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Abstract

A standard informal method for analyzing the asymptotic complexity of a program is to extract a
recurrence that describes its cost in terms of the size of its input and then to compute a closed-form
upper bound on that recurrence. We give a formal account of that method for functional programs
in a higher order language with let-polymorphism. The method consists of two phases. In the first
phase, a monadic translation is performed to extract a cost-annotated version of the original program.
In the second phase, the extracted program is interpreted in a model. The key feature of this second
phase is that different models describe different notions of size. This plays out in several ways. For
example, when analyzing functions that take arguments of inductive types, different notions of size
may be appropriate depending on the analysis. When analyzing polymorphic functions, our approach
shows that one can formally describe the notion of size of an argument in terms of the data that is
common to the notions of size for each type instance of the domain type. We give several examples
of different models that formally justify various informal cost analyses to show the applicability of
our approach.

1 Introduction

The method for analyzing the asymptotic cost of a (functional) program f (x) that is typ-
ically taught to introductory undergraduate students is to extract a recurrence Tf (n) that
describes an upper bound on the cost of f (x) in terms of the size of x and then establish
a nonrecursive upper bound on Tf (n) (we will focus on upper bounds, but much of what
we say holds mutatis mutandis for lower bounds, and hence tight bounds). The goal of
this work is to put the process of this informal approach to cost analysis on firm mathe-
matical footing. Of course, various formalizations of cost analysis have been discussed for
almost as long as there has been a distinct subfield of Programming Languages. Most of
the recent work in this area is focused on developing formal techniques for cost analysis
that enable the (possibly automated) analysis of as large a swath of programs as possi-
ble. In doing so, the type systems and the logics used grow ever more complex. There
is work that incorporates size and cost into type information, for example, by employ-
ing refinement types or type-and-effect systems. There is work that formalizes reasoning
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2 N. Danner and D. R. Licata

about cost in program logics such as separation logic with time credits. But as witnessed
by most undergraduate texts on algorithm analysis, complex type systems and separation
logic are not commonly taught. Instead, a function of some form (a recurrence) that com-
putes the cost in terms of the size of the argument is extracted from the source code. This
is the case for “simple” compositional worst-case analyses but also more more complex
techniques. For example, the banker’s and physicist’s methods of amortized analysis like-
wise proceed by extracting a function to describe cost; the notion of cost itself, and the
extraction of a suitably precise cost function, is more complex, but broadly speaking the
structure of the analysis is the same. That is the space we are investigating here: how do
we justify that informal process?1 The justification might not itself play a role in applying
the technique informally, any more than we require introductory students to understand
the theory behind a type inference algorithm in order to informally understand why their
programs typecheck. But certainly that theory should be settled. Our approach is through
denotational semantics, which, in addition to justifying the informal process, also helps to
explicate a few questions, such as why length is an appropriate measure of size for cost
recurrences for polymorphic list functions (a question that is close to, but not quite the
same as, parametricity).

Turning to the technical development, in previous work (Danner et al., 2013, 2015), we
have developed a recurrence extraction technique for higher order functional programs for
which the bounding is provable that is based on work by Danner & Royer (2007). The
technique is described as follows:

1. We define what is essentially a monadic translation into the writer monad from a
call-by-value source language that supports inductive types and structural recursion
(fold) to a call-by-name recurrence language; we refer to programs in the latter
language as syntactic recurrences. The recurrence language is axiomatized by a
size (pre)order rather than equations. The syntactic recurrence extracted from a
source-language program f (x) describes both the cost and result of f (x) in terms
of x.

2. We define a bounding relation between source language programs and syntactic
recurrences. The bounding relation is a logical relation that captures the notion that
the syntactic recurrence is in fact a bound on the operational cost and the result of
the source language program. This notion extends reasonably to higher type, where
higher type arguments of a syntactic recurrence are thought of recurrences that are
bounds on the corresponding arguments of the source language program. We then
prove a bounding theorem that asserts that every typeable program in the source
language is related to the recurrence extracted from it.

3. The syntactic recurrence is interpreted in a model of the recurrence language. This
is where values are abstracted to some notion of size; e.g., the interpretation may
be defined so that a value of inductive type δ is interpreted by the number of
δ-constructors in v. We call the interpretation of a syntactic recurrence a seman-
tic recurrence, and it is the semantic recurrences that are intended to match the
recurrences that arise from informal analyses.

1 We do mean the process here—some of the approaches do end up synthesizing recurrences, but that is almost
a side effect rather than the first step.
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Denotational semantics for recurrence extraction 3

In this paper, we extend the above approach in several ways. First and foremost, we
investigate the models, semantic recurrences, and size abstraction more thoroughly than
in previous work and show how different models can be used to formally justify typical
informal extract-and-solve cost analyses. Second, we add ML-style let-polymorphism
and adapt the techniques to an environment-based operational semantics, a more realis-
tic foundation for implementation than the substitution-based semantics used in previous
work. In recent work, we have extended the technique for source languages with call-by-
name and general recursion (Kavvos et al., 2020), and for amortized analyses (Cutler et al.,
2020); we do not consider these extensions in the main body of this paper, in order to focus
on the above issues in isolation.

Our source language, which we describe in Section 2, is a call-by-value higher order
functional language with inductive datatypes and structural recursion (fold) and ML-style
let-polymorphism. That is, let-bound identifiers may be assigned a quantified type,
provided that type is instantiated at quantifier-free types in the body of the let expres-
sion. Restricting to polymorphism that is predicative (quantifiers can be instantiated only
with nonquantified types), first-order (quantifiers range over types, not type constructors),
and second-class (polymorphic functions cannot themselves be the input to other func-
tions) is sufficient to program a number of example programs, without complicating the
denotational models used to analyze them. We define an environment-based operational
semantics where each rule is annotated with a cost. For simplicity, we only “charge” for
each unfolding of a recursive call, but the technique extends easily for any notion of cost
that can be defined in terms of evaluation rules. We could also replace the rule-based cost
annotations with a “tick” construct that the programmer inserts at the code points for which
a charge should be made, though this requires the programmer to justify the cost model.

The recurrence language in Section 3 is a call-by-name λ-calculus with explicit predica-
tive polymorphism (via type abstraction and type application) and an additional type for
costs. Ultimately, we care only about the meaning of a syntactic recurrence, not so much
any particular strategy for evaluating it, and such a focus on mathematical reasoning makes
call-by-name an appropriate formalism. The choice of explicit predicative polymorphism
instead of let-polymorphism is minor, but arises from the same concerns: our main inter-
est is in the models of the language, and it is simpler to describe models of the former
than of the latter. To describe the recurrence language as call-by-name is not quite right
because the verification of the bounding theorem that relates source programs to syntactic
recurrences does not require an operational semantics. Instead it suffices to axiomatize the
recurrence language by a preorder, which we call the size order. The size order is defined
in Figure 11, and a brief glimpse will show the reader that the axioms primarily consist
of directed versions of the standard call-by-name equations. This is the minimal set of
axioms necessary to verify the bounding theorem, but as we discuss more fully when we
investigate models of the recurrence language, there is more to the size order than that. In
a nutshell, a model in which the size order axiom for a given type constructor is nontrivial
(i.e., in which the two sides are not actually equal) is a model that genuinely abstracts that
particular type constructor to a size.

We can think of the cost type in the recurrence language as the “output” of the writer
monad, and the recurrence extraction function that we give in Section 4 as the call-by-value
monadic translation of the source language. In some sense, then the recurrence extracted
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4 N. Danner and D. R. Licata

from a source program is just a cost-annotated version of the program. However, we think
of the “program” part of the syntactic recurrence differently: it represents the size of the
source program. Thus, the syntactic recurrence simultaneously describes both the cost and
size of the original program, what we refer to as a complexity. It is no surprise that we must
extract both simultaneously, if for no other reason than compositionality, because if we are
to describe cost in terms of size, then the cost of f (g(x)) depends on both the cost and size
of g(x). Thinking of recurrence extraction as a call-by-value monadic translation gives us
insight into how to think of the size of a function: it is a mapping from sizes (of inputs) to
complexities (of computing the result on an input of that size). This leads us to view size as
a form of usage, or potential cost, and it is this last term that we adopt instead of size.2 The
bounding relation e� E that we define in Section 5 is a logical relation between source
programs e and syntactic recurrences E. A syntactic recurrence is really a complexity,
and e� E says that the operational cost of e is bounded by the cost component of E and
that the value of e is bounded by the potential component of E. The Bounding Theorem
(Theorem 1) tells us that every typeable program is bounded by the recurrence extracted
from it. Its proof is somewhat long and technical, but follows the usual pattern for verifying
the Fundamental Theorem for a logical relation, and the details are in Appendix 3.

In the recurrence language, the “data” necessary to describe the size has as much infor-
mation as the original program; in the semantics we can abstract away as much or as little
of this information as necessary. After defining environment models of the recurrence lan-
guage in Section 6 (following Bruce et al., 1990), in Section 7, we give several examples
to demonstrate that different size abstractions result in semantic recurrences that formally
justify typical extract-and-solve analyses. We stress that we are not attempting to ana-
lyze the cost of heretofore unanalyzed programs. Our goal is a formal process that mirrors
as closely as possible the informal process we use at the board and on paper. The main
examples demonstrate analyses where

1. The size of a value v of inductive type δ is defined in terms of the number of δ-
constructors in v. For example, a list is measured by its length, a tree by either its
size or its height, etc., enabling typical size-based recurrences (Section 7.2).

2. The size of a value v of inductive type δ is (more-or-less) the number of constructors
of every inductive type in v. For example, the size of a nat tree t is the number
of nat tree constructors in t (its usual “size”) along with the maximum number of
nat constructors in any node of t, enabling the analysis of functions with more
complex costs, such as the function that sums the nodes of a nat tree (Section 7.3).

3. A polymorphic function can be analyzed in terms of a notion of size that is more
abstract than that given by its instances (Section 7.4). For example, while the size
of a nat tree may be a pair (k, n), where k is the maximum key value and n the
size (e.g., to permit analysis of the function that sums all the nodes), we may want
the domain of the recurrence extracted from a function of type α tree→ ρ to be N,
corresponding to counting only the tree constructors.

2 We warn the reader that “potential” as we use it here is not related to “potential” as it is used in amortized
analysis, though it does seem like potential associated to a data value gives information about its use cost, so
there may be a deeper connection; we leave this question for future study.
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Denotational semantics for recurrence extraction 5

4. We make use of the fact that the interpretation of the size order just has to satisfy
certain axioms to derive recurrences for lower bounds. As an example, we parlay
this into a formal justification for the informal argument that map(f ◦ g) is more
efficient than (map f ) ◦ (map g) (Section 7.5).

These examples end up clarifying the role of the size order, as mentioned earlier. It is not
just the rules necessary to drive the proof of the syntactic bounding theorem, but a nontriv-
ial interpretation of ≤σ (i.e., one in which e≤σ e′ is valid but not e= e′) tells us that we
have a model with a nontrivial size abstraction for σ . This clarification highlights interest-
ing analogies with abstract interpretation: (1) when a datatype δ =μt.F is interpreted by
a nontrivial size abstraction, there is an abstract interpretation between �δ� (abstract) and
�F[δ]� (concrete) and (2) interpreting the recurrence extracted from a polymorphic func-
tion in terms of a more abstract notion of size is possible if there is an abstract interpretation
between two models.

The remaining sections of the paper discuss recent work in cost analysis and how our
work relates to it, as well as limitations of and future directions for our approach.

2 The source language

The source language that serves as the object language of our recurrence extraction tech-
nique is a higher order language with inductive types, structural iteration (fold) over
those types, and ML-style polymorphism (i.e., predicative polymorphism, with polymor-
phic identifiers introduced only in let bindings), with an environment-based operational
semantics that approximates typical implementation. This generalizes the source language
of Danner et al. (2015), which introduced the technique for a monomorphically typed
language with a substitution-based semantics. We address general recursion in Section 8.

The grammar and typing rules for expressions are given in Figure 1. Type assign-
ment derives (quantifier-free) types for expressions given a type context that assigns type
schemes (quantified types) to identifiers. We write for the empty type context. Values are
not a subset of expressions because, as one would expect in implementation, a function
value consists of a function expression along with a value environment: a binding of free
variables to values. The same holds for values of suspension type, and we refer to any
pair of an expression and a value environment for its free variables as a closure (thus we
use closure more freely than the usual parlance, in which it is restricted to functions). We
adopt the notation common in the explicit substitution literature (e.g., Abadi et al., 1991)
and write vθ for a closure with value environment θ . Since the typing for map and mapv
expressions depend on values, this requires a separate notion of typing for values, which in
turn depends on a notion of typing for closures. These are defined in Figures 2 and 3. There
is nothing deep in the typing of a closure value vθ under context �. Morally, the rules just
formalize that v can be assigned the expected type without regard to θ and that θ (x) is of
type �(x). But since type contexts may assign type schemes, whereas type assignment only
derives types, the formal definition is that θ (x) can be assigned any instance of �(x).

We will freely assume notation for n-ary sums and products and their correspond-
ing introduction and elimination forms, such as σ0 × σ1 × σ2, (e0, e1, e2), and π1 e for
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6 N. Danner and D. R. Licata

Fig. 1: A source language with let polymorphism and inductive datatypes. map and mapv
expressions depend on values, which are defined in Figure 2.

