
IV

Introduction to effective field theory

The purpose of an effective field theory is to represent in a simple way the dynam-
ical content of a theory in the low-energy limit. One uses only those light degrees
of freedom that are active at low energy, and treats their interactions in a full
field-theoretic framework. The effective field theory is often technically non-
renormalizable, yet loop diagrams are included and renormalization of the physical
parameters is readily accomplished.

Effective field theory is used in all aspects of the Standard Model and beyond,
from QED to superstrings. Perhaps the best setting for learning about the topic is
that of chiral symmetry. Besides being historically important in the development of
effective field theory techniques, chiral symmetry is a rather subtle subject, which
can be used to illustrate all aspects of the method, viz., the low-energy expansion,
non-leading behavior, loops, renormalization and symmetry breaking. In addition,
the results can be tested directly by experiment since the chiral effective field theory
provides a framework for understanding the very low-energy limit of QCD.

In this chapter we introduce effective field theory by a study of the linear sigma
model, and discuss the generalization of these techniques to other settings.

IV–1 Effective lagrangians and the sigma model

The linear sigma model, introduced in Sects. I–4, I–6, provides a ‘user friendly’
introduction to effective field theory because all the relevant manipulations can be
explicitly demonstrated. The Goldstone boson fields, the pions, are present at all
stages of the calculation. It also introduces many concepts which are relevant for
the low enegy limit of QCD. However, low-energy QCD is far less transparent,
involving a transference from the quark and gluon degrees of freedom of the origi-
nal lagrangian to the pions of the physical spectrum. Nevertheless, the low-energy
properties of the two theories have many similarities.
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IV–1 Effective lagrangians and the sigma model 107

The first topic that we need to describe is that of an ‘effective lagrangian’. First,
let us illustrate this concept by simply quoting the result to be derived below. Recall
the sigma model of Eq. (I–4.14),

L = ψ̄i/∂ψ + 1

2
∂μπ · ∂μπ + 1

2
∂μσ∂

μσ

− gψ̄ (σ − iτ · πγ5) ψ + 1

2
μ2
(
σ 2 + π2

)− λ

4

(
σ 2 + π2

)2
. (1.1)

This is a renormalizable field theory of pions, and from it one can calculate any
desired pion amplitude. Alternatively, if one works at low-energy (E � μ), then
it turns out that all matrix elements of pions are contained in the rather different
looking ‘effective lagrangian’

Leff = F 2

4
Tr
(
∂μU∂

μU †
)
, U = exp iτ · π/F, (1.2)

where F = v = √μ2/λ at tree level (cf. Eq. (I–6.9)). This effective lagrangian is
to be used by expanding in powers of the pion field

Leff = 1

2
∂μπ · ∂μπ + 1

6F 2

[(
π · ∂μπ

)2 − π2
(
∂μπ · ∂μπ

)]+ · · · , (1.3)

and taking tree-level matrix elements. This procedure is a relatively simple way of
encoding all the low-energy predictions of the theory. Moreover, with this effective
lagrangian is the starting point of a full effective field theory treatment including
loops, which we will develop in Sect. IV–3.

Representations of the sigma model

In order to embark on the path to the effective field theory approach, let us rewrite
the sigma model lagrangian as

L = 1

4
Tr
(
∂μ�∂

μ�†
)+ μ2

4
Tr
(
�†�

)− λ

16

[
Tr�†�

]2
+ ψ̄Li/∂ψL + ψ̄Ri/∂ψR − g

(
ψ̄L�ψR + ψ̄R�†ψL

)
, (1.4)

with � = σ + iτ · π . The model is invariant under the SU(2)L × SU(2)R trans-
formations

ψL → LψL, ψR → RψR, �→ L�R† (1.5)

for L,R in SU(2). This is the linear representation.1

1 A number of distinct 2× 2 matrix notations, among them �, U , and M , are commonly employed in the
literature for either the linear or the nonlinear cases. It is always best to check the definition being employed
and to learn to be flexible.
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108 Introduction to effective field theory

After symmetry breaking and the redefinition of the σ field,

σ = v + σ̃ , v =
√
μ2

λ
, (1.6)

the lagrangian reads2

L = 1

2

(
∂μσ̃ ∂

μσ̃ − 2μ2σ̃ 2
)+ 1

2
∂μπ · ∂μπ − λvσ̃

(
σ̃ 2 + π2

)
− λ

4

(
σ̃ 2 + π2

)2 + ψ̄ (i/∂ − gv)ψ − gψ̄ (σ̃ − iτ · πγ5) ψ, (1.7)

indicating massless pions and a nucleon of mass gv. All the interactions in the
model are simple nonderivative polynomial couplings.

There are other ways to display the content of the sigma model besides the above
linear representation. For example, instead of σ̃ and π one could define fields S
and ϕ,

S ≡
√
(σ̃ + v)2 + π2 − v = σ̃ + · · · , ϕ ≡ vπ√

(σ̃ + v)2 + π2

= π + · · · ,

(1.8)

where one expands in inverse powers of v. For lack of a better name, we can call
this the square-root representation. The lagrangian can be rewritten in terms of the
variables S and ϕ as

L = 1

2

[(
∂μS
)2 − 2μ2S2

]
+ 1

2

(
v + S
v

)2
[(
∂μϕ

)2 + (ϕ · ∂μϕ)2
v2 − ϕ2

]

− λvS3 − λ

4
S4 + ψ̄i/∂ψ − g

(
v + S
v

)
ψ̄
[(
v2 − ϕ2

)1/2 − iϕ · τγ5

]
ψ.

(1.9)

Although this looks a bit forbidding, no longer having simple polynomial interac-
tions, it is nothing more than a renaming of the fields. This form has several inter-
esting features. The pion-like fields, still massless, no longer occur in the potential
part of the lagrangian, but instead appear with derivative interactions. For vanishing
S, this is called the nonlinear sigma model.

Another nonlinear form, the exponential parameterization, will prove to be of
importance to us. Here the fields are written as

� = σ + iτ · π = (v + S)U, U = exp
(
iτ · π ′/v) (1.10)

such that π ′ = π + · · · . Using this form, we find

2 Here, and in subsequent expressions for L, we drop all additive constant terms.

https://doi.org/10.1017/9781009291033.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.005


IV–1 Effective lagrangians and the sigma model 109

p + p+ p+ p+

p0p0p0p0

(a)

s

(b)

Fig. IV–1 Contributions to π+π0 elastic scattering.

L = 1

2

[(
∂μS
)2 − 2μ2S2

]
+ (v + S)2

4
Tr
(
∂μU∂

μU †
)

− λvS3 − λ

4
S4 + ψ̄i/∂ψ − g(v + S) (ψ̄LUψR + ψ̄RU †ψL

)
. (1.11)

The quantityU transforms under SU(2)L×SU(2)R in the same way as does�, i.e.,

U → LU R†. (1.12)

This lagrangian is reasonably compact and also has only derivative couplings for
pions.

Representation independence

We have introduced three sets of interactions with very different appearances. They
are all nonlinearly related. In each of these forms the free-particle sector, found by
looking at terms bilinear in the field variables, has the same masses and normal-
izations. To compare their dynamical content, let us calculate the scattering of the
Goldstone bosons of the theory, specifically π+π0 → π+π0. The diagrams that
enter at tree level are displayed in Fig. IV–1. The relevant terms in the lagrangians
and their tree-level scattering amplitudes are as follows.

(1) Linear form:

LI = −λ
4

(
π2
)2 − λvσ̃π2,

iMπ+π0→π+π0 = −2iλ+ (−2iλv)2
i

q2 −m2
σ

= −2iλ

[
1+ 2λv2

q2 − 2λv2

]
= iq2

v2
+ · · · , (1.13)

where q = p′+ − p+ = p0 − p′0 and the relation m2
σ = 2λv2 = 2μ2 has been

used. The contributions of Figs. IV–1(a), 1(b) are seen to cancel at q2 = 0.
Thus, to leading order, the amplitude is momentum-dependent even though
the interaction contains no derivatives. The vanishing of the amplitudes at zero
momentum is universal in the limit of exact chiral symmetry.
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110 Introduction to effective field theory

(2) Square-root representation:

LI = 1

2

(
ϕ · ∂μϕ

)2(
v2 − ϕ2

) + S

v
∂μϕ · ∂μϕ. (1.14)

For this case, the contribution of Fig. IV–1(b) involves four factors of momen-
tum, two at each vertex, and so may be dropped at low-energy. For Fig. IV–1(a)
we find

LI = 1

2v2

(
ϕ0∂μϕ

0 + ϕ+∂μϕ− + ϕ−∂μϕ+
)2
,

iMϕ+ϕ0→ϕ+ϕ0 = i
(
p′+ − p+

)2
v2

= i q2

v2
+ · · · . (1.15)

(3) Exponential representation:

LI = (v + S)2
4

Tr
(
∂μU∂

μU †
)+ · · · . (1.16)

Again Fig. IV–1(b) has a higher-order (O(p4)) contribution, leaving only
Fig. IV–1(a),

LI = 1

6v2

[(
π ′ · ∂μπ ′

)2 − π ′2
(
∂μπ

′ · ∂μπ ′)] ,
iMπ+π0→π+π0 = i

(
p′+ − p+

)2
v2

+ · · · . (1.17)

The lesson to be learned is that all three representations give the same answer
despite very different forms and even different Feynman diagrams. A similar con-
clusion would follow for any other observable that one might wish to calculate.

