rS if ^ c ^(c, x). 
The filter J^(c, x) = sec ^(c, x) is called the neighbourhood filter of x. 
Following Herrlich [12] we shall say that the grill CS converges to the point 
Xif J^(c, x) c <g. (An equivalent condition for convergence of CS to x is GT 

n ^(c, x)1" ^ <£.) 
We shall also use the following definitions. A closure space (X, c) is 

called a T0-space if ^(c, x) = ^(c, y) implies x = y. The space is called a 
T\-space if c{x) = {x} for every x G X These separation axioms are 
direct generalizations of the corresponding axioms for topological spaces, 
but their implications are not similar in all respects. 

For spatial structures, defined in terms of closure operators, using grills 
and adherence grills instead of filters and neighbourhood filters is more 
convenient. 

A mapping <p: (X, c) —» (7, k) is continuous if q>(cA ) c k cp(A ) for all A 
c X. 

A closure space (X, c) is called compact if every grill on X converges to a 
point of X. This is equivalent to the statement: {^(c, x)^ : x e X} covers 
S2(X), that is 

U{&(c, x)^:x G X) = Q (X). 

It will become apparent that two stronger concepts of compactness are 
also needed. We call a grill & conjoint if for every finite subcollection 
{A\, . . An) we have 

n{cAk:k = 1, . , «} # <f>. 

The grill will be called linked if for any two elements A, B of CS we have 

A space (X, c) is called conjointly compact {linkage compact) if every 
conjoint grill (linked grill) has an adherence point. 

THEOREM 1. The space (X, c) is conjointly compact if and only if n {c:A 
G j / } 7̂  <f>for every family stffor which the family {c:A e s/} has the finite 
intersection property. 

Proof Clearly every space satisfying the second condition satisfies the 
first. That conjoint compactness implies the second property follows from 
the fact that every family s/ satisfying the finite intersection property for 
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616 MEROTOPIC SPACES 

its closure is contained in a maximal family having this property. This 
maximal family is a grill. 

It follows from Theorem 1 that in topological spaces conjoint 
compactness and compactness are identical. In closure spaces, however, 
the two concepts are in general distinct. This is shown in Example 7.1. 

THEOREM 2. Every linkage compact space is conjointly compact. Every 
conjointly compact space is compact. 

Proof. Since every conjoint grill is a linked grill the first statement 
follows. For the second assertion note that every ultrafilter ^ i s a conjoint 
grill and hence °U c ^(c, x) for some i G I It follows that {^(c\ x)r\x e 
X} covers Q(X). 

3. Extensions of closure spaces. We restrict ourselves to the bare 
outlines of the facts about extensions. For more detailed results we refer to 
CT. Principal extensions will be considered in the next section. 

The triple (i//, (Y, k) ), where \p:X —> Y is a 1 — 1 mapping and ( Y, k) is a 
closure space, will be called an extension of the closure space (X, c) if 

(1) ^(cA) = k xP(A) n xP(X) for all A c X, 

and 

(2) k 4iX) = Y . 

Since ^ is 1 — 1,(1) insures that \p is a homeomorphism from (X, c) to 
OK*)* &')* w h e r e kf B = kB n xP(X) for all B c xP(X). From (2) it follows 
that \P(X) is dense in (Y, k). 

The trace of the extension E on X at y e Y is 

T(V) = r(E,y) = {A c X.y e A: ^ ) }. 

The family 

X* = **(£) = {r(E,y):y e Y} 

is called the trace system of the extension E. Since there is no danger of 
confusion we drop the prefix "dual" which was used in CT. Observe that 
for all j e Y, r(y) €= T(X) and that T O K * ) ) = ^(c, x) for all x e X. 