(σ0 × σ1)× σ2, ((e0, e1), e2), and π1 (π0 e), respectively. We write fv(e) for the free
variables of e and ftv(τ ) for the free type variables of τ .

Inductive types are defined by shape functors, ranged over by the metavariable F; a
generic inductive type has the form μt.F. If F is a shape functor and σ a type, then F[σ ]
is the result of substituting σ for free occurrences of t in F (the μ operator binds t, of
course). Formally a shape functor is just a type, and so when certain concepts are defined by
induction on type, they are automatically defined for shape functors as well. In the syntax
for shape functors, t is a fixed type variable, and hence simultaneous nested definitions are
not allowed. That is, types such as μt.unit+μs.(unit+ s× t) are forbidden. However, an
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Denotational semantics for recurrence extraction 7

Fig. 2: Grammar and typing rules for values. For any value environment θ , it must be that
for all x there is σ such that � θ (x) : σ . The judgment � � eθ : σ closure is defined in
Figure 3.

Fig. 3: Typing for closures.

Fig. 4: Some standard types in the source language.

inductive type can be used inside of other types via the constant functor (σ ) production of
F, e.g. coding the type (α list) list as μt.unit+ (μt.unit+ α× t)× t. This restriction
is just to simplify the presentation of the languages and models, and lifting it does not
require fundamental changes. Figure 4 gives a number of types and values that we will
use in examples. We warn the reader that because most models of the recurrence language
have nonstandard interpretations of inductive types, the types σ and μt.σ may be treated
very differently even when t is not free in σ . Thus, it can actually make a real difference
whether we define bool to be unit+ unit or μt.unit+ unit (if every type that would
be defined by an ML datatype declaration were implemented as a possibly degenerate
inductive type).
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8 N. Danner and D. R. Licata

For every inductive type δ =μt.F there is an associated constructor cδ , destructor dδ ,
and iterator foldδ . Thought of informally as term constants, the first two have the typ-
ical types F[δ]→ δ and δ→ F[δ], but the type of foldδ is somewhat nonstandard:
δ→ (F[σ susp]→ σ )→ σ . We use suspension types of the form σ susp primarily to
delay computation of recursive calls in evaluating fold expressions. This is not necessary
for any theoretical concerns, but rather practical: without something like this, implemen-
tations of standard programs would have unexpected costs. We will return to this when
we discuss the operational semantics. We also observe that in this informal treatment, the
types are not polymorphic; in our setting, polymorphism and inductive types are orthogonal
concerns.

The mapF and mapvF constructors are used to define the operational semantics of
foldμt.F . The latter witnesses functoriality of shape functors. Informally speaking, evalu-
ation of mapvF y.v′ into v traverses a value v of type F[δ], applying a function y 	→ v′ of
type δ→ σ to each inductive subvalue of type δ to obtain a value of type F[σ ]. mapF is a
technical tool for defining this action when F is an arrow shape, in which case the value of
type F[δ] is really a delayed computation and hence is represented by an arbitrary expres-
sion. Because the definition of mapF and mapvF depend on values, we must define them
(and their typing) simultaneously with terms. Furthermore, evaluation of mapvρ→F results
in a function closure value that contains a mapF expression, and the function closure itself
is, as usual, an ordinary λ-expression. This is also the reason that map and mapv are part
of the language, rather than just part of the metalanguage used to define the operational
semantics. They are not intended to be used in program definitions though, so we make the
following definition:

Definition (Core language). The core language consists of the terms of the source
language that are typeable not using map or mapv.

The operational cost semantics for the language is defined in Figure 5 and its depen-
dencies, which define a relation eθ ↓n v, where e is a (well-typed) expression, θ a value
environment, v a value, and n a non-negative integer. As with closure values, we write
a closure with expression e and value environment θ as eθ , and opt for this notation for
compactness (a more typically presentation might be θ � e ↓n v). The intended meaning is
that under value environment θ , the term e evaluates to the value v with cost n. A value
environment that needs to be spelled out will be written {x0 	→ v0, . . . , xn−1 	→ vn−1} or
more commonly {�x 	→ �v}. We write θ{y 	→ v} for extending a value environment θ by
binding the (possibly fresh) variable y to v. Value environments are part of the language,
so when we write eθ , the bindings are not immediately applied. However, we use a sub-
stitution notation {v/y} for defining the semantics of mapvt because this is defined in the
metalanguage as a metaoperation. Using explicit environments, rather than a metalanguage
notation for substitutions, adds a certain amount of syntactic complexity. The payoff is a
semantics that more closely reflects typical implementation.

Our approach to charging some amount of cost for each step of the evaluation, where
that amount may depend on the main term former, is standard. Recurrence extraction is
parametric in these choices. We observe that our environment-based semantics permits
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Denotational semantics for recurrence extraction 9

Fig. 5: The operational cost semantics for the source language. We only define evaluation
for closures eθ such that � eθ : σ for some σ , and hence just write eθ . The semantics for
fold depends on the semantics for map, which is given in Figure 6.

Fig. 6: The operational semantics for the source language map and mapv constructors.
Substitution of values is defined in Figure 7.

Fig. 7: Substitution of values for identifiers in values, v′{v/y}.
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10 N. Danner and D. R. Licata

(a)

(b)

(c)

Fig. 8: Using suspension types to control evaluation of recursive calls in fold-like
constructs.

us to charge even for looking up the value of an identifier, something that is difficult to
codify in a substitution-based semantics. Our particular choice to charge one unit of cost
for each unfolding of a fold, and no cost for any other form, is admittedly ad hoc, but
gives expected costs with a minimum of bookkeeping fuss, especially when it comes to
the semantic interpretations of the recurrences. Another common alternative is to define a
tick operation tick : α→ α which charges a unit of cost, as done by Danielsson (2008)
and others. This requires the user to annotate the code at the points for which cost should be
charged, which increases the load on the programmer, but allows her to be specific about
exactly what to count (e.g., only comparisons). It is straightforward to adapt our approach
to that setting.

The reason for suspending the recursive call in the semantics of fold is to ensure that
typical recursively defined functions that do not always evaluate all recursive calls still
have the expected cost. For example, consider membership testing in a binary search tree.
Typical ML code for such a function might look something like the code in Figure 8(a).
This function is linear in the height of t because the lazy evaluation of conditionals ensures
that at most one recursive call is evaluated. If we were to implement—member—with a—
fold—operator for trees that does not suspend the recursive call (so the step function would
have type int× bool× bool→ bool), as in Figure 8(b), then the recursive calls—r0—
and—r1—are evaluated at each step, leading to a cost that is linear in the size of t, rather
than the height. Our solution is to ensure that the recursive calls are delayed, and only eval-
uated when the corresponding branch of the conditional is evaluated, so the step function
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Denotational semantics for recurrence extraction 11

has type int× bool susp× bool susp→ bool, in which case the code looks something
like that of Figure 8(c). This issue does not come up when recursive definitions are allowed
only at function type, as is typical in call-by-value languages. However, in order to sim-
plify the construction of models, here we restrict recursive definitions to the use of foldδ

(i.e., to structural recursion only, rather than general recursion), which must be permitted
to have any result type.

Given the complexity of the language, it behooves us to verify type preservation. For
this cost is irrelevant, so we write eθ ↓ v to mean eθ ↓n v for some n. Remember that we
our notion of closure includes expressions of any type, so this theorem does not just state
type preservation for functions.

Theorem 1 (Type preservation). If � eθ : σ and eθ ↓ v, then � v : σ .

Proof See Appendix 1. �

3 The recurrence language

The recurrence language is defined in Figure 9. It is a standard system of predicative poly-
morphism with explicit type abstraction and application. Most of the time we will elide
type annotations from variable bindings, mentioning them only when demanded for clar-
ity. The types and terms corresponding to those of Figure 4 are given in Figure 10. This
is the language into which we will extract syntactic recurrences from the source language.
A syntactic recurrence is more-or-less a cost-annotated version of a source language pro-
gram. As we are interested in the value (denotational semantics) of the recurrences and not
in operational considerations, we think of the recurrence language in a more call-by-name
way (although, as we will see, the main mode of reasoning is with respect to an ordering,
rather than equality).

3.1 The cost type

The recurrence language has a cost type C. As we discuss in Section 4, we can think of
recurrence extraction as a monadic translation into the writer monad, where the “writing”
action is to increment the cost component. Thus it suffices to ensure that C is a monoid,
though in our examples of models, it is usually interpreted as a set with more structure
(e.g., the natural numbers adjoined with an “infinite” element).

3.2 The “missing” pieces from the source language

There are no suspension types, nor term constructors corresponding to let, map, or
mapv. We are primarily interested in the denotations of expressions in the recurrence
language, not in carefully accounting for the cost of evaluating them. Of course, it
is convenient to have the standard syntactic sugar let x0 = e0, . . . , xn−1 = en−1 in e for

https://doi.org/10.1017/S095679682200003X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200003X


12 N. Danner and D. R. Licata

Fig. 9: The recurrence language grammar and typing.

Fig. 10: Some standard types in the recurrence language corresponding to those in Figure 4.

e{e0, . . . , en−1/x0, . . . , xn−1}. Because of the way in which the size order is axiomatized,
this must be defined as a substitution, not as a β-expansion. Likewise, we still need a
construct that witnesses functoriality of shape functors, but it suffices to do so with a
metalanguage macro F[(x : ρ).e′, e] that is defined in Figure 12.
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Denotational semantics for recurrence extraction 13

3.3 Datatype constructor, destructor, and fold

The constructor, destructor, and fold terms are similar to those in the source language,
though here we use the more typical type for foldδ . Since type abstraction and application
are explicit in the recurrence language, it may feel a bit awkward that β-reduction for
types seems to change these constants; for example,(�α.· · · foldα list e′ of x.e · · ·) σ would
convert to · · · foldσ list e′ of x.e · · ·. The right way to think of this is that there is really a
single constant fold that maps inductive types to the corresponding operator—in effect, we
write foldδ for fold δ, and so the substitution of a type for a type variable does not change
the constant, but rather the argument to fold.

The choice as to whether to implement datatype-related constructs as term formers or
as constants and whether they should be polymorphic or not is mostly a matter of con-
venience. The choice here meshes better with the definitions of environment models we
use in Section 6, but using constants does little other than force us to insert some seman-
tic functions into some definitions. However, one place where this is not quite the whole
story is for foldδ , which one might be tempted to implement as a term constant of type
∀�αβ.(F[β]→ β)→ δ→ β, where �α= ftv(δ). The typing we have chosen is equivalent
with respect to any standard operational or denotational semantics. However, our deno-
tational semantics will be non-standard, and the choice turns out to matter in the model
construction of Section 7.4. There, we show how to identify type abstraction with size
abstraction in a precise sense. Were we to use the polymorphic type for foldδ , then even
when δ is monomorphic, foldδ would still have polymorphic type (for the result), and that
would force us to perform undesirable size abstraction on values of the monomorphic type.

3.4 The size order

The semantics of the recurrence language is described in terms of size orderings ≤τ that
is defined in Figure 11 for each type τ (although the rules only define a preorder, we will
continue to refer to it as an order). The syntactic recurrence extracted from a program
of type σ has the type C× 〈〈σ 〉〉. The intended interpretation of 〈〈σ 〉〉 is the set of sizes
of source language values of type σ . We expect to be able to compare sizes, and that is
the role of ≤σ . Although ≤C is more appropriately thought of as an ordering on costs,
general comments about ≤ apply equally to ≤C, so we describe it as a size ordering as
well to reduce verbosity.3 The relation ≤C just requires that C be a monoid (i.e., have
an associative operation with an identity). In particular, there are no axioms governing 1
needed to prove the bounding theorem; it is not even necessary to require that 0 �= 1 or
even 0≤C 1.

Let us gain some intuition behind the axioms for ≤σ . On the one hand, they are just
directed versions of the standard call-by-name equational calculus that one might expect.
In the proof of the Syntactic Bounding Theorem (Theorem 5), that is the role they play.
But there is more going on here than that. The intended interpretation of the axioms is that
the introduction-elimination round-trips that they describe provide a possibly less precise

3 Avanzini & Dal Lago (2017) perform cost analysis by representing execution cost directly and then measuring
the size of the result, so thinking of C as a set of sizes (of costs?) may not be unreasonable.
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Fig. 11: The size order relation that defines the semantics of the recurrence language. The
macro F[(y : ρ).e′, e] is defined in Figure 12.

Fig. 12: The macro F[ρ; y.e′, e].

description of size than what is started with. It may help to analogize with abstract inter-
pretation here: an introductory form serves as an abstraction, whereas an elimination form
serves as a concretization. In practice, the interpretation of products, sums, and arrows do
not perform any abstraction, and so in the models we present in Section 6, the correspond-
ing axioms are witnessed by equality (e.g., for (β×), �ei�= �πi (e0, e1)�). That is not the
case for datatypes and type quantification, so let us examine this in more detail.