The above analysis demonstrates a powerful field-theoretic theorem, proved first
by R. Haag [Ha 58, CoWZ 69, CaCWZ 69], on representation independence. It
states that if two fields are related nonlinearly, e.g., ϕ = χF(χ) with F(0) = 1,
then the same experimental observables result if one calculates with the field ϕ
using L (ϕ) or instead with χ using L (χF (χ)). The proof consists basically of
demonstrating that (i) two S-matrices are equivalent if they have the same single
particle singularities, and (ii) since F(0) = 1, ϕ and χ have the same free field
behavior and single-particle singularities. This result can be made plausible if we
think of the scattering in non-mathematical terms. If the free particles are isolated,
they have the same mass and charge and experiment cannot tell the ϕ particle from
the χ particle. At this level they are in fact the same particles, due to F(0) = 1.
The scattering experiment is then performed by colliding the particles. The results
cannot depend on whether a theorist has chosen to calculate the amplitude using
the ϕ or the χ names. That is, the physics cannot depend on a labeling convention.
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This result is quite useful as it lets us employ nonlinear representations in situ-
ations where they can simplify the calculation. The linear sigma model is a good
example. We have seen that the amplitudes of this theory are momentum-dependent.
Such behavior is obtained naturally when one uses the nonlinear representations,
whereas for the linear representation more complicated calculations involving
assorted cancelations of constant terms are required to produce the correct momen-
tum dependence. In addition, the nonlinear representations allow one to display the
low-energy results of the theory without explicitly including the massive σ̃ (or S)
and ψ fields.

IV–2 Integrating out heavy fields

When one is studying physics at some energy scaleE, one must explicitly take into
account all the particles which can be produced at that energy. What is the effect of
fields whose quanta are too heavy to be directly produced? They may still be felt
through virtual effects. When using an effective low-energy theory, one does not
include the heavy fields in the lagrangian, but their virtual effects are represented
by various couplings between light fields. The process of removing heavy fields
from the lagrangian is called integrating out the fields. Here, we shall explore this
process.

The decoupling theorem

There is a general result in field theory, called the decoupling theorem, which
describes how the heavy particles must enter into the low-energy theory [ApC 75,
OvS 80]. The theorem states that if the remaining low-energy theory is renormal-
izable, then all effects of the heavy-particle appear either as a renormalization
of the coupling constants in the theory or else are suppressed by powers of the
heavy-particle mass. We shall not display the formal proof. However, the result is
in accord with physical expectations. If the heavy particle’s mass becomes infinite,
one would indeed expect the influence of the particle to disappear. Any shift in
the coupling constants is not directly observable because the values of these cou-
plings are always determined from experiment. Inverse powers of heavy-particle
mass arise from propagators involving virtual exchange of the heavy particle.

In the Standard Model, the most obvious example of this is the role played in
low-energy physics by theW± and Z gauge bosons. For example, whileW±-loops
can contribute to the renormalization of the electric charge, the effect cannot be
isolated at low energies. Also, the residual form ofW±-exchange amplitudes is that
of a local product of two weak currents (Fermi interaction) with coupling strength
GF . Its effect is suppressed because GF ∝ M−2

W .
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112 Introduction to effective field theory

However, in the Standard Model there is an example where the heavy-particle
effects do not decouple. For a heavy top quark, there are many loop diagrams which
do not vanish as mt → ∞, but instead behave as m2

t or ln(m2
t ). This can occur

because the electroweak theory with the t quark removed violates the SU(2)L
symmetry, as the full

(
t

b

)
doublet is no longer present. Without the constraint of

weak-isospin symmetry, the theory is not renormalizable and new divergences can
occur in flavor-changing processes. These would-be divergences are cut off in the
real theory by the mass mt . Note that at the same time as mt → ∞, the top quark
Yukawa coupling also goes to infinity, and hence induces strong coupling, which
can also lead to a violation of decoupling.

In the sigma model, all the low-energy couplings of the pions are proportional
to powers of 1/v2 ∝ 1/m2

σ , the simplest example being Eq. (1.9). Hence the effec-
tive renormalizable theory is in fact a free field theory, without interactions. The
interactions have been suppressed by powers of heavy-particle masses. We shall
use the energy expansion of the next section to organize the expansion in powers
of the inverse heavy mass.

Integrating out heavy fields at tree level

The name of this procedure comes from the path-integral formalism, where the
process of integrating out a heavy field H and leaving behind light fields 
i is
defined in terms of an effective action Weff[
i],

Z[
i] = eiWeff[
i ] ≡
∫

[dH ] ei
∫
d4xL(H(x),
i (x)). (2.1)

However, the procedure is equally familiar from perturbation theory, in which the
effect of the path integral is represented by a sum of Feynman diagrams.

Let us proceed with a path-integral example. Consider a linear coupling of H to
some combination of fields J , with the lagrangian

L = 1

2

(
∂μH∂

μH −m2
HH

2
)+ JH. (2.2)

One way to integrate out H is to ‘complete the square’, i.e., we write∫
d4x L(H, J ) =

∫
d4x

[
−1

2
HDH + JH

]
= −1

2

∫
d4x

[(
H −D−1J

)
D
(
H −D−1J

)− JD−1J
]

= −1

2

∫
d4x

[
H ′DH ′ − JD−1J

]
, (2.3)

where we have used the shorthand notations,
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D = +m2
H ,

D−1J = −
∫
d4y �F (x − y)J (y),(

x +m2
H

)
�F(x − y) = −δ4(x − y),

H ′(x) = H(x)+
∫
d4y �F (x − y)J (y),∫

d4x JD−1J = −
∫
d4x d4y J (x)�F (x − y)J (y), (2.4)

and have integrated by parts repeatedly. Since we integrate in the path integral
over all values of the field at each point of spacetime, we may change variables
[dH ] = [dH ′] so

Z[J ] = eiWeff[J ] =
∫
[dH ]ei

∫
d4xL(H,J )

=
∫
[dH ′]ei

∫
d4x
[
− 1

2H
′DH ′+ 1

2 JD−1J
]

= Z[0] e i2
∫
d4x JD−1J , (2.5)

where

Z[0] =
∫
[dH ′]ei

∫
d4x

[
− 1

2H
′DH ′

]
. (2.6)

Here, Z[0] is an overall constant that can be dropped from further consideration.
From this result we obtain the effective action

Weff[J ] = −1

2

∫
d4x d4y J (x)�F (x − y)J (y). (2.7a)

This action is nonlocal because it includes an integral over the propagator. How-
ever, the heavy-particle propagator is peaked at small distances, of order 1/m2

H .
This allows us to obtain a local lagrangian by Taylor expanding J (y) as

J (y) = J (x)+ (y − x)μ [∂μJ (y)]y=x + · · · . (2.7b)

Keeping the leading term and using∫
d4y �F (x − y) = − 1

m2
H

, (2.8)

we obtain

Weff[J ] =
∫
d4x

1

2m2
H

J (x) J (x)+ · · · , (2.9)

https://doi.org/10.1017/9781009291033.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.005


114 Introduction to effective field theory

where the ellipses denote terms suppressed by additional powers of mH . Outside
of the path-integral context, this result is familiar from W -exchange in the weak
interactions.

Matching the sigma model at tree level

We can apply this procedure to the lagrangian for the sigma model, where the scalar
field S is heavy with respect to the Goldstone bosons. Thus, considering the theory
in the low-energy limit, we may integrate out the field S. Referring to Eq. (1.11)
and neglecting the S2 interactions, it is clear that we should make the identifications
H → S and J → v Tr (∂μU∂μU †)/2. The effective lagrangian then takes the
form

Leff = v2

4
Tr
(
∂μU∂

μU †
)+ v2

8m2
S

[
Tr
(
∂μU∂

μU †
)]2 + · · · , (2.10)

where the second term in Eq. (2.10) is the result of integrating out the S-field and
gives rise to the diagram of Fig. IV–1(b). Additional tree-level diagrams are implied
by the sigma model when one includes the S3 and S4 interactions. Since these carry
more derivatives, the above result is the correct tree-level answer with up to four
derivatives.

This calculation is an illustration of the concept of ‘matching’, here applied at
tree level. We match the effective field theory to the full theory in order to reproduce
the correct matrix elements. From the starting point of Eq. (1.11), we expect that
there will be a low-energy effective lagrangian, which is written as an expansion
in powers of Tr (∂μU∂μU †), with coefficients that are initially unknown. In the
matching procedure, we choose the coefficients to be those appropriate for the full
theory.

In calculating transitions of pions, this is then used by expanding the U matrix
in terms of the pion fields and taking matrix elements. At the lowest energies,
only the lagrangian with two derivatives is required, justifying the result quoted
in Eq. (1.2).3 Interested readers may verify that the two terms in Eq. (2.10) repro-
duce the first two terms in the π+π0 scattering amplitude previously obtained in
Eq. (1.13). However, we have gained a great deal by using the effective lagrangian
framework, because now all matrix elements of pions can be calculated simply to
this order in the energy by simply expanding the effective lagrangian and reading
off the answer.

3 We will show that this term is not modified by loop effects, aside from the renomalization of the parameter v.
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IV–3 Loops and renormalization

The treatment above has left us with a nonlinear effective lagrangian of the form
that is called ‘non-renormalizable’. It is also incomplete because loop diagrams
have not yet been considered. One might worry that because the effective lagrangian
is non-renormalizeable, loops would cause trouble. However, that is not the case.
Indeed, this situation helps demonstrate the ‘effectiveness’ of effective field
theory – we will see that the important loop processes are reproduced in a sim-
pler manner using the effective field theory.

Continuing our treatment of the linear sigma model, let us display the precise
formal correspondence between the full theory and the effective theory. If we are
only considering matrix elements involving the light pions, we can write the path
integral defining the theory4 as

Z[j] = N

∫
[dπ(x)] [dσ(x)] exp

[
i

∫
d4x (L [π(x), σ (x)]+ j(x) · π(x))

]
.

(3.1)

When working at low energies, we can then integrate out the heavy field σ to
produce the effective theory

Z[j] = N

∫
[dπ(x)] exp

[
i

∫
d4x (Leff [π(x)]+ j(x) · π(x))

]
. (3.2)

Because the σ field is heavy, its influence will not propagate far and the resulting
effective lagrangian will be local. However, this correspondence emphasizes the
fact that one is still left with a full field theory. It is not only at tree level that the
effective lagrangian must be applied. Loop processes must also be considered, as
is the case in any field theory. The original theory involves both σ and π loops,
while the effective theory has only the π loop diagrams. We will demonstrate how
to match the effective theory to the full theory through an explicit calculation.