Two extensions 2^ = 0/>i, (Yi, /ci) ) and £ 2 = 0/>2» (̂ 2> ^2) ) a r e called 
equivalent if there exists a homeomorphism x such that x ° ^1 = ^2 o n *• 
The extension E\ is said to be greater than the extension E2 if there exists a 
continuous mapping 0 from ( Y\, k\) onto (Y2, A )̂ such that 0 o \p\ = ^2 on 
X. For T : Y —> X* to be a 1 — 1 mapping it is necessary that (X, c) be a 
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Tg-space. However, even if (Y, k) is a T\-space r may not be 1 — 1. There 
is an error on p. 1281 of CT. It is not necessarily true that (<p, (X*, ko) ) is 
the smallest of all extensions of a r0

_ sP a c e^ since r need not be 1 — 1. 
Nevertheless it will be convenient to consider only extensions (<p, (X*, 

hr) ). Here y.X —> X* is defined by <JP(X) = ^(c, x), A* is given by 

yl* = {Jf G X*:A e / / } , 

and 

/*, a = [cp"1 (a) ]* U r [a — <p*X) ] for all a c X*. 

The mapping r:^[X* — y{X) ] —•> ^ X* is required to satisfy 

Af> = <j>, r/3 D )8, r(y8] U j82) = rfa U rft. 

We shall call an extension a T^-extension, a compact extension, etc., if 
(Y, /:) or (X*, /zr) is a r0-space, a compact space, etc. 

4. Principal extensions. If (X, c) is a T0-space we define the principal 
extension of (X, c) with respect to the trace system X* to be (<p, (X*, g) ), 
where 

g a = [<p_1 (a)]* U H {^*:y4* z> a ~ <p(X) } 

for all a c X*. Hence g = hr with r/? = 77{v4*.vl* z> /?}. If, in particular, 
(X*, g) is a topological space then it is easily seen that 

g a = O {^*:^* D a} for all a c X* 

so that in this case (<p, (X*, g) ) is the classical principal (or strict) 
extension. 

If one considers arbitrary r()-extensions E(\p, (Y, k) ) of a r0-space (X, 
c), then E can be shown to be equivalent to a principal extension if and 
only if 

k B = n {k xp(A):k xP(A) D B) for all 5 c Y - ^(X). 

The two properties of principal extensions which are used in this article 
are 

I) B c Y - iK*), A a X, B ^ k ^(A) => kB a k $(A). 
II) For every B c Y — i/<X) there is a family stfB c ^ X such that 

kB = n {£;Kv4):v4 e ^ } . 

The principal extension is the only T^-extension with a fixed trace system 
having both properties. It is the smallest extension satisfying I. It is also 
the largest extension for which II holds. 
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In what follows certain collections of grills in T(X) play an important 
role. The family y = { /̂'./ e / } shall be called a, finitely determined 
collection (binary collection) if it satisfies the following two conditions: 

(i) If for every finite subfamily (two element subfamily) sf of a grill ^ 
G T(X) there is an i(jx?) G I such thats/ c ^/(/j) G y , then ^S itself 
is contained in some ^ G y. 

(ii) y1 = {&*:i G / } is a cover of Q(X). 

If c is a closure operator on X and y c T(Jf ) we define a c-collection to 
be a family y = {^,:/ ^ / } which satisfies (ii) and 

(i)' If for every finite subfamilys/ of a grill ^ there is an i(A)<^ I such 
that j^ c ^ / ( ^ e y , then c(^) = {cA:A G ^ } is contained in some 
9J G y • 

By means of collections of these types we can characterize certain 
principal extensions as follows. 

THEOREM 3. A principal extension (<p, (X*, g)) of a T^-space (X, c) is 
compact (conjointly compact, linkage compact) if and only if X* is a 
c-collection (a finitely determined collection, a binary collection). 

In the proof the following two observations play an important role. 

LEMMA 1. Let YL G T(X*). Then 

&x= {A c X:<p(A) G I I } 

and 

^L = {A c X : There exists /3 G I I n ^ [X* - <p(X) ] such that 
A* D £} 

are grills on X. 

The proof is a straightforward verification. 
Note that either of the two families may be empty, but that the null 

family is a grill. 

LEMMA 2. If p c X* ~ <p(X) and A* D 0, f/iew v4* z> g 0 . 

This follows immediately from the definition of g on X* — <p(X) . 

Proof of Theorem 3. Instead of proving all six parts of the theorem we 
only take up enough cases to illustrate the methods used. 