Looking forward to definitions from Section 4, if σ is a source language type, then 〈〈σ 〉〉
is the potential type corresponding to σ and is intended to be interpreted as a set of sizes
for σ values. It happens that 〈〈σ list〉〉 = 〈〈σ 〉〉 list, so a σ list value vs= [v0, . . . , vn−1]
is extracted as a list of 〈〈σ 〉〉 values, each of which represents the size of one of the
vis. Hence, a great deal of information is preserved about the original source-language
program. But frequently the interpretation (the denotational semantics of the recurrence
language) abstracts away many of those details. For example, we might interpret 〈〈σ 〉〉 list
as N (the natural numbers), nil as 0, and cons as successor (with respect to its second
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argument), thereby yielding a semantics in which each list is interpreted as its length
(we define two such “constructor-counting” models in Sections 7.2 and 7.3). Bearing in
mind that 〈〈σ 〉〉 list=μt.F with F = unit+ 〈〈σ 〉〉 × t, the interpretation of F[〈〈σ 〉〉 list] must
be �unit�+(�〈〈σ 〉〉�×N). Let us assume that + and × are given their usual interpretations
(though as we will see in Section 7, that is often not sufficient). For brevity, we will write c
and d for c〈〈σ 〉〉 list and d〈〈σ 〉〉 list. Thus, c(y, n)= 1+ n represents the size of a source-language
list that is built using cσ list when applied to a head of size y (which is irrelevant) and a
tail of size n. The question is, what should the value of d(1+ n) be? It ought to somehow
describe all possible pairs that are mapped to 1+ n by c. Ignoring the possibility that it
is an element of �unit� (which seems obviously wrong), and assuming the N-component
ought to be n, no one pair (y′, n) ∈ �〈〈σ 〉〉�×N seems to do the job. However, if we assume
the existence of an maximum element ∞ of �〈〈σ 〉〉�, then (∞, n) is an upper bound on all
pairs (y′, n) such that c(y′, n)= 1+ n, and so it seem reasonable to set d(1+ n)= (∞, n).
But in this case, the round trip is not an identity because d(c(y, n))= (∞, n)≥ (y, n), and
so (βδ) and (βδfold) are not witnessed by equality.

Turning to type quantification, the standard interpretation of ∀α.σ is
∏

U∈U �σ �{α 	→U}
for a suitable index set U (in the setting of predicative polymorphism, this does not
pose any foundational difficulties), and the interpretation of a polymoprhic program is
the U-indexed tuple of all of its instances. Let λxs.e : α list→ ρ be a polymorphic
program in the source language. The recurrence extracted from it essentially has the
form �α.λxs.E : ∀α.α list→ C× 〈〈ρ〉〉. Let us consider a denotational semantics in which
�σ list�=N×N, where (k, n) describes a σ list value with maximum component size k
and length n (this is a variant of the semantics in Section 7.3). We are then in the con-
ceptually unfortunate situation that the analysis of this polymorphic recurrence depends
on its instances, which are defined in terms of not only the list length, but also the sizes
of the list values. Parametricity tells us that the list value sizes are irrelevant, but our
model fails to convey that. Instead, we really want to interpret the type of the recurrence
as N→ (�C�×�〈〈ρ〉〉�), where the domain corresponds to list length. This is a non-standard
interpretation of quantified types, and so the interpretations of quantifier introduction and
elimination will also be non-standard. In our approach to solving this problem, those inter-
pretations in turn depend on the existence of a Galois connection between N and N×N, for
example mapping the length n (quantified type) to (∞, n) (an upper bound on instances),
and we might map (k, n) (instance type) to n. The round trip for type quantification corre-
sponds to (k, n) 	→ n 	→ (∞, n), and hence (β∀) is not witnessed by equality (we deploy the
usual conjugation with these two functions in order to propogate the inequality to function
types while respecting contravariance). We describe an instance of this sort of model con-
struction in Section 7.4, although there we are not able to eliminate the U-indexed product,
and so the type of the recurrence is interpreted by

∏
U∈U N→ (�C�× �〈〈ρ〉〉�).

4 Recurrence extraction

A challenge in defining recurrence extraction is that computing only evaluation cost is
insufficient for enabling compositionality because the cost of f (g(x)) depends on the size
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of g(x) as well as its cost. To drive this home, consider a typical higher order function
such as

map = fn (f, xs) => fold (fn (x, r) => f x :: r) []

The cost of map(f , xs) depends on the cost of evaluating f on the elements of xs, and hence
(indirectly) on the sizes of the elements of xs. And since map(f , xs) might itself be an
argument to another function (e.g., another—map—), we also need to predict the sizes of
the elements of map(f , xs), which depends on the size of the output of f . Thus, to analyze
—map—, we should be given a recurrence for the cost and size of f (x) in terms of the size
of x, from which we produce a recurrence that gives the cost and size of map(f , xs) in terms
of the size of xs. We call the size of the value of an expression that expression’s potential
because the size of the value determines what future (potential) uses of that value will cost
(use cost would be another reasonable term for potential).

Motivated by this discussion, we define translations 〈〈·〉〉 from source language types to
complexity types and ‖ · ‖ from source language terms to recurrence language terms so that
if e : σ , then ‖e‖ : C× 〈〈σ 〉〉. In the recurrence language, we call an expression of type 〈〈σ 〉〉 a
potential and an expression of type C× 〈〈τ 〉〉 a complexity. We abbreviate C× 〈〈τ 〉〉 by ‖τ‖.
The first component of ‖e‖ is intended to be an upper bound on the cost of evaluating e, and
the second component of ‖e‖ is intended to be an upper bound on the potential of e. The
weakness of the size order axioms only allows us to conclude “upper bound” syntactically
(hence the definition of the bounding relations in Figure 16), though one can define models
of the recurrence language in which the interpretations are exact. The potential of a type-
level 0 expression is a measure of the size of that value to which it evaluates, because that
is how the value contributes to the cost of future computations. And as we just described,
the potential of a type-ρ→ σ function f is itself a function from potentials of type ρ (upper
bounds on sizes of arguments x of f ) to complexities of type σ (an upper bound on the cost
of evaluating f (x) and the size of the result).

Returning to map : (ρ→ σ )× ρ list→ σ list, its potential should describe what
future uses of map will cost, in terms of the potentials of its arguments. In this call-by-value
setting, the arguments will already have been evaluated, so their costs do not play into
the potential of map (the recurrence that is extracted from an application expression will
take those costs into account). The above discussion suggests that 〈〈(ρ→ σ )× ρ list→
σ list〉〉 ought to be (〈〈ρ〉〉→ C× σ )× 〈〈ρ list〉〉→ C× 〈〈σ list〉〉. For the argument
function, we are provided a recurrence that maps ρ-potentials to σ -complexities. For the
argument list, we are provided a (ρ list)-potential. Using these, the potential of map must
give the cost for doing the whole map and give a (σ list)-potential for the value. This
illustrates how the potential of a higher order function is itself a higher order function.

Since 〈〈ρ〉〉 has as much “information” as ρ, syntactic recurrence extraction does not
abstract values as sizes (e.g., we do not replace a list by its length). This permits us to
prove a general bounding theorem independent of the particular abstraction (i.e., seman-
tics) that a client may wish to use. Because of this, the complexity translation has a succinct
description. For any monoid (C,+, 0), the writer monad (Wadler, 1992) C×− is a monad
with

return(E) := (0, E)
E1 �= E2 := (π0 E1 + π0 (E2(π1 E1)), π1 (E2(π2 E1)))
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Fig. 13: The complexity and potential translation of types. Remember that although we
have a grammar for structure functors F, they are actually just a subgrammar of the small
types, so we do not require a separate translation function for them.

Fig. 14: Notation related to recurrence language expressions and recurrence extraction.

The monad laws follow from the monoid laws for C. Thinking of C as costs, these say
that the cost of return(e) is zero, and that the cost of bind is the sum of the cost of E1

and the cost of E2 on the potential of E1. The complexity translation is then a call-by-
value monadic translation from the source language into the writer monad in the recurrence
language, where source expressions that cost a step have the “effect” of incrementing the
cost component, using the monad operation

incr(E : C) : C× unit := (E, ( )).

We write out the translation of types in Figure 13 and the recurrence extraction function
explicitly in Figure 15. There is a certain amount of notation involved, which we summa-
rize in Figure 14. Recurrence extraction is defined only for typeable terms and only for
terms in the core language (Definition 2).

For an ordinary function type σ0 → σ1, the translation 〈〈σ0〉〉→ ‖σ1‖, i.e., 〈〈σ0〉〉→
C× 〈〈σ1〉〉 includes a cost component in the codomain. In contrast, a polymorphic function
type ∀α.τ is translated to ∀α.〈〈τ 〉〉, which does not include a cost component. The reason
for this discrepancy is that polymorphic functions in the source language are introduced
by let x= e′ in e, which evaluates e′ to a value before binding x to a polymorphic version
of that value. Thus, the elements of a polymorphic function type incur no immediate cost
when they are instantiated (at an occurrence of a variable).

Our first order of business is to verify that recurrences extracted from terms in the source
language are themselves typeable in the recurrence language. For a source-language con-
text � = x0 : τ0, . . . , xn−1 : τn−1, write 〈〈�〉〉 for x0 : 〈〈τ0〉〉, . . . , xn−1 : 〈〈τn−1〉〉. For both the
source and recurrence languages, we do not explicitly notate the free type variables of a
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Fig. 15: The recurrence extraction function on source language terms. On the right-hand
sides, (c, p)= ‖e‖ and (ci, pi)= ‖ei‖ (note that ‖e‖ is always a pair).

typing derivation. However, the intended invariant of the translation is that a source lan-
guage derivation � � e : τ with free type variables �α is translated to a recurrence language
derivation 〈〈�〉〉 � ‖e‖ : ‖σ‖ that also has free type variables �α.

Proposition 1 (Typeability of extracted recurrences). If � � e : σ is in the core language,
then 〈〈�〉〉 � ‖e‖ : ‖σ‖.

Proof See Appendix 2. �

5 The bounding relation and the syntactic bounding theorem

We now turn to the bounding relation, which is a logical relation that is the main technical
tool that relates source programs to recurrences. In this section, we will refer to source and
recurrence language programs extensively, and so we will adopt the convention that E,
E′, etc. are metavariables for recurrence language terms. The bounding relation eθ �σ E is
defined in Figure 16 and is intended to mean that Ec is a bound on the evaluation cost of eθ
and Ep is a bound on the value to which eθ evaluates. Bounding of values is defined by
an auxiliary relation v �val

σ E. This latter relation morally should be defined by induction
on σ , declaring that a value is bounded by a potential if its components are bounded by cor-
responding computations on that potential. Of course, function values are defined in terms
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Fig. 16: The type-indexed bounding relations.

of arbitrary expressions, and so �val
ρ→σ must be defined in terms of �σ . The standard way

to do so for a logical relation is to declare that λx.e is bounded as a value by E if whenever
a value v′ is bounded as a value by E′, e{v′/x} is bounded as an expression by E E′, and
we adapt that same idea to our setting here. A naive approach to defining �val

δ for δ =μt.F
would have us define v �val

δ E in a way that depends on �val
F[δ], which is not a smaller type.

If we did not permit arrows in shape functors, we could get around this by counting δ-
constructors in v. Instead we must take a more general approach. In Figure 17, we define
by induction on the structure function F the relations �F,ρ and �val

F,ρ that correspond to
bounding at type F[ρ]. We then define �val

μt.F in terms of �val
F,μt.F .

The source language permits evaluation of closures with open type (in particular, when
evaluating a let-binding), so the bounding relation is phrased in terms of open types.
Value bounding at open type is defined in terms of all of its instances by closed monomor-
phic types—we do not enforce any parametricity properties here. Because source language
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Fig. 17: The shape-indexed bounding relations. When writing v �val
F,ρ E, ftv(F)⊆ {t} and ρ

is closed.

type contexts assign type schemes to identifiers, the standard approach of extending a logi-
cal relation on closed terms to open terms by substituting related values requires us to also
define a notion of value bounding at type schemes, and we again take this to be in terms of
instances at closed types.

We present the relations as a formal derivation system of an inductive definition because
the proofs of Lemmas 15 and 16 (technical lemmas needed for the proof of Theorem 5,
the bounding theorem) rely on a well-founded notion of subderivation. A least relation
closed under these rules (which contain a negative occurrence of the relation being defined
in the → rule) exists because the type subscript gets smaller in all bounding premises
(� or �val , not ≤, which is the previously defined size relation on recurrence lan-
guage terms). The premise types are smaller for an ordering that considers all substitution
instances τ {ρ/α} of τ with a closed monomorphic type ρ to be smaller than the polymor-
phic type ∀α.τ or a type with a free variable α.τ ; this ordering is sufficient because of the
restriction to predicative polymorphism. Although the derivations are infinitary as a result
of the clauses corresponding to arrow types and shapes, it is straightforward to assign ordi-
nal ranks to derivations so that the rank of any derivation is strictly larger than the rank of
any of its immediate subderivations, justifying such a proof by induction on derivations.

The (value) bounding relations in Figures 16 and 17 are really defined on typing
derivations. That is, we really define the relations

( � eθ : σ )�σ ( � E : ‖σ‖)
( � v : σ )�val

σ ( � E : 〈〈σ 〉〉)
( � eθ : F[ρ])�F,ρ ( � E : ‖F[ρ]‖)
( � v : F[ρ])�val

F,ρ ( � E : 〈〈F[ρ]〉〉)
The following lemma acts as an inversion theorem for the bounding relation at inductive
types.

Lemma 2.

1. If eθ �F[ρ] E, then eθ �F,ρ E.
2. If eθ �val

F[ρ] E, then eθ �val
F,ρ E.

Proof (2) implies (1), so it suffices to prove the latter, which is done by a straightforward
induction on shape functors. �
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The bounding relations on closures are extended to (open) terms in the standard way for
logical relations.

Definition (Bounding relation).