In order to accomplish the renormalization and matching procedure for the effec-
tive theory we will need a lagrangian similar to the tree level form, but with initially
unknown coefficients that will be chosen later, i.e.,

Leff = v2

4
Tr
(
∂μU∂

μU †
)

+ 
1[Tr
(
∂μU∂

μU †
)]2 + 
2 Tr

(
∂μU∂νU

†
)

Tr
(
∂μU∂νU †

)
. (3.3)

This is the most general form consistent with the symmetry U → LUR†, contain-
ing up to four derivatives. The first portion of this lagrangian, when expanded in
terms of the pion field, yields the usual pion propagator as well as the lowest-order
result for the ππ scattering amplitudes.

4 Recall that σ = S in some previous formulas.
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Fig. IV–2 A subset of one-loop diagrams contributing to π+π0 elastic scattering.

Let us again consider the process π+ + π0 → π+ + π0, this time to one loop.
The full linear sigma model is renormalizeable and will yield finite predictions
in terms of the (renormalized) parameters of the theory. The effective theory has
been constructed to have the same vertices at the lowest energies, but will have
quite different high-energy properties because it is missing the extra high-energy
degree of freedom. There will be new divergences present in perturbation theory.
However, the low-energy effects will be similar in both calculations.

For example, consider the set of diagrams depicted in Fig. IV–2. In the full
theory, all of these diagrams exist, and our previous result of Eq. (1.13) can be
used to write the combined amplitudes as

iMfull =
∫

d4k

(2π)4

[
−2iλ+ (−2iλv)2

i

(k + p+)2 −m2
σ

]
i

(k + p+ + p0)2

i

k2

×
[
−2iλ+ (−2iλv)2

i

(k + p′+)2 −m2
σ

]
. (3.4)

The result is a sum of bubble, triangle, and box diagrams. The box in particular
is a very complicated function of the kinematic invariants, involving di-logarithms
[’tHV 79, DeNS 91, ElZ 08]. The divergence from the bubble diagram goes into
the renormalization of the λϕ4 coupling of the original lagrangian. For the effective
theory, in contrast, one uses only pions and considers only the bubble diagram.
The low-energy limit of the vertex is employed. Again, drawing from our results
of Eq. (1.13), also visible by taking the leading approximation for the vertices in
Eq. (3.4), one finds

iMeff =
∫

d4k

(2π)4
i(k + p+)2

v2

i

(k + p+ + p0)2

i

k2

i(k + p′+)2
v2

. (3.5)

This diagram has a different divergence than the full theory. It is also much simpler
kinematically, and its dimensional regularized form is easily evaluated as
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iMeff = i

96π2v4
s(s − u)

[
2

4− d − γ + ln 4π − ln
−s − iε
μ2

]
+ i

288π2v4
[2s2 − 5su], (3.6)

using the usual variables s = (p+ + p0)
2, t = (p+ − p′+)2, u = (p0 − p′+)2.

There are various interesting features of this result. Note that the whole ampli-
tude is of order (energy)4, while the original scattering vertex of Eq. (1.13) was
of order (energy)2. Technically, this follows simply from noting that the loop has
factors of 1/v4 and that in dimensional regularization the only other dimensional
factors are the external energies. On a more profound level it is an example of the
energy expansion of the effective theory – loops produce results that are suppressed
by higher powers of the momenta at low-energy. Because of this kinematic depen-
dence, one can also readily see that the divergence cannot be absorbed into the
renormalization of the original O(E2) effective lagrangian. In fact we know that
this divergence is spurious. It was generated because the effective theory had the
wrong high-energy behavior compared to the full theory. This is to be expected in
an effective theory – it does not pretend to know the content of the theory at all
energies. However, the divergence will disappear in the matching of the two theo-
ries through the renormalization of a term in the O(E4) lagrangian – this will be
demonstrated below.

Even more interesting from the physics point of view is that the s(s − u) ln−s
behavior is exactly what is found by taking the low-energy limit of the compli-
cated result from the full theory and expanding it to this order in the momenta.
This occurs because the ln−s factor comes from the low-energy regions of the
loop momenta, of order k ∼ s, so that the logarithm represents long-distance prop-
agation.5 Indeed, the imaginary part of the amplitude arising from ln(−s − iε) =
ln(s)−iπ (for s > 0) comes from the on-shell intermediate state of two pions. This
logarithm could never be represented by a local effective lagrangian and is a dis-
tinctive feature of long-distance (low-energy) quantum loops. These features match
in the two calculations because when the loop momenta are small the effective
field theory approximation for the vertex is valid. Overall, the effective field
theory has an incorrect high-energy behavior but does capture the correct low-
energy dynamics.

The comparison of the full theory and the effective theory can be carried out
directly for this reaction. The dimensionally regularized result for the full theory
is given in [MaM 08], but is too complicated to be reproduced here. However the

5 Short distance pieces from higher values of k would be analytic functions able to be Taylor expanded around
s = 0.
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118 Introduction to effective field theory

expansion of the full theory at low-energy in terms of renormalized parameters is
relatively simple [GaL 84]

Mfull = t

v2
+
[

1

m2
σ v

2
− 11

96π2v4

]
t2

− 1

144π2v4
[s(s − u)+ u(u− s)]

− 1

96π2v4

[
3t2 ln

−t
m2
σ

+ s(s − u) ln
−s
m2
σ

+ u(u− s) ln
−u
m2
σ

]
. (3.7)

The effective theory result [Le 72, GaL 84] has a very similar form but does not
know about the existence of the σ ,

Meff = t

v2
+
[

8
r1 + 2
r2 +
5

192π2

]
t2

v4

+
[

2
r2 +
7

576π2

]
[s(s − u)+ u(u− s)]/v4 (3.8)

− 1

96π2v4

[
3t2 ln

−t
μ2
+ s(s − u) ln

−s
μ2
+ u(u− s) ln

−u
μ2

]
,

where we have defined6


r1 = 
1 + 1

384π2

[
2

4− d − γ + ln 4π

]

r2 = 
2 + 1

192π2

[
2

4− d − γ + ln 4π

]
. (3.9)

At this stage we can match the two theories, providing identical scattering ampli-
tudes to this order, through the choice


r1 =
v2

8m2
σ

+ 1

192π2

[
ln
m2
σ

μ2
− 35

6

]

r2 =

1

384π2

[
ln
m2
σ

μ2
− 11

6

]
. (3.10)

The reader is invited to compare this result with the tree-level matching, Eq. (2.10).
We have not only obtained a more precise matching, we also have generated impor-
tant kinematic dependence, particularly the logarithms, in the scattering
amplitude.

We have seen that the predictions of the full theory can be reproduced even
when using only the light degrees of freedom, as long as one chooses the coeffi-
cient of the effective lagrangian appropriately. This holds for all observables. Once

6 Readers who compare with [GaL 84] should be aware that our normalization of the 
i coefficients differs by
a factor of four.
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the matching is done, other processes can be calculated using the effective theory
without the need to match again for each process.7 The total effect of the heavy
particle, both tree diagrams and loops, has been reduced to a few numbers in the
lagrangian which we have deduced from matching conditions to a given order in
an expansion in the energy.

In this example we match to a known calculable theory. In other realizations of
effective field theory, the full theory may be unknown (for example, in the case
of gravity [Do 94]) or very difficult to calculate (as we will discuss for QCD). In
cases where direct matching is not possible, the renormalized coefficients in the
lagrangian could be determined through measurement. Measuring the value of the
coefficients in one reaction would allow them to be used by the effective theory in
other processes.

IV–4 General features of effective field theory

After this explicit example, let us think more generally about effective field theo-
ries. In quantum mechanics and quantum field theory, we face what appears to
be an impossible situation. Intermediate states in perturbation theory and in loop
diagrams include all energies, even beyond those which have been probed experi-
mentally. Yet we expect more new particles and new interactions to be present
eventually at higher energies. How can we then reliably perform any calculation
without knowing the particles and interactions at all energies which enter in our
calculations?

The answer essentially comes from the uncertainty principle. Effects from high
energy appear local when viewed at low energy. This means that they are equivalent
to terms in a local lagrangian. Most often the coefficient of a particular term in a
lagrangian – a mass or a coupling constant – is something that we have to measure.
So the effects of physics from high energy is contained in the parameters that we
measure at low energy.

Effective field theory embraces this fact and uses it to perform calculations at
low energy. In theories where the high-energy limit is known, such as our linear
sigma model example above, the coefficients of the effective lagrangian can be
determined by matching. In theories where the high-energy physics is not known,
we still know that its effect is local, so that we parameterize it by the most general
local lagrangian.

The decoupling theorem tells us that the high-energy effect appears in renormal-
ized couplings or in terms suppressed by powers of the heavy scale. In this sense, all
of our theories can be viewed as effective field theories. The class of renormalizable

7 As part of our treatment of QCD, we show the universality of the renormalization in Appendix B–2.
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120 Introduction to effective field theory

field theories is a subset of effective field theories in which the power-suppressed
lagrangians have not yet been needed.

Effective lagrangians and symmetries

What would happen if, instead of having a straightforward known theory like the
linear sigma model, we were dealing with an unknown or unsolvable theory with
the same SU(2)L × SU(2)R chiral symmetry? In this case there would exist some
set of pion interactions which, although not explicitly known, would be greatly
restricted by the SU(2) chiral symmetry. Once again we could choose to describe
the pion fields in terms of the exponential parameterization U , with a symmetry
transformation

U → LUR† (4.1)

for L,R in SU(2). Not having an explicit prescription, we would proceed to write
out the most general effective lagrangian consistent with the chiral symmetry. In
view of the infinite number of possible terms contained in such a description, this
would appear to be a daunting process. However, the energy expansion allows it to
be manageable.