We begin with: "If X* is a finitely determined collection of grills on X 
then (X*, g) is a conjointly compact space". 
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Let I I be a conjoint grill on (A"*, g). Let •<§ x
 a n d ^ ~ be as defined in 

Lemma 1. Since <& x
 ar*d ^ ~ are grills on X, so is &x U ^ _ . Let J / be a 

finite subfamily of &x U ^ _ . Then s/ = s/\ U J?/? , where 

J*X = {A]hAn,...,Alm} c 9X, 
^2 = {A2h A22, . . . , A2n} c ^ . 

We then have <p(A\r) e I I , r = 1, . . . m, and for each v42iV, s = 1, . . . , n, 
there is a ft G I I H ^[X* — <p(X) ] such that /If, z> ft. 

From Lemma 2 it follows that gft c A$s. An immediate consequence of 
the definition of g is g y(A) = A*. Since I I is assumed to be a conjoint 
grill on (X*, g), 

<f> # n { g v ( ^ l r ) : r = 1 , . . . , w} n n {g ft:s = 1 , . . . , « } 
c n {^f,:r = 1, . . . , m) D n {^ï,:^ = 1, . . . n). 

Hence there exists an J f e X* in this intersection. Clearly j ^ c Jf. Since 
stf is an arbitrary finite subfamily of $x U ^ _ and since X* is assumed to 
be a finitely determined collection it now follows that there exists a J f e 
X* such that c$x U ^ _ c j f 

Now let a G I I be such that <p~](a) = A ^ (/>. Then 

1̂ G C j c j f and Jf* G ^* = g ^ ) = g a , 

that is a G 3 % , /Q. If 0 e I I n ^[X* - <p(X) ], then let Z> be such that 
D* ^ (I. Then Z) G ^ _ c j f and hence Jf G /)*. Consequently 

J f G g ^ n {£>*:£> D 0} and £ G 0(g, Jf)-

Thus, finally, I I c ^(g, X), and it follows that (X, g) is conjointly 
compact. 

We next prove: "If (X*, g) is linkage compact then X* is a binary 
collection". 

Let ^ G r(JQ be such that {A, B) c ^ implies that 

{^, £} c j f (^, £) e X*. 

Set 

V(G) = {a c X*:a D <p(/l) for some ,4 G 0 } . 

Then <p(G) is a grill on X*. Let «i, a2 be in <p(G). Then there exist A j , ^42
 G 

^ such that a, D «p(v4z-), / = 1,2. Hence 

J f (Ah A2) G /If n /If c g«, n ga2 , 

and it follows that <p(G) is a linked grill on (X*, g). Since we assume that 
(X*, g) is linkage compact there exists J f e X* such that <p(G) c ^(g, 
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H ). Let A G <g. Thencp(^) c <p(G) c ^ (g , J f ) . Thus^T G g<p(A) = A*, 
which means A G Jf7. Hence f c J f and A'* satisfies condition (i) of a 
binary collection. 

Since the space (A"*, g) is linkage compact it is also compact (Theorem 
2). It follows from CT p. 1285 that {^:J^ G X*} covers 0(^0, and hence 
condition (ii) is satisfied. 

The last statement that will be proved is: "If (A'*, g) is compact, then X* 
is a c-collection". 

As in the argument above it follows that X* satisfies condition (ii). 
Let ^ G T(Af) be such that for every finite subfamilys/ of & there exists 

an Jf, G X* such that stf c Jf,. Set 

2 = (g a:a ^ <p(̂  ) for some A G <&}. 

If g« ^ 2 then ga z> ,4* for some ,4 G ^ . Hence 2 has the finite 
intersection property so that there exists an ultrafilter $ G iï(X*) with 2 
c O. Since (A"*, g) is assumed to be compact there exists an Jtf7 G X* so 
that 2 c O c ^(g, ^T) . This is equivalent to the statement: 3^ G 
g g(p(/̂  ) for every /l G ^ . 