1. Let θ be a �-environment and 
 a 〈〈�〉〉-environment. We write θ �val
� 
 to mean

that for all x ∈ dom �, θ (x)�val
�(x) 
(x) (note that �(x) is a type scheme, so this

relation is value bounding at a type scheme).
2. We write (� � e : σ )�σ (〈〈�〉〉 � E : ‖σ‖) to mean that for all θ �val

� 
, eθ �σ E{
}.

The syntactic bounding theorem relies on various weakening and substitution properties
that we collect here.

Lemma 3 (Weakening).

1. If e� E and E≤ E′, then e� E′.
2. If v �val E and E≤ E′, then v �val E′.

Lemma 4. c+ Ec ≤ (c+c E)c and Ep ≤ (c+c E)p. In particular, if eθ ↓n v, n≤ c+ Ec, and
v �val Ep, then eθ � c+c E.

The main theorem is analogous to the fundamental theorem for any logical relation:
every source language program is related (bounded by) the syntactic recurrence extracted
from it. The proof is somewhat technically involved, but at its core follows the reasoning
typical in the proof of any such fundamental theorem, so we delegate it to the Appendix.

Theorem 5 (Syntactic bounding theorem). If e is in the core language and � � e : σ , then
e�σ ‖e‖.

Proof See Appendix 3. �

6 Environment models

The syntactic bounding theorem tells us that the syntactic recurrences extracted from
source programs provide bounds on the evaluation cost and potential of those programs.
However, the syntactic recurrences maintain sufficient information about the source pro-
gram to describe cost and potential in terms of almost any notion of size. In particular,
a syntactic recurrence extracted from a program over an inductive type maintains all
the structure of the values of that type—e.g., a syntactic recurrence over a list program
describes the bounds in terms of lists again. It is by defining a denotational semantics for
the recurrence language that we obtain a “traditional” recurrence because that permits us
to abstract inductive values to some notion of size. We might define a semantics in which
a σ tree type is interpreted by the natural numbers N, with the constructor interpreted in
terms of either the maximum function (so a tree is interpreted by its height) or the sum
function (so a tree is interpreted by its size). So a semantic value in unit+ σ ×N×N, the
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one-step unfolding of the interpretation of the tree type, tells us the sizes of the data sup-
plied to the tree constructor. The constructor tells us the size of the tree constructed from
such data, and the destructor tells us about the kind of data that can be used to construct a
tree of a given size. The denotation of the recurrence extracted from a source program f is
then a function T such that T(n) is (a bound on) the cost and size of the result of f (x) when x
has size at most n. In other words, the end goal is a “semantic” recurrence obtained by com-
posing a denotation function with the extraction function. Soundness of the denotational
semantics with respect to the size ordering in conjunction with the syntactic bounding the-
orem ensures that the semantic recurrence also provides bounds on the cost and potential
of the source program in terms of the potentials of its arguments.

To that end, we need to define an appropriate notion of model for the recurrence lan-
guage. We will define environment (Henkin) models following (Mitchell, 1996, Ch. 9.2.4),
which in turn follows Bruce et al. (1990), specializing the definition to the setting of the
recurrence language. Since the recurrence language is characterized by the size order,
we require that types be interpreted by preorders, and what would usually be equations
describing various semantic functions will be inequalities. This leads to a slight challenge
in extending an interpretation of inductive-type constructors and destructors to a canon-
ical interpretation of foldδ because the interpretation of δ is no longer an initial algebra.
However, we shall see that it is sufficient to have a initiality condition that is weak (requires
existence, but not uniqueness) and lax (is an inequality, not an equality), and that we can
arrange.

Applicative structures (and hence premodels and models) are defined in terms of pre-
ordered sets. In such a setting, it is natural to restrict ourselves to functions that respect
the pre-order structure—i.e., monotone functions. So in the remaining sections, when A
and B are preordered sets, we write A→ B for the set of monotone functions from A to B,
and A ⇀ B for the set of partial monotone functions from A to B. A→ B is preordered
pointwise, and idA : A→ A is the identity function (we drop the subscript when clear from
context). We also frequently write λλa. · · · for the semantic function that takes a to · · · .

6.1 Models of the recurrence language

We start by defining the notions of type frame and applicative structure for the recurrence
language.

Definition. A type frame is specified by the following data:

• A set Usm of small semantic types and a set Ulg of large semantic types with Usm ⊆
Ulg;

• Distinguished semantic types UC, Uunit ∈Usm;
• Functions ×: Usm ×Usm →Usm, +: Usm ×Usm →Usm, →: Usm ×Usm →Usm, and

μ : (Usm →Usm) ⇀ Usm; and
• A function ∀ : (Usm →Ulg) ⇀ Ulg.

Let TyVar be the set of type variables and let η : TyVar→Usm. The denotation of τ

with respect to η, �τ�η, is given in Figure 18.
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Fig. 18: The denotation (partial) function of types and type schemes into a type frame.

Definition. A type frame is a type model if for all F and η, λλV .�F�η{t 	→ V} ∈ dom μ and
for all τ and all η, λλU .�τ�η{α 	→U} ∈ dom ∀ (and hence �τ�η is defined for all τ and η).

Definition. An applicative structure is specified by the following data:

• A type model (Usm, Ulg).
• For each U ∈Ulg, a preordered set (DU ,≤U ).
• For each � ∈ dom μ and U , V ∈Usm, a function �U ,V : (DU →DV )→ (D� U →

D� V ).
• Distinguished elements 0, 1 ∈DUC and an associative function + : DUC →DUC

such that 0 is a right- and left identity for +.
• A distinguished element ∗ ∈DUunit

• For each U , V ∈Usm, functions

(DU →DV )
AbsU ,V−−−−⇀ DU→V

AppU ,V−−−−→ (DU →DV )

such that App ◦Abs ≥ id. Note that Abs is a partial function.
• For each U0, U1 ∈Usm, functions

DU0 ×DU1
PairU0,U1−−−−−→DU0×U1

ProjiU0,U1−−−−−→DUi

such that Proji(Pair(a0, a1))≥ ai.
• For each U0, U1, V ∈Usm, functions

DUi
InjiU0,U1−−−−→DU0+U1

CaseU0,U1,V−−−−−−→ (DU0 → V )× (DU1 → V )→DV

such that (Case ◦ Inji) a (f0, f1)≥ fi a. We often write Case(a, f0, f1) for Case a (f0, f1).
• For each � ∈ dom μ, functions

D�(μ �) C�−→Dμ � D�−→D�(μ �)

such that D ◦C ≥ id.
• For each � ∈ dom μ and U ∈Usm, functions Fold�,U : (D� U →DU )→ (Dμ �→

DU ) such that (Fold�,U f ) ◦C� ≥ f ◦ (�μ �,U (Fold�,U f )).
• For each � ∈ dom ∀, functions∏

U∈Usm

D�(U) TyAbs�−−−−⇀ D∀(�) TyApp�−−−−→
∏

U∈Usm

D�(U)

such that TyApp ◦ TyAbs)≥ id. Note that TyAbs is a partial function.
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Fig. 19: The denotation (partial) function into an applicative structure. For constructors
and destructors, assume δ=μt.F and fv(δ)= {α0, . . . , αn−1}, and define η∗ = η{�α 	→ �U}.

Remember that when we write, e.g., DU →DV , we mean the monotone functions from DU

to DV , and hence all of the semantic functions that make up the data of an applicative
structure are monotone.

We write U= (Usm, Ulg, {DU }U∈Ulg ) for a typical applicative structure, or just U=
{DU }U∈Ulg when Ulg is clear from context. For a context � define tyvar(�)= {α |
α occurs in ftv(�(x)) for some x}. Define a �-environment to be a map η such that

• η(α) ∈Usm for α ∈ tyvar(�); and
• η(x) ∈D��(x)�η for x ∈ dom �.

For an applicative structure and environment η, define a partial denotation function
�� � e : σ �η as in Figure 19. The only way in which �·�· may fail to be total is if the
arguments to Abs or TyAbs are not in the corresponding domains (because we start with a
type model, we know that μ and ∀ are only applied to functions in their domains).

Definition. Let U be an applicative structure.

1. U is a premodel if

– Whenever � � e : τ and η is a �-environment, �� � e : τ�η is defined and an
element of D�τ�η; and

– Whenever �, y : ρ � e′ : σ and � � e : F[ρ] and η is a �-environment,

�F[(y : ρ).e′, e]�η≤�σ�η (λλV .�F�η{t 	→ V})�ρ�η,�σ�η(λλa.�e′�η{y 	→ a})(�e�η).

2. U is a model if U is a premodel and whenever � � e≤τ e′, and η is a �-
environment, �� � e : σ �η≤�τ�η �� � e′ : σ �η.
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The indirection of interpreting syntactic types by semantic types, and then interpreting
terms of a given syntactic type as elements of a domain associated to the corresponding
semantic type is necessary, especially in our setting of nonstandard models. This makes is
much easier (seemingly, possible) to define things like the μ operator. Without the indirec-
tion, we would have to define μ on (functions on) a collection of domains, some of which
represent syntactic types. That ends up being very difficult to do. For example, we might
have to first define a notion of polynomial function on the semantic domains in order to
define the domain of μ, and then somehow identify each semantic polynomial function
with a structure functor. But doing so gets us into problems with unique representation;
e.g., there may be multiple structure functors corresponding to the same semantic poly-
nomial. And with nonstandard models, we seem to have even more troubles because we
end up trying to define the interpretations of inductive types simultaneously with the μ

function. But first interpreting the syntactic types by semantic types gives us a way around
these problems because (if we wish) we can define the semantic types to be closely tied
to the syntactic types. That is exactly what we do for the standard type frame, so we can
essentially define μ syntactically, and then choose a domain corresponding to μt.F (which
is a semantic type as well as a syntactic one) after having defined μ.

Lemma 6. Let U be a premodel. Then:

1. �τ {σ/α}�η= �τ�η{α 	→ �σ �η}. If α /∈ ftv(τ ) then for all U, �τ�η= �τ�η{α 	→U}
and for all term variables x and all a, �τ�η= �τ�η{x 	→ a}.

2. �e{e′/x}�η= �e�η{x 	→ �e′�η}. If x /∈ fv(e), then for all a, �e�η= �e�η{x 	→ a}.
3. If a≤ a′, then �e�η{x 	→ a} ≤ �e�η{x 	→ a′}; in other words, λλa.�e�η{x 	→ a} is

monotone.

Proposition 2 (Environment model soundness). If U is an premodel, then U is a model.

Proof By induction on the derivation of � � e≤τ e′. �

One might hope that a model of the fragment of the recurrence language that omits foldδ

can be extended to one that does, but in our setting this does not quite hold. Since we only
have directed versions of the usual equalities, initial algebras for structure functors may
not exist. And even if they do, they are not necessarily what we want. For clarity, in this
discussion, we will write syntactic types for semantic types. The point behind different
semantics is to abstract inductive values to some notion of size, and when this abstraction
is non-trivial, Dμt.F and DF[μt.F] are probably not isomorphic. Instead of the usual initial
algebra for interpreting μt.F, we typically want an algebra CF : DF[μt.F] →Dμt.F such that
for any other algebra s : DF[σ ] →Dσ , there is a function FoldF,σ s that makes the diagram

DF[μt.F] Dμt.F

≤

DF[σ ] Dσ

MapF (FoldF s)

CF

FoldF s

s
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commute, where MapF is a semantic function that corresponds to the F[·, ·] macro.
Relative to the usual definition of initial algebra, this requirement is weak, in that we ask
only for existence of a Fold function making the diagram commute (β reduction) and not
the uniqueness of Fold (η/induction), and it is lax, in that we ask that β-reduction holds
only as an inequality, rather than an equality.

Nonetheless, under assumptions that turn out to be relatively easy to ensure, we can
define Fold�,U . Given a subset X ⊆ A of a preordered set A, we say that a ∈ A is a least
upper bound of X , written a=∨

X , if for all x ∈ X , x≤ a, and if b ∈ A satisfies the con-
dition that for all x ∈ X , x≤ b, then a≤ b. When A is preordered,

∨
X may not exist, and

when it does, it need not be unique. If A is a partial order (i.e., a≤ b≤ a implies that
a= b), then

∨
X is unique when it exists, and we say that A is a complete upper semi-

lattice if A is a partial order and
∨

X exists for every X ⊆ A. Though this seems like a very
strong condition, in practice it is easy to ensure.

In a model in which every DU is a complete upper semi-lattice, we would like to define

Fold�,U s x=
∨
{s(�μ �,U (Fold�,U s) z

) | z ∈D�(μ �), C� z≤ x}. (std-fold)

A priori, this definition may not be well founded, but in fact it is, as shown in the next
proposition.

Proposition 3. Suppose that U= {DU }U∈Ulg is a model of the fragment of the recurrence
language that omits foldδ and each DU is a complete upper semi-lattice, and suppose that
Fold is defined by (std-fold). Then:

1. For all s, Fold�,U s is total and monotone.
2. Fold�,U is total and monotone.

Proof

1. Fix s and consider

Q= λλg.λλx.
∨
{s(�μ �,U g z

) | z ∈D�(μ �), C� z≤ x}.
Q : (Dμ �→DU )→ (Dμ �→DU ) and it is easy to see that Q is monotone. Since
DU is a complete upper semi-lattice, Dμ �→DU is a complete partial order. So Q
has a least fixed point; that is, Fold�,U s.4 Monotonicity of Fold�,U s is immediate
from its definition.