It is not difficult to generate candidate interactions which are invariant under
chiral SU(2) transformations. For the purpose of illustration, we list the following
two-derivative, four-derivative, and six-derivative terms in the exponential param-
eterization,

Tr
(
∂μU∂

μU †
)
, Tr

(
∂μU∂νU

†
) · Tr

(
∂μU∂νU †

)
,

Tr
(
∂μU∂

μU †
) · Tr

(
∂νU ∂νU †

)
. (4.2)

There can be no derivative-free terms in a list such as this because Tr
(
U U †

) =
2 is a constant. It is clear that one can generate innumerable similar terms with
arbitrary numbers of derivatives. The general lagrangian can be organized by the
dimensionality of the operators,

L = L2 + L4 + L6 + L8 + · · ·
= F 2

4
Tr
(
∂μU∂

μU †
)+ 
1[Tr

(
∂μU∂

μU †
)]2

+ 
2 Tr
(
∂μU∂νU

†
) · Tr

(
∂μU∂νU †

)+ · · · . (4.3)

The important point is that, at sufficiently low energies, the matrix elements of
most of these terms are very small since each derivative becomes a factor of the
momentum q when matrix elements are taken. It follows from dimensional analy-
sis that the coefficient of an operator with n derivatives behaves as 1/Mn−4, where
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M is a mass scale which depends on the specific theory. Therefore, the effect of
an n-derivative vertex is of order En/Mn−4, and, at an energy small compared
to M , large-n terms have a very small effect. At the lowest energy, only a single
lagrangian, the one in Eq. (3.3) with two derivatives, is required. We shall call this
an ‘O(E2)’ contribution in subsequent discussions. The most important correc-
tions to this involve four derivatives, and are therefore ‘O(E4)’. In practice then,
the infinity of possible contributions is reduced to only a small number. The coef-
ficients of these terms are not generally known, and must thus be determined phe-
nomenologically. However, once fixed by experiment (or by matching to the full
theory if possible) they can be used to allow predictions to be made for a variety of
reactions.

Power counting and loops

It would appear that loop diagrams could upset the dimensional counting described
above. This might happen in the calculation of a given loop diagram if, for example,
two of the momentum factors from an O(E4) lagrangian are involved in the loop
and are thus proportional to the loop momentum. Integrating over the loop momen-
tum apparently leaves only two factors of the ‘low’ energy variable. It would there-
fore seem that for certain loop diagrams, an O(E4) lagrangian could behave as if it
were O(E2). If this happened, it would be a disaster because arbitrarily high order
lagrangians would contribute at O(E2) when loops were calculated. As we shall
show, this does not occur. In fact, the reverse happens. When O(E2) lagrangians
are used in loops, they contribute to O(E4) or higher.

Before we give the formal proof of this result, let us note that we saw this
effect in the linear sigma model calculation above. We started by using the order
E2 lagrangian in the loop diagram and the result was the renormalization of a
lagrangian at order E4. It is also straightforward to demonstrate why this occurs.
Consider a pion loop diagram, as in Fig. IV–2. From the explicit form displayed in
Eq. (3.5), we see that

M(loop)
π+π0→π+π0 ≡ 1

v4
I (p+, p0, p

′
+), (4.4)

where I is the loop integral with the factor v−4 extracted. Counting powers of
energy factors is most easily done in dimensional regularization. The loop integral
contains no dimensional factors other than p+, p0, and p′+. Since, in four dimen-
sions it has the overall energy unit E4, it must therefore be expressible as fourth
order in momentum. Despite the loop integration, the end result is expressed only
in terms of the external momenta. These momenta are small, and hence all the
energy factors involved in power counting are taken at low-energy. In dimensional
regularization, there can also be a dependence on the arbitrary scale μ,
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122 Introduction to effective field theory∫
d4
→ μ4−d

∫
dd
, (4.5)

but in the limit d → 4 this occurs only in dimensionless logarithms such as
ln(E2/μ2). Thus, the order of momentum can be found by counting the factors
of 1/v2 which occur for every vertex from the lowest-order lagrangians. Each fac-
tor of 1/v2 must be accompanied by momenta in the numerator in order to produce
a dimensionless amplitude. Each vertex in a diagram contributes powers of 1/v2,
and higher-order loop diagrams require more vertices. Thus, every time a loop is
formed, the overall momentum power of the amplitude must increase rather than
decrease.

We have also seen that any divergences present can be handled in the usual way,
by renormalizations of the parameters in the theory. Again, the uncertainty prin-
ciple comes into play – the divergences come from the extreme high-energy part
of the calculation and thus they must look like some term in a local lagrangain.
If the original effective lagrangian which we have written down is indeed the
most general one consistent with the given symmetry, then it must have enough
parameters of the right form to encompass any divergences which occur. In par-
ticular, our power-counting argument tells us that when L2 is used in one-loop
diagrams, the divergences are of order E4 and should be capable of being absorbed
into the parameters of that order. Since the parameters are generally unknown and
are to be determined phenomenologically, the only difference this makes is to
cast physical results in terms of the renormalized parameters instead of the bare
ones.

Weinberg’s power-counting theorem

To prove this result [We 79b], consider some diagram with a total of NV vertices.
Then letting Nn be the number of vertices arising from the subset of effective
lagrangians which contain n derivatives (e.g. N4 is the number of vertices com-
ing from four-derivative lagrangians), we have NV = �nNn. The overall energy
dimensionality of the coupling constants is thus MNC with

NC =
∑
n

Nn(4− n), (4.6)

where M is a mass scale entering into the coefficients of the effective lagrangian
(e.g., the quantity v in the sigma model). Each pion field comes with a factor of
1/v, so that associated with NE external pions and NI internal pion lines is an
energy factor (1/M)2NI+NE . (Recall that two pions must be contracted to form an
internal line.) However, the number of internal lines can be eliminated in terms of
the number of vertices and loops (NL),
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NI = NL +NV − 1 = NL +
∑
n

Nn − 1. (4.7)

Any remaining dimensional factors must be made up of powers of the energy E
times a dimensionless factor of E/μ where μ is the scale employed for renormal-
izing the coupling constants. (When using dimensional regularization, these factors
of E/μ enter only in logarithms.) Thus the overall matrix element is composed of
energy factors

M ∼ (M)
∑

n Nn(n−4) 1

MNE+2NL+2
∑

n Nn−2
EDF(E/μ)

∼ (mass or energy)4−NE , (4.8)

where the second line is the overall dimension of an amplitude with NE external
bosons. The renormalization scale μ can be chosen of the order of E so no large
factors are present in F(E/μ). Overall the energy dimension is then

D = 2+
∑
n

Nn(n− 2)+ 2NL. (4.9)

A diagram containing NL loops contributes at a power E2NL higher than the tree
diagrams. This theorem is of great practical consequence. At low energy, it allows
one to work with only small numbers of loops. In particular, at O(E4) only one-
loop diagrams generated from L2 need to be considered.

The end result is a very simple rule for counting the order of the energy expan-
sion. The lowest-order (E2) behavior is given by the two-derivative lagrangians
treated at tree level. There are two sources at the next order (E4): (i) the O(E2)

one-loop amplitudes, and (ii) the tree-level O(E4) amplitudes. When the coeffi-
cients of the E4 lagrangians are renormalized, finite predictions result. Other effec-
tive field theories will have power-counting rules analogous to this one appropriate
for chiral theories.

The limits of an effective field theory

The effective field theory of the linear sigma model is valid for energies well below
the mass of the scalar particle in the theory, the σ or S. Once there is enough energy
to directly excite the S particle, it is clear that the effective theory is inadequate.
This energy scale is visible even within the effective theory itself. Scattering matrix
elements are an expansion in the energy, with a schematic form

M ∼ q2

v2

[
1+ q2

m2
σ

+ · · ·
]

(4.10)

and the scale of the energy dependence is determined largely by the scalar mass. As
the energy increases the corrections to the lowest-order result grow and eventually
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all terms in the energy expansion become equally important and the effective theory
breaks down. Thus, the effective theory reveals its own limits.

In more general effective field theories, there is always a separation of the heavy
degrees of freedom, which are integrated out from the theory, and the light degrees
of freedom, which are treated dynamically. In many instances, the natural sepa-
ration scale is set by a particle’s mass, as in the linear sigma model. We will see
that in the case of QCD, the meson resonances such as the ρ(770) do not appear
explicitly in the low-energy effective theory. Therefore, these have been integrated
out and help define the limits of the effective field theory. In other cases, we could
integrate some of the high-momentum modes of certain fields, while still keeping
the low-momentum modes of these same fields as active dynamical participants in
the low-energy theory. This is done for the effective hamiltonian for weak decays,
where we integrate out the high-energy modes of the gluonic fields. In these cases,
the scale that we have used to separate high and low energy defines the limit of
validity of the effective field theory.

Let us also address a rather subtle point concerning the energy scale of the effec-
tive theory. While we regularly use this idea of an energy scale defining the limit
of validity of the effective theory, there are times that we do not apply this sepa-
ration fully. In loop diagrams, if we wanted to only include loop effects below a
certain energy scale, we would need to employ a cut-off in the loop integral. This
is often inconvenient and if done carelessly could upset some of the symmetries of
the theory. Moreover, the presence of an additional dimensional factor in loop dia-
grams would upset some of the power-counting arguments described above. Most
often, practical calculations are performed using dimensional regularization. This
regulator has no knowledge of the energy scale of the theory and thus loop dia-
grams will in general include effects from energies where the effective theory is
not valid. However, again the uncertainty principle comes to our rescue. Even if
these spurious high-energy contributions are not correct, we know that their effect
is equivalent to a local term in the effective lagrangian. Any mistakes made in the
loop can be corrected by modifying the coefficients of the terms in the effective
lagrangian. Careful application of the procedures for matching or measuring the
parameters will return the the same physical predictions independent of the choice
of regularization scheme.