To evaluate g g (p(/l ) we proceed as follows: 

g g <p(A ) = g[g <p(A ) n v ( * ) ] U g[<p(A r < P W ] 

= g<p(cA) U g[g<p(Ar ^ ) 1 

= g v M) u {n[gcp(5):gcp(Je) D g v ( ^ r V W]}. 
Since the intersection is contained in g <P(^4) it then follows that 

g g <p(A) = g <p(cA ) = (cA)*. 

ThusJf G gg<p(A) is equivalent to cvl G Jf, so that c(^) = [cA.A G ^ } 
c j f . This establishes that Ar* satisfies condition (i)'. 

5. Merotopic spaces. A merotopic space (X, v) is a set X together with a 
collection v G ^ - X such that the following conditions are satisfied: 

N ^ n ^ - J G A) ^ <f> =>s/ G v , 
N 2 : ^ < J ^ G j> = » ^ G i> , 

N 3 : J / V J> e ^ i G r o r ^ e i>, 
N 4 : J / G ^ =̂> <£> £ j ^ . 

Here 

jtf < & if and only if each set in J / contains a set in ^ \ 
J / V ^ = {A U B:A G ^ , B G ^ } . 

If (A", ^) is a merotopic space then we may sometimes use the expression 
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" J ^ is a near collection" if stf G V. 
Each merotopic space has associated with it a closure operator cv on X 

defined as follows: 

cvA = {x\{ {x}, A) G v). 

The concept of a merotopic space is due to Katëtov [16]. We have stated 
the axioms for a merotopic space in terms of near collections, which are 
due to Herrlich [11, 12]. The nearness spaces of Herrlich involve also the 
axiom 

N5 : {cvA :A G S/} G V => s/ G V . 

(These spaces have also been termed Lodato nearness spaces, cf. [10, 19].) 
Thus every nearness space is a merotopic space. By a Riesz merotopic space 
(Riesz space) we mean a merotopic space (X, v) which satisfies 

N6 : {<v4 \A G j ^ } ^ <}> => stf G v . 

The condition N6 can be traced back to Riesz [20]. 
If (X, v) is a merotopic space, then every maximal near collection is a 

grill. Even if (X, v) is a nearness space, then not every near collection need 
be contained in a maximal near collection. If every near collection on a 
nearness space is contained in a maximal near collection, then (X, v) is 
called concrete. (These spaces have been given an external characterization 
by Bentley [3].) 

Again let (X, v) be a merotopic space. A grill ^ in v is called a v-clan. A 
maximal member of v is called a v-cluster. It follows that every ^-cluster is 
a f-clan. The following theorem which characterizes Riesz merotopic 
spaces is easily verified. 

THEOREM 4. A merotopic space (X, v) is a Riesz space if and only if, for all 
x G X, the adherence grills &{cv, X) are v-clusters. 

A collection y = {^t\i G / } c T(X) will be called aflat collection if ^ , 
c ^ • implies / = j \ that is if all ^ are maximal in y. A merotopic space 
(X, v) has been called cluster generated if there exists a flat collection y = 
{&jii G /} such that 

s/ G v <=> there exists i(s/) G / such that s/ c CSl{s^y 

The family y is then exactly the family of clusters on (X, v). Since this 
definition is equivalent to that of concreteness, we shall use the latter term 
from now on. It will be convenient to set 

Xv = {J?\2? is a ^-cluster}. 

https://doi.org/10.4153/CJM-1983-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-035-6


622 MEROTOPIC SPACES 

Next, we call a grill ^ a £„-clan if every finite subfamily of *@ belongs to v. 
A 77 -̂clan is a grill <& such that every two element subfamily of ^ belongs 
to v. 

Clearly, every *>-clan is a ^-clan and every ^-clan is a ^-clan. It is 
known [10] that every £„-clan is contained in a maximal ^-clan and that 
every 7r„-clan is contained in a maximal 77„-clan. A family of sets (not 
necessarily a grill) is called £„ (or irv) compatible if every finite 
(two-element) subset is in v. It is true that every maximal ^-compatible 
family is a grill. The same need not be true for T^-compatible families 
[22]. 