2. Totality follows from (1) and monotonicity from the fact that the function that maps
a monotone function to its least fixed point is itself monotone.

�

The proof of Proposition 3, and hence the interpretation of foldδ , may seem a bit heavy-
handed, making use of general least fixed point theorems and even iterating into the
transfinite. As we noted earlier, we are in a setting in which we do not have (and do not

4 The least fixed point is obtained by the standard iteration of Q starting at the bottom element. Because we
only have that Q is monotone (not necessarily continuous on chains), the iteration may have to be extended
transfinitely—see Davey & Priestley (1999, Exercise 8.19).
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want) initial algebras, but must nonetheless show an initiality-like property of a given alge-
bra. Accordingly, we would expect to use technology at least as strong as that needed for
typical initial algebra existence theorems. The canonical such theorem (e.g., as described
by Aczel, 1988, Thm. 7.6) verifies that the least fixed point of a set-continuous operator is
an initial algebra, and the verification consists of constructing the equivalent of Fold s by
induction on the (ordinal-indexed) construction of the least fixed point.

The reader may have noticed that an alternative possible definition for Fold is

Fold s x= s(�(Fold s)(D x))

and Proposition 3 would still hold. This fact witnesses that the initiality condition for
C� : D�(μ �) →Dμ � is weak, in that functions to other algebras are not unique. In practice,
this alternative definition yields far worse bounds for extracted recurrences, because we
end up defining D� x=∨{z |C�(z)≤ x} and so Fold s x= s(�(Fold s)(

∨{z |C�(z)≤ x})).
Monotonicity of f only allows us to conclude that f (

∨
X )≥∨{f (x) | x ∈ X }, but this

putative definition for Fold s exposes a case in which this inequality is strict.

6.2 The standard type frame

Our last step in our general discussion of models is to define the type frame upon which
all of our examples will be based. It gives us enough data to provide a standard definition
of the functions �U ,V , which in turn lets us use (std-fold) to define Fold and so for most
of our examples, it will suffice to define C� (because we will set D� =

∨{z |C�(z)≤ x}).
Our examples are all based on variations of the standard type frame, which is defined as
follows:

• Usm is the set of closed types and Ulg the set of closed type schemes of the recurrence
language.

• →, ×, and + are the standard type constructors; e.g., σ0 + σ1 = σ0 + σ1.
• dom μ= {λλσ .F[σ ] | fv(F)⊆ {t}} and μ(λλσ .F[σ ])=μt.F (we call a structure func-

tor F with fv(F)⊆ {t} closed).
• dom ∀= {λλσ .τ {σ/α} | fv(τ )= {α}} and ∀(λλσ .τ {σ/α})=∀α.τ .

It is straightforward to show that if λλσ .F[σ ]= λλσ .F′[σ ], then F = F′, and if
λλσ .τ {σ/α} = λλσ .τ ′{σ/α}, then τ = τ ′, so μ and ∀ are well defined. It should be clear and
occasionally helpful to observe that for any τ and environment η= {α0 	→ σ0, . . . , αn−1 	→
σn−1}, �τ�η= τ {�σ/�α}. For models based on the standard type frame and any closed
structure functor F, we will usually write F in place of λλσ .F[σ ] in subscripts for
readability.

Proposition 4. The standard type frame is a type model.

For any applicative structure based on (an extension of) the standard type frame, define
Fρ,σ : (Dρ →Dσ )→ (DF[ρ] →DF[σ ]) for each closed structure functor F and closed ρ

and σ by
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tρ,σ g x= g x

(σ0)ρ,σ g x= x

(F0 + F1)ρ,σ g x=Case(x, λλy.Inj0((F0)ρ,σ g y), λλy.Inj1((F1)ρ,σ g y))

(F0 × F1)ρ,σ g x= Pair((F0)ρ,σ g (Proj0x), (F1)ρ,σ g (Proj1x)),

(σ0 → F)ρ,σ g x= λλy.Fρ,σ g (x y)

Lemma 7. If U is an applicative structure based on an extension of the standard type
frame that is a model for the fragment of the recurrence language that omits foldδ ,
�, y : ρ � e′ : σ , � � e : F[ρ], and η is a �-environment, then

�F[(ρ : y).e′, e]�η= (�F�η)�ρ�η,�σ�η (λλa.�e′�η{y 	→ a}) (�e�η).

Proof By induction on F. �

Combining Proposition 3 with Lemma 7, we conclude that to define a model of the
recurrence language, it suffices to define an extension of the standard type frame and the
following applicative structure data:

• The sets Dτ , along with an argument that Dτ is a complete upper semi-lattice;
• The semantic functions for arrow, product, and sum types;
• CF for each structure functor F.

From this data, we can define DF(x)=∨{z |CF ≤ x}, Fρ,σ as just given, and FoldF,σ

by (std-fold). Of course, there are models that are not constructed this way; Section 7.5
gives an example that is useful for extracting recurrences for lower bounds.

6.3 Syntactic sugar

We now introduce some syntactic sugar that will make our discussion of recurrences
somewhat more pleasant. To simplify the discussion, we restrict the details to the source
language type σ tree and its recurrence language potential σ tree, but we will use anal-
ogous notation for other datatypes such as nat and α list in our examples. Many of our
source-language functions are really structural folds over some standard datatype—that is,
the step function is a case expression where the argument for each branch is really the
argument to one of the datatype constructors. Accordingly, we introduce notation for such
fold expressions: for y /∈ fv(eemp)∪ fv(enode),

foldσ tree e of emp⇒ eemp | node⇒ (x, r0, r1).enode

is syntactic sugar for

foldσ tree e of w.case w of y.eemp; y.enode{π0 y, π1 y, π2 y/x, r0, r1}.
We introduce a similar notation in the recurrence language:

foldσ tree e of
{
emp⇒ eemp | node⇒ (x, r0, r1).enode

}
is syntactic sugar for

foldσ tree e of (w : Fσ tree[ρ]).(case w of y.eemp; y.enode{π0 y, π1 y, π2 y/x, r0, r1})
where w and y are fresh variables.
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It would be nice to establish an identity of the form ‖foldσ tree · · · ‖ = foldσ tree · · · ,
but the size-order axioms, which give us only inequalities, are too weak. However, the
models that we will consider validate many equations, so we can set out a nice relationship.
In the following proposition, we say “in the semantics, e= e′” to mean that for any η,
�e�η= �e′�η:

Proposition 5. Suppose that we have a model such that

• In the semantics: if ‖e′‖c = 0, then ‖e{e′/x}‖ = ‖e‖{‖e′‖p/x}; and
• In the semantics: c+c case e of {x.ei}i=0,1 = case e of {x.c+c ei}i=0,1.

If � � foldσ tree e of emp⇒ eemp | node⇒ (x, r0, r1).enode : ρ, then in the semantics,

‖foldσ tree e of emp⇒ eemp | node⇒ (x, r0, r1).enode‖ =
c+c foldσ tree p of

{
emp⇒ 1+c ‖Eemp‖ | node⇒ (x, r0, r1).1+c ‖Enode‖

}
where (c, p)= ‖e‖.

While the models that we discuss in subsequent sections satisfy the hypotheses of
Proposition 5, they are not necessarily satisfied in an arbitrary model. That requires
additional axioms that correspond roughly to η axioms.

7 Examples

7.1 The standard model

For the standard model, we first extend the standard type frame by including the con-
stant ⊥ in Usm. A semantic type (scheme) is proper if it has no occurrences of ⊥. The
proper semantic types (type schemes) correspond exactly to the closed syntactic types
(type schemes). In the definitions of μ and ∀, we take F and τ to be proper. We define the
sets Aσ by induction on σ as follows:5

• AC =N, the natural numbers.
• A⊥ = ∅.
• Aunit = {∗}, some one-element set.
• Aσ0→σ1 = (Aσ1 )Aσ0 , the set of functions from Aσ0 to Aσ1 .
• Aσ0×σ1 = Aσ0 × Aσ1 , where × is the standard set-theoretic product.
• Aσ0+σ1 = Aσ0 � Aσ1 , where � is the standard set-theoretic disjoint union.
• Aμt.F =⋃

i A(λλV .�F�{t 	→V})i⊥.
• A∀α.τ =∏

σ∈Usm
Aτ {σ/α}.

Define a≤Aσ b iff a= b, and let the semantic functions for arrows, products, and sums be
the identity functions. The definitions of CF , DF , and FoldF,σ are based on the standard

5 The collection of sets {Aσ }σ∈Usm must be contained in some set that contains ∅ and a one-element set and is
closed under disjoint unions, products, function spaces, unions of chains, and products indexed by Usm. Vω1

in the standard set-theoretic hierarchy suffices.
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initial-algebra semantics. Note that we cannot use (std-fold) because the Aσ are not com-
plete upper semi-lattices, and hence the hypotheses of Proposition 3 do not hold, and hence
(βδfold) must be verified directly.

At first blush, this model is not particularly interesting. There is no abstraction of values
to sizes and the “order” on costs is the identity, so the recurrences extracted from source
language programs describe the exact cost of those programs in terms of the argument
values. However, this is a standard model of (predicative) polymorphism, and so we can
hope that parametricity may have some interesting consequences. Free theorems (Wadler,
1989) have been used to obtain relative cost information, and we discuss this further in
Section 9. Here, we apply parametricity to the recurrence language and sketch the argu-
ment that if g : α list→ α list, then the cost of g(xs) depends only on the length of xs
(the same can be said for the length of g(xs), but this follows from parametricity applied to
the source language). For any ρ, let us define Tρ(xs)= ((�‖g‖� 〈〈ρ〉〉)p(xs))c, the exact cost
of evaluating g(xs) (since ‖ · ‖ is a monadic translation and the interpretation of inductive
types is the standard one, syntactic values of list type in the source language are isomor-
phic to the semantic values in the model). The goal is to show that if xs : ρ list and
ys : σ list are of the same length, then Tρ(xs)= Tσ (ys). To do so, we apply parametricity
to λλρ.λλxs.Tρ(xs) ∈ A∀ρ.ρ list→C. We take the relational interpretation of C to be equality (so
the cost constants 0 and + preserve the relation). Expanding the definition of parametric-
ity, this means that for any ρ and σ and relation R⊆ A〈〈ρ〉〉 × A〈〈σ 〉〉, for any xs ∈ A〈〈ρ〉〉 list and
ys ∈ A〈〈σ 〉〉 list, if R list⊆ A〈〈ρ〉〉 list × A〈〈σ 〉〉 list holds for xs and ys, then the relational interpre-
tation of C holds for Tρ(xs) and Tσ (ys). Since the relational interpretation of the cost type
is equality, this would give the result, so it suffices to show that there is an R such that
(R list)(xs, ys) holds whenever xs and ys have the same length. However, the standard rela-
tional lifting R list holds whenever xs and ys have the same length and xsi is related to ysi

by R, so taking R to be the total relation achieves this. We conclude that if xs and ys have
the same length, then the cost of g(xs) and g(ys) is the same.

7.2 Constructor size and height

We now describe a model in which a value v of inductive type δ is interpreted either by
the number of δ constructors in v (constructor size) or by the maximum nesting depth of
δ-constructors in v (constructor height), so that it reflects common size abstractions such
as list length, tree size, and tree height. For example, in this model, the interpretation of the
recurrence extracted from a function with domain σ list describes the cost in terms of the
length of the argument list. For concreteness we will define the constructor size model. For
the interpretation of the types, we will need two versions of the natural numbers: N∞0 =
{0, 1, . . . ,∞} for costs, and N∞1 = {1, 2, . . . ,∞} for sizes of inductive values, which must
be at least 1 because every value contains at least one constructor. N∞i is ordered by x≤N∞i
y if y=∞ or x≤N y. The presence of ∞ may be perplexing, since all programs in the
source language terminate. However, it is not always possible to give a finite upper bound
on cost or potential in terms of the potential of the argument, because the notion of potential
used in this model may not identify all possible sources of recursive calls. For example,
consider the function sumtree defined in Figure 22 that sums the nodes of a nat tree.
The cost and size of sumtree t depend on the size of t and the sizes of its labels, whereas
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in this model, the potential of t only tells us the former. Since sumtree is definable in our
source language, its recurrence can be extracted, and hence must have a meaning in this
model; the only sensible interpretation is one that maps every tree size to the trivial upper
bound of∞ for both cost and potential.

We start by extending the standard type frame with additional small types N0, N1 ∈Usm.
Then we define the sets V τ , observing that each V τ is a complete upper semi-lattice. This
allows us to construct a model by just defining CF . The sets V τ are defined as follows:

• V Ni =N∞i .
• VC =N∞0 with the standard interpretations for 0 and +, where x+∞=∞+ x=
∞.

• Vunit = {∗}.
• Vσ0→σ1 = the set of monotone functions from Vσ0 to Vσ1 with the usual pointwise

order, taking Abs and App to be the identity functions.
• Vσ0×σ1 = Vσ0 × Vσ1 with the usual component-wise order, taking Pair and Proj to

be the standard pairing and projection functions.
• Vσ0+σ1 =O(Vσ0 � Vσ1 ), which we define in Section 7.2.1.
• Vμt.F =N∞1 . We define CF in Section 7.2.2 (recall that we write CF for CλλV .�F�{V/t},

etc., and that we can define DF and FoldF,σ from it).
• V∀α.τ =∏

σ∈Usm
V τ {σ/α}, with the pointwise order, taking TyAbs and TyApp to be

the identity functions.