IV–5 Symmetry breaking

Effective lagrangians can be used not only in the limit of exact symmetry but also
to analyze the effect of small symmetry breaking. Let us first return to the sigma
model for an illustration of the method, and then consider the general technique.
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The SU(2)L × SU(2)R symmetry of the sigma model is explicitly broken if
the potential V (σ,π) is made slightly asymmetric, e.g., by the addition of the
term

Lbreaking = aσ = a

4
Tr
(
� +�+) (5.1)

to the basic lagrangian of Eq. (1.4). To first order in the quantity a, this shifts the
minimum of the potential to

v =
√
μ2

λ
+ a

2μ2
, (5.2)

and produces a pion mass

m2
π =

a

v
. (5.3)

Although the latter result can be found by using the linear representation and
expanding the fields about their vacuum expectation values, it is easier to use the
exponential representation,

Lbreaking = a

4
(v + S)Tr (U + U †) = a

4
(v + S)Tr

(
2−

(τ · π
v

)2 + · · ·
)

= a(v + S)− a

2v
π · π + · · · = a(v + S)− m2

π

2
π · π + · · · . (5.4)

The chiral SU(2) symmetry is seen to be slightly broken, but the vectorial SU(2)
isospin symmetry remains exact.

As we have seen, the O(E2) lagrangian is obtained by setting S = 0,

L2 = v2

4
Tr
(
∂μU∂

μU †
)+ m2

π

4
v2 Tr

(
U + U †

)
. (5.5)

Higher-order terms will contain products like[
m2
π Tr

(
U + U †

)]2
, m2

π Tr
(
U + U †

) · Tr
(
∂μU∂

μU †
)
, . . . , (5.6)

and can be obtained by integrating out the field S as was done in Sect. IV–2. It
is important to realize that the symmetry-breaking sector also has a low-energy
expansion, with each factor of m2

π being equivalent to two derivatives. If m2
π is

small, the expansion is a dual expansion in both the energy and the mass.
If we encounter a theory more general than the sigma model, the effect of a small

pion mass can be similarly expressed in low orders by,

Lbreaking = a1m
2
π Tr

(
U + U †

)+ a2
[
m2
π Tr

(
U + U †

)]2
+ a3m

2
π Tr

(
U + U †

)
Tr
(
∂μU∂

μU †
)+ a4m

2
π Tr

[
(U + U †)∂μU∂

μU †
]
,

(5.7)
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with coefficients that are generally not known. An important consideration is the
symmetry-transformation property of the perturbation. The symmetry-breaking
term of Eq. (5.1) is not invariant under separate left-handed and right-handed trans-
formations but only under those with L = R. All the terms in Eq. (5.7) have this
property.

Other symmetry breakings can be analyzed in a manner analogous to the treat-
ment just given of the mass term. One identifies the symmetry-transformation prop-
erty of the perturbing effect and writes the most general effective lagrangian with
that property. Most often the perturbation is treated to only first order, but higher-
order behavior can also be studied.

IV–6 Matrix elements of currents

There is an elegant technique which allows one, at a minimal increase in com-
plexity, to calculate matrix elements of currents from a chiral effective lagrangian
[GaL 84, 85a]. The idea is to add to the lagrangian terms containing external
sources coupled to the currents in question. Construction of the effective lagran-
gian, including source terms, then allows the current matrix elements to be easily
identified. We shall explain this technique here, and use it extensively in our dis-
cussion of QCD in subsequent chapters.

First, consider how current matrix elements are identified in a path-integral
framework. We have seen in Chap. III (see also App. A) that by adding a source
coupled to the desired current, matrix elements can be obtained from differentia-
tion of the path integral, e.g., Eqs. (III–2.2), (III–2.4). For example, we can modify
three-flavor QCD by adding sources to obtain

L = −1

4
Fa
μνF

μν
a + ψ̄i /Dψ − ψ̄γμ 1+ γ5

2

μψ − ψ̄γμ 1− γ5

2
rμψ

− ψ̄L(s + ip)ψR − ψ̄R(s − ip)ψL, (6.1)

where 
μ, rμ, s, p are 3× 3 matrix source functions expressible as


μ = 
0
μ + 
aμλa, rμ = r0

μ + raμλa, s = s0 + saλa, p = p0 + paλa, (6.2)

with a = 1, . . . , 8. The lagrangian in Eq. (6.1) reduces to the usual QCD lagrangian
in the limit 
μ = rμ = p = 0, s = m, where m is the 3×3 quark mass matrix. The
electromagnetic coupling can be obtained with the choice 
μ = rμ = eQAμ, where
Aμ is the photon field and Q is the electric charge operator defined in units of e.
Various currents can be read off from the lagrangian, such as the left-handed current
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J kLμ(x) = −
∂L

∂

μ

k (x)
= ψ̄(x)γμ

1+ γ5

2
λkψ(x) (6.3)

or the scalar density

ψ̄(x)ψ(x) = − ∂L
∂s0(x)

. (6.4)

Moreover, matrix elements of these currents can be formed from the path integral
by taking functional derivatives. The simplest example is

〈0 ∣∣ψ̄(x)ψ(x)∣∣ 0〉 = i
δ lnZ

δs0(x)

∣∣∣∣

=r=p=0
s=m

, (6.5)

while other examples appear in Sect. III–2.

Matrix elements and the effective action

A low-energy effective action for the Goldstone bosons of QCD will be a functional
of the external sources. One way to define the connection of the effective action
with QCD is to consider the effect of the sources,

eiW(
μ,rμ,s,p) =
∫

[dψ]
[
dψ
] [
dAaμ

]
ei
∫
d4x LQCD(ψ,ψ,A

a
μ,
μ,rμ,s,p). (6.6)

At low-energy, all heavy degrees of freedom can be integrated out and absorbed
into coefficients in the effective action W . However, the Goldstone bosons propa-
gate at low-energy, and they must be explicitly taken into account. One then writes
a representation of the form

eiW(
μ,rμ,s,p) =
∫
[dU ] ei

∫
d4x Leff(U,
μ,rμ,s,p), (6.7)

where as usual U contains the Goldstone fields. This form then allows inclusion of
all low-energy effects while maintaining the symmetries of QCD.

The lagrangian of Eq. (6.1) has an exact local chiral SU(3) invariance if we
have the external fields transform in the same way as gauge fields. In particular, the
transformations

ψL → L(x)ψL, ψR → R(x)ψR,


μ → L(x)
μL
†(x)+ i∂μL(x)L†(x),

rμ → R(x)rμR
†(x)+ i∂μR(x)R†(x), (6.8)

(s + ip)→ L(x)(s + ip)R†(x)

provide an invariance for any L(x), R(x) in SU(3).

https://doi.org/10.1017/9781009291033.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.005


128 Introduction to effective field theory

In constructing the effective action, these invariances must be included. This is
easy to do if 
μ and rμ enter in the same way as gauge fields. In particular, upon
defining a covariant derivative

DμU = ∂μU + i
μU − iUrμ, (6.9)

and field-strength tensors

Lμν = ∂μ
ν − ∂ν
μ + i[
μ, 
ν],
Rμν = ∂μrν − ∂νrμ + i[rμ, rν], (6.10)

we obtain the following covariant responses to local transformations:

U → L(x)UR†(x),

Lμν→ L(x)LμνL
†(x),

DμU→ L(x)DμUR
†(x),

Rμν → R(x)RμνR
†(x).

(6.11)

The effective action is then expressed in terms of these quantities. At order E2,
there are only two terms in the effective lagrangian,

L2 = F 2
π

4
Tr
(
DμUD

μU †
)+ F 2

π

4
Tr
(
χU † + Uχ†

)
, (6.12)

where

χ ≡ 2B0(s + ip) (6.13)

and B0 is a constant with the dimension of mass. In the limit 
μ = rμ = p = 0,
s = m, this is the same effective lagrangian with which we have been dealing in
the SU(2) examples, with the identification m2

π = (mu + md)B0. Note that this
usage requires B0 to be positive.

Having constructed the effective action, we can obtain a number of interesting
matrix elements. For example, use of Eq. (6.5) provides the identification of the
vacuum scalar-density matrix element as

〈0 ∣∣ψ̄iψj ∣∣ 0〉 = −F 2
πB0δij (6.14)

to this order in the effective lagrangian. Similarly, use of Eq. (6.3) reveals the left-
handed current to be

Lkμ = −i
F 2
π

2
Tr
(
λkU∂μU

†
)
. (6.15)

One other advantage of the source method is to allow the use of the equations of
motion. The standard Noether procedure for identifying currents does not work if
the equations of motion are employed in the lagrangian. To become convinced of
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this, one can consider the following exercise. We examine the response of the two
trial lagrangians,

L1 = ϕ∗ ϕ, L2 = −m2ϕ∗ϕ (6.16)

to a phase transformation ϕ → eiαϕ. The first contributes to the Noether current
while the second does not. However, these two forms are identical on-shell if ϕ
satisfies the Klein–Gordon equation. In an effective lagrangian which is meant to
be used always on-shell it is often convenient to drop terms which vanish by virtue
of the equations of motion. The use of source fields as described above avoids this
problem.

IV–7 Effective field theory of regions of a single field

In our presentation earlier in this chapter, the construction of an effective field
theory was described by the integrating out of heavy particles, while leaving the
light particles as dynamical degrees of freedom. However, often one can make an
effective field theory from a single particle. In this case, certain energy regions of
the field are treated as heavy and others are light, and one retains the light regions
in the effective field theory. Indeed, sometimes there are multiple regions that are
‘light’ in some sense, and one splits the original single field into multiple fields.
This section provides some of the background for such decompositions.