A merotopic space (X, v) is called proximal if 

se <E v if and only if stf c <g for some 77 -̂clan <§. 

The space is called continual if 

se <= v if and only if se c <S for some £„-clan ^ . 

It is called weakly continual if 

every °U <= £l(X) belongs to v 

and 

{cv A:A e s/} belongs to v whenever J / is contained in a 
£„-clan 0 . 

From what was said above it follows that proximal and contigual 
merotopic spaces are concrete. The same is not in general true for weakly 
contigual merotopic spaces (see Example 7.3). 

There is a one to one correspondence between (generalized) proximity 
spaces and proximal merotopic spaces. A proximal merotopic space is a 
space whose structure is the largest one compatible with the corresponding 
proximity space. This correspondence is functorial in nature and 
associates with each proximity space (X, ir) the indiscrete proximal space 
(XVJ on (X, 77). For category theoretic details, see Bentley and Herrlich [5]. 
Similarly there is a one to one correspondence between contiguity spaces 
and contigual merotopic spaces. 

We have chosen to study proximal merotopic spaces and contigual 
merotopic spaces in preference to proximity spaces and contiguity spaces 
because thereby we gain an advantage in the next section by having to 
define only a correspondence between merotopic spaces and principal 
extensions. Otherwise we would have to define correspondences separately 
for proximities and extensions and for contiguities and extensions. 

We are now ready to prove 
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THEOREM 5. A concrete Riesz space is proximal (contigual, weakly 
contigual) if and only if Xv = {J^j'.i^ I}, its family of clusters, is a binary 
collection (a finitely determined collection, a cv-collection). 

Proof. We note that X' contains all &(Cj,, x), x G X, when (X, v) is a 
Riesz space. Further, for X" to be the collection of clusters on such a space 
it is necessary that for every x G X there is a unique i(x) G I such that 
{x} G Jt?j(Xy Clearly 3tf = &(cV9 x). We prove two of the six cases of the 
theorem. 

(1) "If (X, v) is a contigual space then Xv is a finitely determined 
collection". 

Let ^ G T(X) be given and assume that for every finite subset s/ of ^ 
there is an i(sf) such that s/ c J^t^y Then ^ is a £„-clan and hence ^ c 
34?i for some /' G 7, since every £„-clan on a contigual space is contained in 
a ^-cluster. The collection X? therefore satisfies condition (i) of a finitely 
determined collection. 

Next, every ultrafilter °U G Çl(X) has the finite intersection property and 
therefore is a £„-clan. Hence °U c ^ for some /. Thus {jpt-.i e / } covers 
£l(X) and so Xv is a finitely determined collection. 

(2) "If A^ is a ^-collection then (X, v), determined by srf G V if and only 
if j / c « ^ for some / G 7, is a concrete weakly contigual merotopic 
space". 

Throughout the proof it is assumed that Xv is indeed the set of clusters 
on (X, v). Hence Xv is a flat collection. Now let ^ be a £„-clan. Then every 
finite subset j / of ^ is in v. That is, there exists an i($f) so that J / C 34?/(J^ 
G X". Since j r is assumed to be a c„-collection we have 

c„(^) = {ClA\A G ^ } c f̂y for so rne^ - G A", 

and hence c„(^) G Z/. It is also true that every °U G £2 (X) is in *>, since ^ is 
assumed to satisfy condition (ii). Thus the space (X, v) is weakly contigual. 
It is obviously concrete. 

6. Correspondence between merotopic spaces and extensions. Let (X, c) 
be a given closure space and let (X, v) be a merotopic space with cv = c. 
We say that (X, v) is a merotopic space on (X, c). We begin by considering 
when (<p, (X\ g)), where X' and g are as defined in Sections 5 and 4, 
respectively, will be an extension of (X, c). First, one must have ^(c, x) G 
A^ for all x G X. That is, all ^(c, x) must be ^-clusters. This is the case if 
and only if (X, v) is a Riesz space. Next, <p must be one to one. If (X, c) is 
not a 7y space and (X, *>) is a Riesz space, then there exist x ¥= y with 
^(c, x) = @(c, y). Hence we must start with a TV space (X, c). 
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Assume this has been done. We are thus led to consider a mapping from 
the non-empty family JtRI of concrete Riesz merotopic spaces (X, v) on 
(X, c) into the family ê of principal ^-extensions of (X, c) with trace 
system X?. For v G Ji R] set 

Ev = (<p, (JT, g) ). 