Once we define the interpretation of sums and datatypes, it is straightforward to verify that
this is a model.

Proposition 6. V= {V τ }τ∈Ulg is a model of the recurrence language.

Proof Since Abs and TyAbs are total, it suffices to verify the conditions on the semantic
functions. This is trivial for arrows, products, and type quantification; sums and inductive
types are handled in the next two sections. �

7.2.1 Interpretation of sums

As we observed, we need to ensure that all the sets Vσ are complete upper semi-lattices.
Preserving the complete upper semi-lattice property is straightforward for all type con-
structors except sum. We could take the usual disjoint sum along with a new infinite
element ∞ that is a common upper bound of elements on both sides, but that ends up
leading to very weak bounds in practice. For example, recall that Dσ list(2) should tell
us about the data that can be used to construct a list of size ≤ 2 (which is a cons list,
because we count the number of cσ list constructors, so nil has size 1). If we were to
interpret sums as just proposed, both Inj0(∗) and Inj1(a, 0) are such values, and their
least upper bound would be ∞. It is not hard to parlay this into an argument that if
tail= λxs.case xs of x.nil; x.π1 x is the usual tail function on σ list, then the recur-
rence extracted from tail gives a bound of ∞ for all lists of length > 1. While correct,
this is hardly satisfying!
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Instead, we take inspiration from abstract interpretation (Cousot & Cousot, 1977): we
will define DF(n) to be the set of values x such that CF(x)≤ n. We can arrange this for
the typical cases of interest (i.e., finitary inductive datatypes such as lists and trees) by
defining Vσ0+σ1 to be the downward closed subsets of Vσ0 � Vσ1 . We could arrange this for
all inductive datatypes if we were to do something similar in the interpretation of arrows
and products, but that entails some additional notational cost in reasoning about extracted
recurrences while providing no benefits for the examples that we present. We start with
some standard order-theoretic and set-theoretic definitions:

• For any partially ordered set A, the order ideal of A is

O(A)=df {X ⊆ A | x ∈ X and y≤ x⇒ y ∈ X }.
O(A) is partially ordered by set inclusion and is a complete upper semi-lattice;
concretely, if X ⊆O(A), then

∨
X =⋃

X .
• For any X ⊆ A, ↓A X = {x ∈ A | ∃y ∈ X .x≤ y} ∈O(A) and for a ∈ A, ↓A a=↓{a} (we

drop the superscript when it is clear from context).
• For any f : A→ B and X ⊆ A, f [X ]= {f (x) | x ∈ X }.
• If X0 and X1 are partially ordered sets, X0 � X1 is the usual disjoint union with injec-

tion functions ini : Xi → X0 � X1 partially ordered by x≤ y iff x= ini(x′), y= ini(y′),
and x′ ≤Xi y′.

For the interpretation of sums, we define Vσ0+σ1 =O(Vσ0 � Vσ1 ) with the semantic
functions defined by

Inji(x)= ini[↓Vσi x]=↓Vσ0�Vσ1 (ini(x))

Case(X0 � X1, f0, f1)=
∨

f0[X0]∨
∨

f1[X1]

Lemma 8. Case(Inji(x), f0, f1)≥ fi(x).

Proof

Case(Inji(x), f0, f1)=Case(ini[↓ x] � ∅, f0, f1)

=
∨

fi[↓ x]∨
∨

f1−i[∅]

=
∨

fi[↓ x]

≥ fi(x) (x ∈ ↓ x).

�

Note that OA is a monad on the category of partially ordered sets and monotone func-
tions, with unit A→OA given by ↓A, and multiplication OOA→OA given by union,
and it plays the role of a powerset monad on posets (the ordinary powerset operation,
without the additional downward closure requirement, does not have a monotone func-
tion A→P(A), because x≤A y does not imply that {x} ⊆ {y}. When a partially ordered
set is a complete upper semilattice (i.e. supports the maximum operation that we use to
interpret the recursor), it is an algebra for this monad, i.e. there is a monotone function
OA→ A, satisfying some equations. Thus, another way of understanding these models
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is that, for functions and products, we build algebras
∨

A→B : O(A→ B)→ (A→ B) and∨
A×B : O(A× B)→ A× B from algebra structures

∨
A : OA→ A and

∨
B : OB→ B, but

for sums, we use the free algebra O(A+ B), with
∨

O(A+B) : OO(A+ B)→O(A+ B) given
by union.

7.2.2 Semantic functions for inductive datatypes

We define CF by first defining a function sizeF : V F[μt.F] →N∞0 . For δ =μt.F, a semantic
value of type F[μt.F] represents the data from which a value of type δ is constructed, but
with the inductive substructures replaced by their sizes, and sizeF returns the size of the
inductive value constructed from that data.

sizet(n)= n

sizeσ (x)= 0

sizeF0+F1
(X0 � X1)=

∨
sizeF0

[X0]∨
∨

sizeF1
[X1]

sizeF0×F1
(a0, a1)= sizeF0

(a0)+ sizeF1
(a1)

sizeσ→F(g)=
∑
{sizeF(g x) | x ∈ Vσ }

For the constructor height model, define a function heightF analogously, replacing the sums
in the product and arrow shapes with maximums. The semantic constructor and destructor
are then defined by

CF(a)= 1+ sizeF(a) DF(n)=
∨
{a |CF a≤ n}.

To use (std-fold), it suffices to verify the conditions of Proposition 3, which is trivial, so
we have

FoldF,σ s x=
∨
{s(Fδ,σ (FoldF,σ s)z

) | 1+ sizeF(z)≤ x}.

7.2.3 Examples: lists and trees

Referring to Figure 10,

� � nil : σ list�η= 1

�x : σ , xs : σ list� cons(x, xs) : σ list�η= 1+ η(xs)

� � emp : σ tree�η= 1

�x : σ , t0 : σ tree, t1 : σ tree� node(x, t0, t1) : σ tree�η= 1+ η(t0)+ η(t1).

It is not hard to see that � � t : σ tree�= 2n+ 1, where n is the usual size of t (i.e.,
� � t : σ tree� is the number of internal and external nodes of t). Since this is linear in
the usual notion of size of a tree, it suffices for showing that the recurrences that we extract
have the expected O-behavior.

Destructors exhibit the desired behavior; consider σ list again:

DFσ list
(x)=

{
{∗} � ∅, x= 1

{∗} � {(a, x′) | a ∈ Vσ , 1+ x′ ≤ x}, 2≤ x≤∞
= {∗} � (Vσ ×↓N∞1 (x− 1))

where we define ↓N∞1 0=∅. In other words, a list of size 1 must be nil and a list of
length at most x is either nil or cons(x, xs), where xs has length at most x− 1. Remember
that V F[σ list] =O({∗} � (Vσ ×N∞1 )), so if in1(a, x) ∈ X ∈ V F[σ list], then x≥ 1; that is why
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DFσ list
(1) �= {∗} � X with X �= ∅. For σ tree, the result is equally pleasant:

DFσ tree(x)=
{
{∗} � ∅, x= 1

{∗} � {(a, x0, x1) | a ∈ Vσ , 1+ x0 + x1 ≤ x}, 2≤ x≤∞
Finally, we observe the following simple forms for the denotation of recurrences over

lists and trees:

Proposition 7.

1. If f n= �foldσ list y of {nil⇒ enil | cons⇒ (x, r).econs}�η{y 	→ n}, then in the con-
structor size and height models,

f 1= �enil�η

f n= �enil�η ∨
∨
{�econs�η{x, r 	→∞σ , f n′} | n′ < n}

= �enil�η ∨ �econs�η{x, r 	→∞σ , f (n− 1)} (n > 1).

The second form for f n, n > 1, follows from monotonicity of the denotation
function.

2. If f n= �foldσ tree y of
{
emp⇒ eemp | node⇒ (x, r0, r1).enode

}
�η{y 	→ n}, then in

the constructor size model,

f 1= �eemp�η

f n= �eemp�η ∨
∨
{�enode�η{x, r0, r1 	→∞σ , f n0, f n1} | n0 + n1 < n} (n > 1).

In the constructor height model, replace n0 + n1 < n with n0 ∨ n1 < n.

Proof The verification is a moderately tedious calculation; here, it is for (2) with n > 1.
Let

s= λλ(Z � X ).�case w of y.eemp; y.enode{π0 y, π1 y, π2 y/x, r0, r1}�η{w 	→ Z � X }
= λλ(Z � X ).�eemp�η ∨

∨{
�enode�η{a, b0, b1 	→ x, r0, r1} | (a, b0, b1) ∈ X

}
Observe that f = Fold s and let us write Map for (�Fσ tree�η)�σ tree�η,�ρ�η. By definition,
we have f n=∨{s(Map f (Z � X )) |C(Z � X )≤ n}. By monotonicity, we need only con-
sider Z = {∗}, and by definition of C, we need only consider nonempty sets X such that
( , n0, n1) ∈ X implies n0 + n1 < n, so

f n=
∨
{s(Map f ({∗} � X )) | ( , n0, n1) ∈ X ⇒ n0 + n1 < n}

=
∨
{s({∗} �Map f (in1[X ])) | ( , n0, n1) ∈ X ⇒ n0 + n1 < n}

=
∨ {

�eemp�η ∨
∨{

�enode�η{x, r0, r1 	→ b, k0, k1} | (b, k0, k1) ∈Map f (in1[X ])
}

| ( , n0, n1) ∈ X ⇒ n0 + n1 < n
}

= �eemp�η ∨
∨ { ∨{

�enode�η{x, r0, r1 	→ b, k0, k1} | (b, k0, k1) ∈Map f (in1[X ])
}

| ( , n0, n1) ∈ X ⇒ n0 + n1 < n
}
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= �eemp�η ∨
∨ { ∨ {

�enode�η{x, r0, r1 	→ b, k0, k1}
| (b, k0, k1) ∈

∨
{↓(a, f n0, f n1) | (a, n0, n1) ∈ X }}

| ( , n0, n1) ∈ X ⇒ n0 + n1 < n
}

= �eemp�η ∨
∨ { ∨ {

�enode�η{x, r0, r1 	→ b, k0, k1}
| ∃(a, n0, n1) ∈ X : (b, k0, k1)≤ (a, f n0, f n1)

}
| ( , n0, n1) ∈ X ⇒ n0 + n1 < n

}
= �eemp�η ∨

∨{
�enode�η{x, r0, r1 	→∞σ , f n0, f n1} | n0 + n1 < n

}
Let us write the last equation as

L= �eemp�η ∨
∨{∨

AX | ( , n0, n1) ∈ X ⇒ n0 + n1 < n
}
= �eemp�η ∨

∨
B= R

First, let us show that for any X such that ( , n0, n1) ∈ X ⇒ n0 + n1 < n, AX ⊆↓ B, from
which we conclude that

∨
AX ≤∨

B, and hence L≤ R. For any such X , take (b, k0, k1)
such that there is (a, n0, n1) ∈ X with (b, k0, k1)≤ (a, f n0, f n1)≤ (∞, f n0, f n1). By
Proposition 6, �enode�η{x, r0, r1 	→ b, k0, k1} ≤ �enode�η{x, r0, r1 	→∞, f n0, f n1}. Since
(b, k0, k1) was chosen arbitrarily, AX ⊆↓ B, as needed. To show that R≤ L, suppose
that n0 + n1 < n. Then �enode�η{x, r0, r1 	→∞, f n0, f n1} ∈ A↓(∞,n0,n1), from which R≤ L
follows. �

Although we will primarily use Proposition 7, it may be instructive to work through
an example of explicitly constructing FoldF,ρ from the proof of Proposition 3. Consider
F = unit+ t (the structure functor for nat) and set s(x)=Case(x, λλu.1, λλu.1+ x). s might
be the step function for the recurrence that describes the cost of the copy function on nat.
Define Q as in the proof of Lemma 3. In this setting, the bottom element at which we start
iterating Q is the function that is constantly 0. Set f0 =Q⊥ and fn+1 =Q fn. Just as in the
calculation of DFσ list

,

DFnat (x)=
{
{∗} � ∅, x= 1

{∗} � {x′ | 1+ x′ ≤ x}, 2≤ x

and so a bit more calculation shows that

fk(n)=
{

n, n≤ k + 1

k + 1, n > k + 1.

It is not hard to see that fω(n)= n is a fixed point of Q, so we conclude that
�foldnat x of {Z⇒ 1 | S⇒ r.Sr}�{x 	→ n} = n.

Of course, this is precisely what we expect, though for readers familiar with how a typi-
cal recursive function on numbers is defined by successive approximations, the route may
feel a bit different. Usually when defining a recursive function on numbers, one takes the
flat order and starts with the everywhere-undefined function. For a typical total function,
the kth approximation is a partial function that is defined and correct on some initial seg-
ment of the natural numbers and undefined elsewhere. Here we take the (more-or-less)
standard order and start with a function that is everywhere an unlikely bound (namely, 0).
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Fig. 20: The monomorphic tree copy function and its extracted recurrence.

Each successive approximation yields a function with more likely bounds, terminating with
a (hopefully low but) correct bound. In the case of a partial recursive function, the “bad”
case is that the function is not defined for some numbers (the value of the approximants
never gets above⊥). In our setting, the “bad” case is that the bound is infinite (the value of
the approximants never stops growing). The reader may wish to compare this with the use
of N∞0 by Rosendahl (1989), where∞ corresponds to the bottom element in the usual CPO
semantics for fixpoints. We return to this in Section 8 when we discuss general recursion.