The simplest example of the division of a single field into ‘heavy’ and ‘light’ is
in the nonrelativistic reduction. When the energy is small, the antiparticle degrees
of freedom are heavy and can be removed from the theory, leaving a nonrelativistic
particle description. For example, if one redefines a four-component Dirac field ψ
into upper and lower two-component fields, ψu and ψ
 by factoring out the leading
energy dependence at low-energy via

ψ(x, t) = e−imt
(
ψu(x, t)

ψ
(x, t)

)
, (7.1)

ψu will behave as a nonrelativistic field and ψ
 will account for the two heavy
degrees of freedom. The free Dirac lagrangian shows this separation,

L = ψ̄(i/∂ −m)ψ
= ψ∗u i∂tψu + ψ∗
 [i∂t + 2m]ψ
 + ψ∗u iσ · ∇ψ
 + ψ∗
 iσ · ∇ψu. (7.2)

While no approximation has yet been made by this redefinition, the nonrelativistic
limit is taken by assuming that the residual energy dependence is small compared
to the mass (i.e., one neglects ∂t compared to 2m). One can then integrate out the
lower component through its equation of motion,
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(i∂t + 2m)ψ
 ≈ 2m ψ
 = iσ · ∇ψu, (7.3)

leaving the upper component as the active non-relativistic degree of freedom.

L = ψ∗u i∂tψu −
(∇ψ∗u) · ∇ψu

2m
. (7.4)

With inclusion of the interactions, this can lead to a full nontrivial effective field
theory. A well-developed example of this is the Non-Relativistic QCD (NRQCD)
effective field theory [CaL 86]. We will also return to this procedure in more gen-
erality in the discussion of Heavy Quark Effective Theory (HQET) in Chap. XIII.

A second common way of splitting up a single field is to integrate out the high
momentum portions of a field. This logic is often called Wilsonian [Wi 69]. Imag-
ine splitting the momenta in a problem into those above an energy scale 
 and
those below this scale. By first performing the calculation of the high-energy por-
tion, one is left with an effective field theory. The operators defining that theory
will carry factors, the Wilson coefficients, that depend on the scale 
. This means
that one obtains a set of new operators On in the lagrangian

L = · · · +
∑
n

Cn(
)On, (7.5)

where Cn(
) are the Wilson coefficients and the series is infinite. The operators
are local because they capture high-energy physics, and their matrix elements will
depend on the separation scale, 〈On〉 = 〈On(
)〉. One regularly uses the renor-
malization group to describe the running of the Wilson coefficients with changes
of scale. The low-energy theory remains a full field theory and one must cal-
culate the full quantum effects in the matrix elements of On up to the scale 
.
When the high-energy physics in Cn and the low-energy physics in the matrix ele-
ments of On are properly matched, in the end the separation scale 
 will disap-
pear from the description. Nevertheless, this separation is often useful. For exam-
ple, in QCD the high-energy behavior may be reliably calculated in perturbation
theory, while the low-energy behavior may be best accomplished with lattice cal-
culations. Examples appearing in this book include the Wilson coefficients of the
non-leptonic weak hamiltionian, cf. Sect. VIII–3, and those used in QCD sum rules,
cf. Sect. XI–5.

In practice, however, we most often do not use a Wilsonian separation scale 
,
but instead employ dimensional regularization. Dimensional regularized loop inte-
grals do not carry information about any particular scale, and therefore extend over
all energies. The extension to d < 4 damps the high-energy divergences in a scale-
independent way. Nonetheless, this procedure works for logarithmically running
Wilson coefficients. Aside from the momenta, the only scale in a dimensionally
regularized integral is the μ2ε inserted in front of the loop integral. This ends up
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p p′
k

Fig. IV–3 The scalar vertex diagram analysed in the text.

appearing in the final answer as lnμ2 when expanded close to d = 4. The fact that
cut-off regularization and dimensional regularization have the equivalence

ln
2 ⇔ 1

ε
+ lnμ2 (7.6)

allows the scaleμ to be a proxy for the separation scale
. However, the correspon-
dence of μ with a Wilsonian separation scale does not hold for Wilson coefficients
with power-law running [CiDG 00].

For a yet more subtle example, consider the interaction of a high-energy massless
particle in the vertex diagram of Fig. IV–3. For the purposes of this example, let us
consider these as scalars and the current vertex as J = ϕ2/2. We can analyse the
resultant scalar vertex integral,

I = μ4−d
∫

ddk

(2π)d
1

(p + k)2
1

k2

1

(p′ + k)2 , (7.7)

in the limit where p2 ∼ p′2 � Q2 = (p − p′)2. The only scales in this problem
are Q2, which is treated as a large scale, and p2 ∼ p′2, which is the small scale.
The relative size is labeled λ2 ∼ p2/Q2 ∼ p′2/Q2.

This integral can be analyzed by the method of regions [BeS 98, Sm 02].8 In this
technique, one identifies all the important momentum regions of the loop integral,
and makes appropriate approximations within each region. A portion of the integral
will have all the components of the loop momenta of order Q and higher. This
will be called the hard region. A region labeled soft has all the components much
smaller than Q. In addition, there will be regions where the momentum is of order
Q in the direction of p or p′. In these collinear regions, some invariant products
can be smaller than Q2.

In order to quantify this one takes light-like reference four-vectors

nμ = (1, 0, 0, 1), n̄μ = (1, 0, 0,−1), n2 = n̄2 = 0, n · n̄ = 2. (7.8)

For an arbitrary four-vector expressed using these and a transverse component,

V μ = n · V n̄
μ

2
+ n̄ · V n

μ

2
+ V μ

⊥ ≡ V+
n̄μ

2
+ V−n

μ

2
+ V μ

⊥ , (7.9)

the invariant product is

8 This example and the treatment of it follows the lectures of [Be 10].
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V 2 = (n · V )(n̄ · V )+ V 2
⊥ = V+V− + V 2

⊥.

AμB
μ = 1

2
(A+B− + A−B+)+ A⊥ · B⊥ (7.10)

These are useful because we can choose a frame with p along n and with p′ along
n̄, and we can refer to the n direction as ‘right’ and the n̄ direction as ‘left’. This
allows us to classify the different regions. Of the original momenta, we have

(V+, V−, V⊥)
p ∼(λ2, 1, 0) Q

p′ ∼(1, λ2, 0) Q. (7.11)

Q ∼(1, 1, 0) Q

Q is a hard momentum because it takes a hard interaction to change an energetic
right-moving particle into one moving left. Using this decomposition, one can iden-
tify the regions of the loop momentum

(k+, k−, k⊥)
k ∼(1, 1, 1) Q hard

k ∼(λ2, 1, λ) Q collinear R. (7.12)

k ∼(1, λ2, λ) Q collinear L

k ∼(λ2, λ2, λ2) Q soft

In each region, one can drop small momentum components in terms of large
ones. For example, when k is in the hard region, one can drop p2, p′2, k−p+,
k+p′−, which are all of order λ2, in order to obtain9

Ihard = μ4−d
∫

ddk

(2π)d
1

(k2 + iε)(k2 + k−p+ + iε)(k2 + k+p′− + iε)
= i�(1+ ε)
(4π)d/2Q2

[
1

ε2
+ 1

ε
ln

μ2

−Q2
+ 1

2
ln2 μ2

−Q2
− π2

6

]
. (7.13)

Similarly, in the right collinear region, one can expand (k+p′)2 = k−p′+ +O(λ2),
such that

Icol−R = μ4−d
∫

ddk

(2π)d
1

(k2 + iε)((k + p)2 + iε)(k−p′+ + iε)
= i�(1+ ε)
(4π)d/2Q2

[
− 1

ε2
− 1

ε
ln

μ2

−p′2 +
1

2
ln2 μ2

−p′2 +
π2

6

]
. (7.14)

An observation that will be relevant for the eventual construction of an effective
theory is that when the exchanged propagator carrying momentum k is in the right

9 The integrals of this section are displayed in the useful appendix of [Sm 02]. See also [Sm 12].
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collinear region, the other propagator on the p side is also collinear, but the third
propagator on the p′ side is hard. A similar result is obviously found when k is in
the left collinear region, obtained by replacing p by p′. Finally, in the soft region,
one keeps only terms of order λ2, finding

Isoft = μ4−d
∫

ddk

(2π)d
1(

k2 + iε) (k−p+ + p2 + iε) (k+p′− + p′2 + iε)
= i� (1+ ε)
(4π)d/2 Q2

[
1

ε2
+ 1

ε
ln

μ2 Q2

−p2 p′2
+ 1

2
ln2 μ2 Q2

−p2 p′2
+ π2

6

]
. (7.15)

If one tries to identify other regions besides these and makes the correspond-
ing simplifications of the loop integral, one ends up with a scale-less integral
which vanishes within dimensional regularization. For example, if one considers
the region where k scales as k ∼ (λ2, λ2, λ)10, one would use k2 ∼ k2

⊥ and keep
terms of order λ2 in each propagator

I ′ =
∫

ddk

(2π)d
1(

k2
⊥ + iε

) (
k−p+ + p2 + k2

⊥ + iε
) (
k+p′− + p′2 + k2

⊥ + iε
)

= 1

p+p′−

∫
ddk′

(2π)d
1(

k2
⊥ + iε

) (
k′− + iε

) (
k′+ + iε

)
= 0, (7.16)

where in the second line we have defined shifted variables k′− = k−+(p2+k2
⊥)/p+

and k′+ = k+ + (p′2 + k2
⊥)/p′−, with the result being an integral without any scale.

Such integrals are set to zero within dimensional regularization.
The sum of the four subregions yields the correct total integral,

I = i

16π2Q2

[
ln
Q2

p2
ln
Q2

p′2
+ π2

3

]
, (7.17)

up to terms suppressed by powers of λ. As expected, this result is finite, even
though the integrals from the individual regions are not. The approximations that
we made lead to infrared divergences in the hard integral, and ultraviolet diver-
gences in the others. However, these cancel when added together.

The other interesting feature of this procedure is that we have not restricted the
integration ranges when calculating the integrals for the different regions. The full
integration range is used in each case. The reason that this does not amount to
double counting within dimensional regularization is that if there is a single unique
scale within the integral, as has been deliberately constructed in each region, the
integral is determined by momenta around that scale. This is the key observation

10 This region is referred to as the Glauber region. The treatment of the integral given in the text appears
adequate for this example, although the understanding of the Glauber region is still evolving [BaLO 11].
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that allows the method of regions to work. By constructing approximations that
scale in unique fashions, one can isolate the physics of that region alone.11 That
this actually happens in these integrals can be seen from the above integral where
the factors of Q2, p2, and p2p′2/Q2 all signal the dominant scale in the respective
diagrams, showing that the effects come from different regions of the momentum
integration.