For £ G #set 

^ = ( ^ c ^ ^ : J / C J^7,. for some J f , G **(£) }. 

Then the following is true. 

THEOREM 6. Let (x, c) be a fixed T\-space. Then the mappings 

Ev\JiRl -» S 

and 

vE\ê-*JtRJ 

are inverses of each other and hence provide bijections from <J?'R] to S and 
from (oto JH'Rh respectively. 

Proof. We have shown that if v G JiRI then Ev is indeed a principal 
extension of (X, c). We now show that (Xv, g) is a T\-space. It will be 
convenient to set, in analogy with the definition of A*, 

Av = {j#> G XV\A G 3#>}. 

Then 

ga = [<p~\a)] v U n {^T:^ z> oT <p(X)}. 

Since (X, v) is a Riesz space, the only Jtif G A^ that contains {x} is 
^(c„, x). It follows that 

g { ^ ( c „ x ) } = {xy = {%{cv,x)}. 

For^T ¥= &(cv, x\ x ^ X,J^ & Xv one obtains 

g P H = W U n {AV\AV D p f } }. 

If JT G ^ for all ^ =) p f } then ^ G j f for all ,4 G f̂7. This is possible 
only if ^T = jf, since JT is a flat collection. Hence g p f } = p ^ } , and it 
follows that (Xv, g) is a 7^-space. 

Next let (Xv, g) be a 7"!-space. Then the merotopic space (X, vE), where 
E = (<P,(A^, g) ), is concrete. It is a Riesz space since the ^(c, x) are the 
only elements of Xv that contain {x}. For if [x] G J^7 ^ ^(c, x) then 
p f } G [x]v. Hence ^£ G ^ T ^ . 
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Next, { {x}, A} e v, that is x e c„,4, if and only if A e ^(c, *) , which 
is equivalent t o x e cA It follows that cv = c. The equalities 

EVE = £ and J^ = v 

now follow by direct substitution. 

Combining the results of Theorem 6 with those of Theorems 3 and 5 one 
obtains 

THEOREM 7. Let (X, c) be a given T\-space. The mapping Ev maps the 
proximal (contigual, weakly contigual and concrete) Riesz spaces on (X, c) 
one to one onto the linkage compact {conjointly compact, compact) principal 
7\-extensions of (X, c). 

7. Examples. The first two examples establish the distinctness of the 
three types of compactness (and hence the distinctness of the three types 
of merotopic spaces) considered in this article. The last example shows 
that weakly contigual merotopic spaces need not be concrete. 

Example 7.1. A compact T\-closure space (X, c) which is not conjointly 
compact. 

Set N = {1, 2, 3, . . . } and define 

X„ = { (m, n)\m G N} for all n G N. 

Next let w(p\ ...pq) be defined for every finite collection of distinct 
elements of N and let 

w(P\ • • -Pq) = w(r\ • • • rm) if a n d only if 

{/>!,... ,pq) = {rh . . .rm). 

Finally introduce two other points w0 and w distinct from all w(p\ . . .pq). 
Set 

X = Y U Z 

where 

Y = U{Xn:n G N} 

and 

Z = {w(pl . . .pq):{pu. . ..,pq} c N} U {w0, w} , 

and it is understood that Y n Z = (j>. The closure operator c is defined as 
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follows: cF = F for all finite subsets F c X. For infinite sets C c Z one 
sets cC = C U {w}. For infinite sets B a Y one sets 

cB = B U {w(p\ . . .pq)\Xp n £ is infinite for at least one/?/, 

U{w0:if Z? contains (m, AI) with arbitrarity large AI}. 

In general 

c/i = c(A n y) u c(/i n Z). 