7.2.4 Example: tree copy

For a first “sanity check,” let us analyze the tree copy function that is defined in Figure 20.
We will also describe some of the main features in the analysis that are typical of all of our
examples. The first is that a source language program e= λx, y, z.e′ extracts to a recurrence
of the form (0, λx.(0, λy.(0, λz.‖e′‖))). However, we are really only interested in ‖e′‖ as a
function of the potentials x, y, and z. Accordingly, when analyzing a program such as e, we
focus on the recurrence language program λx, y, z.‖e′‖. Here, this means we will analyze
the (denotation of the) recurrence copyσ tree that is also shown in Figure 20. Second, we
shall use Proposition 5 freely as though it is a theorem about the syntax when we write our
examples. Third, in our examples, we typically use the identifier r in syntactic recurrences
for a recursive call to the computation of a complexity, and hence rp and rc correspond
to recursive calls that compute potential and cost, respectively. Finally, we remind the
reader that our goal is to show that the semantic recurrences are essentially the same as
those that we expect to arise from an informal analysis, and so we make no attempt to
solve them.

The analysis for copyσ tree proceeds as follows. Define T(n)= (�copyσ tree�(n))c.
Following the definition of the denotation function and using Proposition 7 and facts about
∨ and

∨
in the semantics, we have

T(1)= 1 T(n)= 1∨
∨
{1+ T(n0)+ T(n1) | n0 + n1 < n}

=
∨
{1+ T(n0)+ T(n1) | n0 + n1 < n}

and we obtain a similar recurrence for S(n)= (�copyσ tree�(n))p. We observe that these are
precisely the expected recurrences from an informal analysis which, if one is careful, must
consider all possible combinations of subtree sizes when computing the cost or size of the
result when the argument tree has size n.
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Fig. 21: Binary search tree membership and its extracted recurrence.

7.2.5 Example: binary search tree membership

For an interesting example, let us consider membership testing in σ -labeled binary search
trees. First, we define the type

order= unit+ unit+ unit

and write case e of LT.e0; EQ.e1; GT.e2 for caseorder e of x.e0; x.e1; x.e2, and we assume
comparable notation in the recurrence language. The membership test function is given in
Figure 21.

Let us consider an informal analysis of mem, which is somewhat simpler to describe in
reference to the member function of Figure 8(a). Let T(h) be the number of calls to member
in terms of the height of t. We would probably argue that T(1)= 1 and for h > 1,

T(h)≤ 1︸︷︷︸
the call to member

+
∨
{0, T(h0), T(h1)}︸ ︷︷ ︸

cost of a case is bounded by the costs of its branches

,

where h0, h1 < h. But since the only information we have is that t0 and t1 are subtrees of
some tree t of height h, what we must really mean is that

T(h)≤ 1+
∨
{0, T(h0), T(h1) | h0 ∨ h1 < h},

so this is the recurrence we expect to see in a formal analysis.
Taking the same approach as in the previous section, we analyze the recurrence mem

given in Figure 21, this time considering its denotation in the constructor height model.
The extracted recurrence makes explicit the dependence of the complexity of mem on
the complexity of the comparison function cmp. Of course, a typical analysis will make
assumptions about this complexity. The most common such (and the one we implicitly
made in our informal analysis) is that the cost of the comparison function is independent
of the size of its arguments, which we can model here by assuming that (cmp (x, y))c = 0
for all x and y (more precisely, we only analyze �mem� cmp under the assumption that cmp
satisfies this condition). Define T(h)= (�mem� cmp h x)c and assume that cmp(x,∞)=
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A � B �C. Then making use of Proposition 7,

T(1)= 1 T(h)= 1∨
∨{∨

{1+ (mem cmp h0 x)c | a ∈ A}∨∨
{1 | b ∈ B}∨∨
{1+ (mem cmp h1 x)c | c ∈C}

| h0 ∨ h1 < h
}

= 1∨
∨{∨

{1+ T(h0) | a ∈ A}∨∨
{1 | b ∈ B}∨∨
{1+ T(h1) | c ∈C}

| h0 ∨ h1 < h
}

≤ 1∨
∨
{1+ T(h0), 1, 1+ T(h1) | h0 ∨ h1 < h}

=
∨
{1+ T(h0), 1, 1+ T(h1) | h0 ∨ h1 < h}.

Again, we have essentially the same recurrence as given by the informal analysis. The last
inequality is valid because A, B, and C are all subsets of {∗}, and hence are either ∅ or {∗}
itself, and we take advantage of the fact that

∨∅= 0. The comparison with ∞ might be a
bit perturbing. In this model, the labels do not contribute to the potential of a tree. Since
the comparison in the recurrence arises from the comparison of x with an arbitrary node
label y, the best we can say about the potential of y is that it is at most ∞. For another
perspective, keep in mind that cmp is monotone, so unless it is a particularly odd function,
cmp(x,∞)= {∗} � {∗} � {∗}, which forces the recurrence to take all possible outcomes into
account. This is precisely what we would expect in an informal analysis.

7.2.6 Inductive types as an abstract interpretation

Our justification for the interpretation of sum types appealed to intuition from abstract
interpretation. For datatypes with structure functors that are sums of products (e.g., lists
and trees), the connection goes beyond just intuition, as it is easy to see that not only do
we have that D ◦C ≥ id (βδ) but also that C ◦D = id. This is precisely the kind of Galois
connection we would expect to see in an abstract interpretation, where here we think of
the datatype as being the abstract domain and its unfolding to be the concrete domain.6

Intuitively, this is exactly how we think of models of the recurrence language as performing
a size abstraction on datatypes. Interpreting a datatype value (i.e., an application of the
constructor) as a size abstracts away information. Destructing a size tells us how a value
of that size may be constructed from other data, but that data can only tell us the sizes of
the substructures used in the construction. In other words, the application of the destructor
gives us more concrete information about a size, namely, something about the composition
of a value of that size.

6 Of course, the domains here are not of finite height as in typical AI analyses, but that is typically for the
benefit of computability of those analyses that would correspond to computing the denotation of the bounding
recurrence, which is not our primary concern here.
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Fig. 22: A function that sums the nodes of a nat tree.

7.3 Counting all constructors

The cost of some functions cannot be usefully described in terms of the “usual” notion
of size captured by the model V of the previous section. For example, to usefully analyze
the sumtree function of Figure 22, we need a model in which the size of a nat tree value
measures both the number of nat tree constructors and the number of nat constructors.
In this section, we give an example of how to construct such a model. In it, a value v

of inductive type is interpreted by a function φ such that φ(δ) is the size of the largest
maximal subtree of v that contains only δ-constructors. For v : nat tree, this means that
�v�(nat tree) is the usual size of v, �v�(nat) is the maximum label size of v, and �v�(δ)= 0
for δ /∈ {nat tree, nat}.

Because we want to distinguish between constructors for different inductive types, it
is convenient to use the following alternative grammar for types and structure functors,
which just spells out the closed-type production for structure functors:

σ ::= α | C | unit | σ + σ | σ × σ | σ → σ |μt.F

F ::= t | α | C | unit |μt.F | F + F | F × F | σ → F.
(∗)

The content of the next proposition is just that the grammar (∗) defines the same words
as that of Figure 9.

Proposition 8.

1. If σ is a type by the grammar (∗), then σ is a structure functor by the grammar (∗).
2. σ is a type by the grammar of Figure 9 iff σ is a type by the grammar (∗), and F

is a structure functor by the grammar of Figure 9 iff F is a structure functor by the
grammar (∗).

Proof

1. Induction on σ .
2. Induction on the μ-nesting depth of σ and F. The main idea is that we treat t as a

fixed symbol, rather than a meta-variable ranging over a class of variables, so inside
the μt.F production of F, it is no longer possible to refer to the “outer” t, and the
μt.F production of F always corresponds to a constant shape functor.

�
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The type frame is the same as for the constructor-counting model of Section 7.2; for
the current model, we write Wσ for the interpretation of σ . Except for inductive types, the
clauses for Wσ are the same as those for Vσ from Section 7.2. Set D = {μt.F | F closed}
and

• Wμt.F = {φ ∈D→N∞0 | φ(μt.F)≥ 1, δ not a syntactic subtype of F⇒ φ(δ)= 0}.
To define CF and DF , we define sizeF,δ : W F[δ] → (D →N∞0 ) similarly to the previous
section. The additional subscript enables us to track which datatype is the “main” datatype,
as the counting is different for products for the main datatype and others. The definition is
as follows:

sizet,δ(φ)= φ

sizeC,δ(x)= λλδ.0

sizeunit,δ(∗)= λλδ.0

sizeμt.F,δ(φ)= φ

sizeF0+F1,δ(X0 � X1)=
∨

sizeF0,δ[X0]∨
∨

sizeF1,δ[X1]

sizeF0×F1,δ(x0, x1)= λλδ′.

{
sizeF0,δ(x0)(δ′)+ sizeF1,δ(x1)(δ′), δ′ = δ

sizeF0,δ(x0)(δ′)∨ sizeF1,δ(x1)(δ′), δ′ �= δ

sizeσ→F,δ(f )= λλδ′.

{∑{sizeF,δ(f x)(δ′) | x ∈Dσ }, δ′ = δ∨{sizeF,δ(f x)(δ′) | x ∈Dσ }, δ′ �= δ

Set

CF(a)= λλδ.χF(δ)+ sizeF,μt.F(a)(δ) DF(φ)=
∨
{a |CF(a)≤ φ}

where χF(δ)= 1 if δ =μt.F, χF(δ)= 0 otherwise. Notice that for δ =μt.F, CF(a)(δ)=
1+ sizeF,δ(a)(δ)≥ 1, so CF(a) ∈W δ . foldδ is interpreted by (std-fold) as usual.

7.3.1 Example: the potential of nat tree

Although we could prove a general theorem to show that sizeF,δ encapsulates the descrip-
tion given above, seeing the details of the specific case of nat tree is more illuminating. To
start, some notation is helpful: set φnat

n ∈Wnat and φnat tree
n,k ∈Wnat tree to be the functions

φnat
n (nat)= n

φnat
n ( )= 0

φnat tree
n,k (nat)= n

φnat tree
n,k (nat tree)= k

φnat tree
n,k ( )= 0

First we start with a useful lemma:

Lemma 9. �S�(φ)= χFnat + φ, and in particular, �S�(φnat
k )= φnat

k+1.

Proof

�S�(φ)= χFnat + sizeFnat,nat(Inj1(φ))= χFnat + sizeFnat,nat(∅ � ↓ φ)=
χFnat +

(∨
sizet,nat[↓ φ]

)
= χFnat +

(∨
(↓ φ)

)
= χFnat + φ.

�

Now set n= S(. . . (S Z) . . . ) : nat (n Ss). We will show that �n�= φnat
n+1 by induction on

n. For n= 0,

https://doi.org/10.1017/S095679682200003X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200003X


Denotational semantics for recurrence extraction 41

�0�=CFnat (Inj0∗)=CFnat ({∗} � ∅)=
χFnat + sizeFnat,nat({∗} � ∅)= χFnat + (λλδ.0)= χFnat = φnat

1 .

And for n≥ 0, we use Lemma 9 to show that

�n+1�= (�S� �n�)= �S�(φnat
n+1)= φnat

n+2.

Now let us consider closed nat tree expressions built up using only nat tree and
nat constructors—i.e., nat-labeled binary trees. We show that if t is such a tree, then
�t�= φnat tree

m,k , where m=∨{1+ n | n a label in t} and k is the number of nat tree con-
structors in t. In the following calculations, we will save a bit of space by writing sizeF

for sizeF,nat tree. For emp, the argument is essentially the same as for the analysis of
�0�, noting that

∨{1+ n | n a label in emp} =∨ ∅= 0. For the inductive step, assume that
�ti�= φnat tree

ni,ki
, so our goal is to show that �node(n, t0, t1)�= φnat tree

(n+1)∨n0∨n1,1+k0+k1
:

�node(n, t0, t1)�=CFnat tree(Inj1(�n�, �t0�, �t1�))

=CFnat tree(∅ � ↓(φnat
n+1, φnat tree

n0,k0
, φnat tree

n1,k1
))

= χFnat tree + sizeFnat tree(∅ � ↓(φnat
n+1, φnat tree

n0,k0
, φnat tree

n1,k1
))

= χFnat tree +
∨

sizenat×t×t[↓(φnat
n+1, φnat tree

n0,k0
, φnat tree

n1,k1
)].

If (φ′, φ′0, φ′1) ∈ ↓(φnat
n+1, φnat tree

n0,k0
, φnat tree

n1,k1
), then

sizenat×t×t(φ
′, φ′0, φ′1)(δ)=

{
sizenat(φ

′)(δ)+ sizet(φ
′
0)(δ)+ sizet(φ

′
1)(δ), δ = nat tree

sizenat(φ
′)(δ)∨ sizet(φ

′
0)(δ)∨ sizet(φ

′
1)(δ), δ �= nat tree

=
{

φ′(nat tree)+ φ′0(nat tree)+ φ′1(nat tree), δ = nat tree

φ′(δ)∨ φ′0(δ)∨ φ′1(δ), δ �= nat tree

and hence the computation of �node(n, t0, t1)�(δ) proceeds as

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+∨{
φ′(nat tree)+ φ′0(nat tree)+ φ′1(nat tree) |

(φ′, φ′0, φ′1) ∈ ↓(φnat
n+1, φnat tree

n0,k0
, φnat tree

n1,k1
)

}
, δ = nat tree

∨{
φ′(δ)∨ φ′0(δ)∨ φ′1(δ) |
(φ′, φ′0, φ′1) ∈ ↓(φnat

n+1, φnat tree
n0,k0

, φnat tree
n1,k1

)

}
, δ �= nat tree

=

⎧⎪⎪⎨
⎪⎪⎩

1+ k0 + k1, δ= nat tree

(n+ 1)∨ n0 ∨ n1, δ= nat

0, otherwise

= φnat tree
(n+1)∨n0∨n1,1+k0+k1

(δ).