One can convert the analysis of the method of regions into an effective field
theory whose applicability extends beyond this particular example. The initial field
can be divided up into new effective fields for each of the important regions. The
goal is to choose these fields and their interactions to yield the same results as
the method of regions analysis outlined above. The hard-momentum region can
be integrated out completely and replaced by effective operators of the light fields.
These operators will come with Wilson coefficients to ensure the matching with the
full calculation. However, the dynamical light fields need to come in three varieties
for the different light-momentum regions. Thus, the original scalar field ϕ(x) now
comes in three varieties, ϕ(x) = ϕcR(x)+ ϕcL(x)+ ϕs(x). The interactions of the
light fields among themselves is relatively simple to construct. If the interaction
vertex of the original theory was a simple ϕ3 vertex, we expand that to include the
possible interaction between the light fields,

−L = g

3
ϕ3 → g

3
ϕ3
cR +

g

3
ϕ3
cL +

g

3
ϕ3
s + gϕ2

cRϕs + gϕ2
cLϕs. (7.18)

Vertices not listed above, such as ϕcRϕ2
s , are ones which cannot occur due to

momentum conservation (e.g., a collinear particle cannot split into two soft par-
ticles).

It is somewhat more subtle to choose the other effective operators and their
Wilson coefficients. For the scalar example shown above, the ‘current’ carrying the
momentum Q in the full theory is J = ϕ2/2. Since it transfers this large momen-
tum it can connect ϕcR to ϕcL such that we expect a vertex J ∼ ϕcRϕcL. However,
in addition we need to recall that we have integrated out the hard scalars. This leads
to additional vertices. For example, in the diagram of Fig. IV–4(a) the propagator
is hard because it carries the momenta of both left-moving and right-moving fields,
which couple to it at the lower vertex. When the other fields are light, this propa-
gator shrinks to a point vertex as in Fig. IV–4(b). This, then, is a new contribution
to the current operator, and we expect that the current has the form

J = C2ϕcRϕcL + C3ϕ
2
cRϕcL + C ′3ϕcRϕ2

cL + · · · , (7.19)

11 In cases where regions are defined which have overlapping contributions there are also methods for cleanly
separating the regions [MaS 07].
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p p′k

(a)

p p ′k

(b)

Fig. IV–4 (a) An interaction of collinear particles through a hard propagator; (b)
the effective local vertex representing this interaction at low-energy.

where C2 and C3 are the Wilson coefficients. Calculation from the original theory
shows that to this order

C2 = 1+ g2Ihard, C3 = 2g

k−p′+ − iε
, C ′3 =

2g

k+p− − iε , (7.20)

where Ihard refers back to Eq. (7.13).
At this stage, we can reproduce the original vertex calculation using the effective

theory by the calculation of the diagrams of Fig. IV–5. The diagrams of Fig. IV–5
(a),(b),(c) refer to the new vertices given in Eq. (7.20), while Fig. IV–5 (d) refers to
the soft contribution of Eq. (7.15). By construction, one can see how all four of the
regions of the original diagram are reproduced. We note how the hard propagators
that occur when k is in one of the collinear regions have been accounted for by a
new local vertex in the current operator, with the Wilson coefficient describing the
effect of the hard propagator.

The reader may object that the construction of the effective theory was more
trouble than evaluating the original diagram. However, once we have developed
the effective theory, we can apply it in multiple new contexts. The example above
is analogous to the Soft Collinear Effective Theory (SCET) of QCD [BaFPS 01].
Similar techniques are used in the various realizations of NRQCD [CaL 86, PiS
98, BrPSV 05]. Outside of the Standard Model, related methods are applied in
the classical effective field theory of General Relativity [GoR 06], which has been
used to systematize the classical treatment of gravitational radiation from binary
systems [PoRR 11]. Further development of the method of regions and threshold
expansions can be found in [BeS 98, Sm 02].

p p′ p ′ p′ p′

(a)

C2

p
k

(b)

C3

p
k

(c)

C ′3

pp
ks

(d)

Fig. IV–5 The diagrams involving the light fields reconstructing the scalar vertex.
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Fig. IV–6 Photon amplitudes containing a single fermion loop.

IV–8 Effective lagrangians in QED

We have explored in some detail the structure of effective field theory by using
chiral symmetry as an example. However, this is not meant to imply that effective
lagrangians are useful only in that one context. In fact, they can be applied to a
wide variety of situations. Here, we apply the technique to QED.

Consider situations in which the photon’s four-momentum is small compared to
the electron mass. In such cases, the electron and other fermions cannot be pro-
duced directly, but instead influence the physics of photons only through virtual
processes. The lowest-order diagrams, i.e., those which contain a single electron
loop, with increasing numbers of external photon legs, are shown in Fig. IV–6.
Note that the one-loop diagram containing three photons, or indeed any odd num-
ber of photons, vanishes by virtue of charge-conjugation invariance. This is true
to all orders in the coupling e, and is refered to as Furry’s theorem. Diagrams like
those in Fig. IV–6 have effects at low-energy which are typically calculated in per-
turbation theory. The associated amplitudes have coefficients which scale as some
power of the inverse electron mass. They can be generated by means of an effective
lagrangian, as we shall now discuss.

Let us seek a description which eliminates the electron degrees of freedom. That
is, we wish to write a lagrangian which involves only photons, but nevertheless
includes effects like the ones in Fig. IV–6. The result must of course be gauge-
invariant. The procedure may be defined by the path-integral relation∫ [

dAμ
]

exp

[
i

∫
d4x Leff(Aμ)

]
≡
∫ [
dAμ

]
[dψ] [dψ̄] exp

[
i
∫
d4x LQED(Aμ,ψ, ψ̄)

]∫
[dψ]

[
dψ̄
]

exp
[
i
∫
d4x L0(ψ, ψ̄)

] , (8.1)

where LQED is the full QED lagrangian, and L0 is the free fermion lagrangian.
Thus Leff has precisely the same matrix elements for photons as does the full
QED theory. Specifically, it includes the virtual effects of electrons. The techniques
described in App. A–5 enable us to formally express the content of Eq. (8.1) as
[Sc 51]
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IV–8 Effective lagrangians in QED 137∫
d4x Leff(Aμ) = −1

4

∫
d4x FμνF

μν − i Tr ln

[
i/D −m
i/∂ −m

]
. (8.2)

This form, although formally correct, does not readily lend itself to physical inter-
pretation. However, we can determine various interesting effects directly from per-
turbation theory. For example, the vacuum polarization of Fig. IV–6(a) modifies
the photon propagator, i.e., the two-point function. From Eqs. (II–1.26), (II–1.29),
we determine the result for a photon of momentum q to be

i�̂μν(q) = i
α

15π

(
qμqν − gμνq2

) q2

m2
+ · · · . (8.3)

The essence of the effective lagrangian approach is to represent such information
as the matrix element of a local lagrangian. In the present example, we find that the
term in Eq. (8.3) corresponds to the interaction

Leff = α

60πm2
Fμν Fμν, (8.4)

where ≡ ∂μ∂
μ.

The calculation of Fig. IV–6(b) is a somewhat more difficult, but still straightfor-
ward, exercise in perturbation theory. We shall lead the reader through a calculation
using path integrals in a problem at the end of this chapter. It too can be represented
as a local lagrangian, and is usually named after Euler and Heisenberg [ItZ 80]. One
finds the full result to one-loop order to be

Leff(Aμ) = −1

4
FμνF

μν + α

60πm2
Fμν Fμν

+ α2

90m4

[(
FμνF

μν
)2 + 7

4

(
FμνF̃

μν
)2
]
+ · · · , (8.5)

where F̃μν ≡ 1
2εμναβF

αβ . Corrections to this effective lagrangian can be of two
forms: (i) even at one loop there are additional terms of higher dimension

Fμν

2

m4
Fμν, Fμν

m6
FμνFαβF

αβ,
1

m8

(
FμνF

μν
)3
, . . . , (8.6)

involving either more fields or more derivatives; or (ii) the coefficients of these
operators can receive corrections of higher order in α through multi-loop diagrams.
We see here an example of the energy expansion, which we have discussed at
length earlier in this chapter. In this case it is an expansion in powers of q2/m2.
The effective lagrangian of Eq. (8.5) can be used to compute aspects of low-energy
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photon physics such as the low-energy contribution of the vacuum polarization
process or the matrix element for photon–photon scattering.

IV–9 Effective lagrangians as probes of New Physics

One of the most common and important uses of effective lagrangians is to param-
eterize how new physics at high energy may influence low-energy observables.
The general procedure can be abstracted from our earlier discussion. Remember
that one is trying to represent the low-energy effects from a ‘heavy’ sector of the
theory. This is accomplished by employing an effective lagrangian

Leff =
∑
n

Cn On, (9.1)

where the {On} are local operators having the symmetries of the theory and are
constructed from fields that describe physics at low-energy. There need be no
restriction to renormalizable combinations of fields. Most often the operators can
be organized by dimension. The lagrangian itself has mass dimension 4, so that if
an operator has dimension di the coefficient must have mass dimension

Cn ∼ M4−dn . (9.2)

The mass scale M is associated with the heavy sector of the theory. It is clear that
operators of high dimension will be suppressed by powers of the heavy mass. To
leading order, this allows one to keep a small set of operators.

Some applications will involve phenomena for which the dynamics is well under-
stood. If so, the coefficients of the effective lagrangian can be determined through
direct calculation as in the preceding sections. Other examples occur in the the-
ory of weak nonleptonic interactions (cf. Sect. VIII–3) and in the interactions of
W -bosons (cf. Sect. XVI–3). Even more generally, effective lagrangians can also
be used to describe the effects of new types of interactions. In these cases, dimen-
sional analysis supplies an estimate for the magnitude of the energy scales of pos-
sible New Physics. We shall conclude this section by using effective lagrangians
to characterize the size of possible violations of some of the symmetries of the
Standard Model.