It is easily verified that (X, c) is a ^-closure space. 
Let ^ be an ultrafilter on X. If <% = °l/(x) then °U c ^(c, x). If °U is 

non-principal then either 7 G ^ o r Z G f . I n the first case we distinguish 
two subcases: 

(a) There exists a n / i e N such that Xn G <2r, then ^ G ^ ( C , W(W) ). 
(b) No Xn G ^ , then w0 e c <% for all i/ G <% and hence ^ c ^(c, w0). 

If Z G ^ then ^ c ^(c, w). It follows that {^(c, JC)*:* G X) covers to{X) 
and hence (X, c) is compact. 

Now consider the grill 

^ = U { ^ G Ç2(X):^ is non-principal and ^ D *„ 
for some A? G N}. 

Clearly 

n {£*„:« G N} = <£ 

and 

w(/>i • • • -Pq)
 G n {cXPi:i = 1, • • • ?} . 

Moreover for each A G ^ there is an « G N such that /4 n Xn is infinite, 
so that 

w(np2 . . . /^) G cA . 

Hence ^ is a conjoint grill which has no adherence point. 

Example 7.2. A compact T\-topological space (X, k) which is not 
linkage compact. This is also an example of a conjointly compact closure 
space which is not linkage compact, since every compact topological space 
is conjointly compact. 

Let 

X = {x:x is a real number, — 2 < x < 2}. 
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Let d be the ordinary closure operator on X induced from the reals, and let 
(a, /?) denote the real interval: a< x < ft. Then k is defined by specifying 
the adherence grills for all x G X as follows: 

&(k,x) = &(d, x) for* £ ( - 1 , 0, 1}, 

&(k, - 1 ) = W - 1 ) U {A:A n ( - c , 0) is infinite for all 
€ > 0} 

U{B:B n [ ( - 2 , - 2 + c) U (2 - c, 2)] is infinite for all € > 0}, 

<&(k, 0) = &(d, 0) U {A:A n ( - 1 - c , - 1 + c) is infinite for all 
€ > 0} 

U{£:£ n ( -€ , 1 + c) is infinite for all € > 0}, 

^(/c, 1) = &(d, 1) U {^:^ n (0, c) is infinite for all e > 0} , 
U{£:£ n [ ( - 2 , - 2 + e) U (2 - €, 2) ] is infinite for all c > 0}. 

Clearly, (X, A:) is a 7^-space. The space is compact by the following 
argument. For any open cover of (X, k) the points —1,0, 1 will be covered 
by three or fewer elements. What is not covered by these open sets will be 
the union of at most four closed intervals of the form a} ^ x = brj = 1 , 2 , 
3, 4. 

Here - 2 < ax < b\ < - 1 < a2 < b2 < 0 < a3 < b3 < 1 < a4 < b4 

< 2. The cover of each of these intervals can be replaced by a finite 
subcover. 

Now consider the grill 

& = {A:A G <&(k, - 1 ) U &(k, \),A is infinite}. 

It is easy to verify that for every A G rS, the closure kA contains at least 
two of the three points — 1, 0, 1. Hence ^ is a linked grill. However, one 
can find AX,A2,A3

 e ^ such that kA] n kA2 n kA3 = <£. Hence ^ has no 
adherence point, and so (X, k) is not linkage compact. 

Example 7.3. A weakly contigual merotopic space which is not concrete. 
Let (X, c) be the space of Example 7.1. Define 

j / G v <=> n{cA:A G j ^ } ¥= 4>. 

Then the space (X, v) is weakly contigual and concrete. Its clusters are 
exactly the grills &(c, x), x G X. Now introduce 

cSm = U { ^ G ti(X):Xm G ^ , ^non-principal} 
^{n) = U{9m:m * 2\ 2W + 1 , . . . . } 
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and 

y = {^(c, x):x G l } U {&(n):n e N}. 

A merotopic space (X, /x) is determined by 

j / G JU, <=» j ^ c & for some ^ e y. 

Then (X, jit) is not concrete. However, every finite family s$ e JU satisfies J / 
e v and hence (A", /A) is weakly contigual. 
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