Given certain input parameters, the Standard Model is a closed, self-consistent
description of physics up to at least the mass of the Z0, and is described by the
most general renormalizable lagrangian consistent with the underlying gauge sym-
metries. What would happen if there were new interactions having an intrinsic
energy scale of several TeV or beyond? In general, such new theories would be
expected to modify predictions of the Standard Model. The modifications would
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be described by non-renormalizable interactions, organized by dimension in an
effective lagrangian description as

Leff = LSM + 1



L5 + 1


2
L6 + · · · , (9.3)

where Ln has mass dimension n and 
 is the energy scale of the new interaction.
There is a single operator of dimension 5 which will be displayed in the neu-

trino chapter. At dimension 6, there are 80 distinct operators consistent with the
gauge symmetries of the Standard Model [BuW 86]. These can generate a variety
of effects which deviate from the Standard Model. For example, the operator

L6
(
c′
) ≡ c′


2
(�†�)Wμν ·Wμν, (9.4)

containing the Higgs field � and the field tensor Wμν of SU(2) gauge bosons,
produces a deviation from unity in the rho-parameter,12

ρ ≡ M2
W

M2
Z cos2 θw

= 1− c′ v
2


2
+ · · · . (9.5)

The current level of precision, |ρ − 1| ≤ 0.0029 (at 2σ ), requires 
 > 4.5 TeV for
c′ = 1. Yet another possibility concerns the violation of flavor symmetries in the
Standard Model. The operator,

L6(c
′′) ≡ c′′


2
ēγμ(1+ γ5)μ s̄γ

μ(1+ γ5)d + h.c., (9.6)

conserves generational or family number, but violates the separate lepton-number
symmetries. It leads to the transition KL → e−μ+ such that

�K0
L→μ+e−

�K+→μ+νμ
=
(

c′′

VusGF
2

)2

. (9.7)

The present bound, BrK0
L→μe < 4.7 × 10−12 at 90% confidence level, requires


 > 1700 TeV for c′′ � 1. In a similar manner, constraints on other physical
processes imply bounds on their corresponding energy scales 
, generally in the
range 5 → 5000 TeV.

Dimension-six contact interactions also are searched for at the highest energies
of the Large Hadron Collider (LHC). The effect of the contact interaction becomes
relatively more pronounced at high energy when competing with background pro-
cesses which fall off due to propagator effects. For example, an operator leading to
qq̄ → μ+μ−,

L6(g) ≡ g2

2
2
q̄LγνqLμ̄Lγ

νμL, (9.8)

12 More precisely the comparison is with a form of the rho-parameter after radiative corrections.
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becomes increasingly visible over the Drell–Yan process at high energy. Early LHC
results [Aa et al. (ATLAS collab.) 11] bound this interaction with 
 > 4.5 TeV
at 95% confidence for g2/4π = 1; such limits will clearly improve in the future.
Interestingly, some operators are better bounded by low-energy precision experi-
ments and others are better probed at high energy [Bh et al. 12], demonstrating the
value of both lines of research.

Of course, if there is new physics in the TeV energy range, it need not generate
all 80 possible effective interactions. The ones actually appearing would depend
on the couplings and symmetries of the new theory. In addition, the coefficients
of contributing operators could contain small coupling constants or mixing angles,
diminishing their effects at low-energy. However, the effective lagrangian analysis
indicates that the continued success of the Standard Model is quite nontrivial and
places meaningful bounds on possible new dynamical structures occurring at TeV,
and even higher, energy scales.

Problems

(1) U(1) effective lagrangian
Consider a theory with a complex scalar field ϕ with a U(1) global symmetry
ϕ→ ϕ′ = exp (iθ) ϕ. The lagrangian will be

L = ∂μϕ
∗∂μϕ + μ2ϕ∗ϕ − λ(ϕ∗ϕ)2.

(a) Minimize the potential to find the ground state and write out the lagrangian
in the basis

ϕ = 1√
2
(v + ϕ1(x)+ iϕ2(x))

Show that ϕ2 is the Goldstone boson.
(b) Use this lagrangian to calculate the low-energy scattering of ϕ2 + ϕ2 →

ϕ2+ϕ2. Show that despite the nonderivative interactions of the lagrangian,
cancelations occur such that leading scattering amplitude starts at order p4.

(c) Instead of the basis above, express the lagrangian using an exponential
basis,

ϕ = 1√
2
(v +�(x))eiχ(x)/v.

Show that in this basis a ‘shift symmetry’ χ → χ + c is manifest.
(d) Calculate the same scattering amplitude using this basis and show that the

results agree. Note that the fact that the amplitude is of order p4 is more
readily apparent in this basis.
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(2) Path integrals and the Fermi effective lagrangian
Consider the path integral ZW =

∫ [
dW+] [dW−] exp

[
i
∫
d4xLW(x)

]
, where

LW is the W±-boson lagrangian LW = L(free)
W + L(int)

W , with

L(free)
W = −1

2
F+μνF

μν
− +M2

WW
+
μ W

μ
− , L(int)

W = − g2√
8

(
W+
μ J

μ

ch + h.c.
)
.

Integrating out the heavy W± fields in ZW leads to an effective interaction
between charged weak currents called the Fermi model.
(a) Show that, upon discarding a total derivative term, one can write the free

field contribution in ZW as∫
d4x L(free)

W =
∫
d4x d4y W+

μ αK
μν(x, y)W−

ν (y),

where Kμν(x, y) ≡ δ(4)(x − y) [gμν (∂2 +M2
W

)− ∂μ∂ν].
(b) Further steps allow the path integral to be expressed as

ZW = exp

[
−i g

2
2

8

∫
d4x d4y J

μ†
ch (x)�μν(x, y)J

ν
ch(y)

]
,

where �μν(x, y) is the Fourier transform of the W± propagator �μν(k) =
− (gμν − kμkν/M2

W

)
. Upon expanding this form of ZW in powers of M−2

W ,
show that to lowest order,

L(eff)
W (x) = −GF√

2
J
μ†
ch (x)J

ch
μ (x) (Fermi model),

where the Fermi constant obeys GF/
√

2 ≡ g2
2/(8M

2
W).

(3) The Euler–Heisenberg lagrangian: constant magnetic field
Consider a charged scalar field ϕ interacting with a constant external magnetic
field B = Bk̂. The corresponding Klein–Gordon equation is (D2+m2)ϕ(x) =
0, where Dμ = ∂μ + ieAμ is the covariant derivative, and the effective action
is then given by

eiSeff(B) =
∫ [dϕ(x)][dϕ∗(x)]ei ∫ d4x ϕ∗(x)(D2+m2)ϕ(x)∫ [dϕ(x)][dϕ∗(x)]ei ∫ d4x ϕ∗(x)( 2+m2)ϕ(x)

= det( 2 +m2)/det(D2 +m2),

Seff(B) = i Tr ln
D2 +m2

+m2
.

The operation ‘Tr ln’ applied to a differential operator is not a trivial one and
the purpose of this problem is to evaluate this quantity for the case at hand.

https://doi.org/10.1017/9781009291033.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.005


142 Introduction to effective field theory

(a) Demonstrate that

Seff(B) = i Tr
∫ ∞

0
e−m

2s
(
e− s − e−D2s

)
.

(b) In order to evaluate the trace we require a complete set of solutions to the
equations

D2ϕ̄n(x, y, z, t) = λnϕ̄n(x, y, z, t),

ϕn(x, y, z, t) = κnϕn(x, y, z, t),

so that we may write

Seff(B) = i
∑
n

∫ ∞

0

ds

s
e−m

2s
(
e−κns − e−λns) .

(c) With the gauge choice Aμ = (0, Bx ĵ ) show that the eigenstates are

ϕ(x, y, z, t) = ei(kxx+kyy+kzz−kt t),
ϕ̄(x, y, z, t) = ei(kzz+kyy−kt t)ψn(x−ky/eB),

where ψn(x) is an eigenstate of the harmonic-oscillator hamiltonian, and
the eigenvalues are κn = −k2

t +k2
x+k2

y+k2
z , λn = −k2

t +k2
z + eB(2n+1).

(d) Rotate to euclidean space and evaluate the trace using box quantization.
Taking a box with sides L1, L2, L3 and a time interval T , we have

κ :
∑
n

→ L1L2L3T

∫ ∞

−∞
d4k

(2π)4
,

λ :
∑
n

→ L2L3T

∫ eBL1

0
dky

∫ ∞

−∞
dk0dkz

(2π)2

∞∑
n=0

,

where the integration on ky is over all values with x ′ = x−ky/eB positive.
(e) Evaluate the effective action

Seff(B) = L1L2L3T

∫ ∞

0

ds

s

∫ ∞

−∞
dk0dkz

(2π)2
e−(m

2+k2
0+k2

z )s

×
[
eB

2π

∞∑
n=0

e−eB(2n+1)s −
∫ ∞

−∞
dkxdky

(2π)2
e−(k

2
x+k2

y)s

]
and show that

Seff(B) = L1L2L3T
1

16π2

∫ ∞

0

ds

s3
e−m

2s

(
eBs

sinh eBs
− 1

)
.

Expand this in powers of B, finding the (divergent) wavefunction renor-
malization and the B4 piece of the Euler–Heisenberg lagrangian.
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(f) Show that the corresponding result of a constant electric field can be found
by the substitution B → iE so that

Seff(E) = L1L2L3T
1

16π2

∫ ∞

0

ds

s3
e−m

2s

(
eEs

sin eEs
− 1

)
.

(g) Demonstrate that, although Im Seff(B) = 0, one nonetheless obtains

Im Seff(E) = L1L2L3T
e2E2

16π3

∞∑
n=1

(−)n
n2

e−nπm
2/eE,

and discuss the meaning of this result [Sc 51, Sc 54].
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