We have simplified descriptions of recurrences that are analogous to those of
Proposition 7:

Proposition 9.

1. If f φ = �foldnat x of {Z⇒ eZ | S⇒ r.eS}�η{x 	→ φ}, then

f φnat
1 = �eZ�η f φnat

n = �eZ�η ∨
∨
{�eS�η{r 	→ φnat

j } | j < n}
= �eZ�η ∨ �eS�η{r 	→ φnat

n−1} (n > 1)
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2. If f φ = �foldnat tree x of
{
emp⇒ eemp | node⇒ (x, r0, r1).enode

}
�η{x 	→ φ}, then

f φnat tree
n,1 = �eemp�η

f φnat tree
n,k = �eemp�η ∨

∨{
�enode�η{x, r0, r1 	→ φnat

n′ , f φnat tree
n0,k0

, f φnat tree
n1,k1

}
| n′ ∨ n0 ∨ n1 ≤ n, 1+ k0 + k1 ≤ k

} (n > 1)

7.3.2 Example: summing the nodes of a nat tree

Let us use this model to analyze the function sumtree : nat tree→ nat that sums the
nodes of a nat tree. Its definition is given in Figure 22, along the relevant extracted
recurrences. An informal analysis might proceed as follows. Because the cost of sumtree
depends on both the cost and size of the result of plus as well as the size of the results of the
recursive calls, we must extract recurrences for all of these. If Splus(m, n) and Tplus(m, n)
are the size of the result and the cost of plus(m− 1, n− 1), respectively (recall from
Figure 4 that n is the source language numeral for n), then an informal analysis yields
the recurrences

Splus(1, n)= n

Splus(m, n)= 1+ Splus(m− 1, n)

Tplus(1, n)= 1

Tplus(m, n)= 1+ Tplus(m− 1, n).

Similarly, if Sst(n, k) and Tst(n, k) are the size of the result and the cost of sumtree(t)
when t has maximum label size n and size k, we end up with the recurrences

Sst(n, 1)= 1

Sst(n, k)=
∨
{Splus(n, Splus(Sst(n, k0), Sst(n, k1))) | k0 + k1 < k}

and

Tst(n, 1)= 1

Tst(n, k)=
∨
{Tst(n, k0)+ Tst(n, k1)+ Tplus(Sst(n, k0), Sst(n, k1))+

Tplus(n, Splus(Sst(n, k0), Sst(n, k1))) | k0 + k1 < k}.
To solve these recurrences, one would first use any standard technique to conclude that
Splus(m, n)=m+ n− 1 and Tplus(m, n)=m to simplify the recurrence clauses for Sst
and Tst, then establish bounds on the latter by induction. However, the solution of the
recurrences is not our focus here, but rather the justified extraction of them.

Now let us turn to our formal analysis. Set S̃plus(φ, φ′)= (�plus� φ φ′)p. Then making
use of Proposition 9, S̃plus(φnat

1 , φ′)= φ′ and for m > 1,

S̃plus(φ
nat
m , φ′)= φ′ ∨ �S(rp)�{r 	→ �plus� φnat

m−1 φ′}
= φ′ ∨ (χFnat + (�plus� φnat

m−1 φ′)p) (Proposition 9)

= φ′ ∨ (χFnat + S̃plus(φ
nat
m−1, φ′))

This recursive description of S̃plus is sufficient to prove that S̃plus(φnat
m , φ′)≥ φ′, and so we

can conclude the reasoning with

S̃plus(φ
nat
m , φ′)= χFnat + S̃plus(φ

nat
m−1, φ′)
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and so in particular

S̃plus(φ
nat
1 , φnat

n )= φnat
n S̃plus(φ

nat
m , φnat

n )= χFnat + S̃plus(φ
nat
m−1, φnat

n ),

recurrences that are equivalent to those derived informally. The analysis of T̃plus(φ, φ′)=
(�plus� φ φ′)c is similar and results in the recurrence

T̃plus(φ
nat
1 , φnat

n )= 1 T̃plus(φ
nat
m , φnat

n )= 1+ T̃plus(φ
nat
m−1, φnat

n ).

Now set S̃st(φ)= (�sumtree� φ)p. Making use of Proposition 9, S̃st(φnat tree
1,k )= φnat

1 and
for k > 1,

S̃st(φ
nat tree
n,k )= φnat

1 ∨
∨ {

(�plus x (plus r0p r1p)p�{x, ri 	→ φnat
n′ , �sumtree� φnat tree

ni,ki
})p

| n′ ∨ n0 ∨ n1 ≤ n, k0 + k1 < k
}

= φnat
1 ∨

∨ {
(�plus� φnat

n′ (�plus� (S̃st(φ
nat tree
n0,k0

)) (S̃st(φ
nat tree
n1,k1

)))p)p

| n′ ∨ n0 ∨ n1 ≤ n, k0 + k1 < k
}

= φnat
1 ∨

∨ {
S̃plus(φ

nat
n′ , S̃plus(S̃st(φ

nat tree
n0,k0

), S̃st(φ
nat tree
n1,k1

)))

| n′ ∨ n0 ∨ n1 ≤ n, k0 + k1 < k
}

Since φnat
1 is the bottom element of Wnat and we can prove from this recurrence that

S̃st(φnat tree
n,k ) is monotone with respect to n, we can conclude this reasoning with

S̃st(φ
nat tree
n,k )=

∨
{S̃plus(φ

nat
n , S̃plus(S̃st(φ

nat tree
n,k0

), S̃st(φ
nat tree
n,k1

))) | k0 + k1 < k},
which is analogous to the recurrence we derived informally. The analysis of T̃st(φnat tree

n,k )=
(�sumtree� φnat tree

n,k )c is similar and leads to

T̃st(φ
nat tree
1,k )= 1 T̃st(φ

nat tree
n,k )=

∨{
1+T̃st(φ

nat tree
n,k0

)+ T̃st(φ
nat tree
n,k1

)+
T̃plus(S̃st(φ

nat tree
n,k0

), S̃st(φ
nat tree
n,k1

))+
T̃plus(φ

nat
n , S̃plus(S̃st(φ

nat tree
n,k0

), S̃st(φ
nat tree
n,k1

)))

| k0 + k1 < k
}

As a final note, in order to obtain the desired final form, we sometimes had to do some
reasoning about the function on the basis of its recurrence, such as proving that the function
is monotone. In fact, such reasoning is almost always required in the informal analysis as
well, even though we typically gloss over such points when analyzing algorithms.

In may be helpful to contrast this analysis with the interpretation of plus and sumtree
in the model of Section 7.2. Since nat values involve no other datatype constructors,
the interpretation of plus is essentially just the same, only requiring less notation to
write down. However, the cost component of �sumtree�{n/t} is less helpful. Because
the model of Section 7.2 only accounts for the tree constructors, it does not account
for the sizes of the node labels, and so this computation includes the cost component
of �plus x (plus r0p r1p)p�{∞, . . ./x, r0, r1} and this will result in a bound of ∞ (cf. to the
occurrence of ∞ in the analysis of mem in the previous section, which did no harm there).
This is correct as a bound. It reflects a cost analysis in which we have decided that we are
counting each recursive call as a computation step, but then analyze a program in which
data values whose size we ignore is the source of some recursive calls. However, this rather
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poor choice of size for this particular context yields a very weak bound, and so shows more
generally that the choice of model does really matter.

7.4 Size abstraction and polymorphism: merging the constructor-counting models

Let us make a couple of observations about the previous two sections. It seems at least
intuitive that counting only the main constructors is a more abstract notion of size than
counting all constructors. And it also seems that even if we are working in the model of
Section 7.3, if we have a polymorphic function in hand, it ought to be analyzable by just
counting main constructors. This leads to the idea that if we have a model in hand (such as
counting all constructors), then at least in some cases, it ought to be possible to interpret
polymorphic recurrences so that the potentials arise from a more abstract notion of size
than that given by the model. We give an example of how that might be done now.

Definition. Suppose U= (Usm, Ulg, {Dσ }) and U′ = (Usm, Ulg, {D′}σ ) are two models of
the recurrence language, both based on the (same extension of the) standard type frame.
We say that U′ is an abstraction of U, or U is a concretization of U′, if for every σ ∈Usm

there are functions

Dσ D′σ
absσ

concσ

such that for all σ , concσ is monotone, concσ ◦ absσ ≥ idDσ and absσ ◦ concσ = idD′σ .

Definition. Suppose U′ = (Usm, Ulg, {D′}σ ) is an abstraction of U= (Usm, Ulg, {Dσ }). The
polymorphic abstraction of U relative to U′ is the model U→U′ = (Usm, Ulg, {Bσ }) that is
defined as follows:

• For σ ∈Usm, Bσ =Dσ , with the semantic functions for small types taken from U.
• For τ ∈Ulg \Usm, Bτ =D′τ , where:

– If ρ is quantifier-free and fv(ρ)⊆ {α}, then

dom(TyAbsU→U′
λλσ .ρ{σ/α})=

{f ∈
∏

σ∈Usm

(D′)ρ{σ/α} | λλσ .absρ{σ/α}(f σ ) ∈ dom(TyAbsU′
λλσ .ρ{σ/α})}

TyAbsλλσ .ρ{σ/α}(f )= TyAbsU′
λλσ .ρ{σ/α}(λλσ .absρ{σ/α}(f σ ))

TyAppλλσ .ρ{σ/α}(f )= λλσ .concρ{σ/α}(TyAppU′
λλσ .ρ{σ/α} f σ )

– If τ is not quantifier-free and fv(τ )⊆ {α}, then we take TyAbsλλσ .τ {σ/α} =
TyAbsU′

λλσ .τ {σ/α} and TyAppλλσ .τ {σ/α} = TyAppU′
λλσ .τ {σ/α}.

Proposition 10.

1. If U and U′ are applicative structures, then U→U′ is an applicative structure.
2. If U and U′ are premodels such that whenever � � e : ρ and η is a �-environment,

λλσ .�absρ{σ/α}(e)�η{α 	→ σ } ∈ dom TyAbsU′ , then U→U′ is a premodel.
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Fig. 23: Abstraction and concretization functions that relate the all-constructor (concrete)
and main-constructor (abstract) models.

Proof The only nontrivial verification is that when ρ is quantifier-free and fv(ρ)⊆ {α},
TyAppλλσ .ρ{σ/α}(TyAbsλλσ .ρ{σ/α} f )≥ f :

TyAppλλσ .ρ{σ/α}(TyAbsλλσ .ρ{σ/α} f ) σ

= TyAppλλσ .ρ{σ/α}(TyAbsU′
λλσ .ρ{σ/α}(λλσ .absρ{σ/α}(f σ ))) σ

= (λλσ .concρ{σ/α}(TyAppU′
λλσ .ρ{σ/α}(TyAbsU′

λλσ .ρ{σ/α}(λλσ .absρ{σ/α}(f σ ))) σ )) σ

= concρ{σ/α}(TyAppU′
λλσ .ρ{σ/α}(TyAbsU′

λλσ .ρ{σ/α}(λλσ .absρ{σ/α}(f σ ))) σ )

≥ concρ{σ/α}((λλσ .absρ{σ/α}(f σ )) σ )

≥ concρ{σ/α}(absρ{σ/α}(f σ ))

≥ f σ .

�

As an example, we define abstraction and concretization functions in Figure 23 that
show that the main constructor counting model V from Section 7.2 is an abstraction of the
all-constructor counting model W from Section 7.3.

Proposition 11.

1. absσ and concσ are monotone for all σ .
2. absσ ◦ concσ = id and concσ ◦ absσ ≥ id.

Proof

1. By induction on σ .
2. By induction on σ ; we just do σ = σ0 + σ1. Let us write abs for absσ0+σ1 ,

absi for absσi , and similarly for conc. To see that abs ◦ conc= id, notice that
(abs ◦ conc)(Y0 � Y1)=↓ abs0[↓ conc0[Y0]] � ↓ abs1[↓ conc1[Y1]], so if a′ ∈ (abs ◦
conc)(Y0 � Y1), then there are i, b, and a ∈ Yi such that a′ ≤ absi(b) and b≤ conci(a),
and hence a′ ≤ absi(conci(a))= a (by monotonicity and the induction hypothe-
sis). But since Yi is downward closed, a′ ∈ Yi, so (abs ◦ conc)(Y0 � Y1)⊆ Y0 � Y1.
To see that abs ◦ conc≥ id, notice that if a ∈ Y0 � Y1, then a ∈ Yi for some i,
and hence a= absi(conci(a)) ∈ ↓ abs0[↓ conc0[Y0]] � ↓ abs1[↓ conc1[Y1]]= (abs ◦
conc)(Y0 � Y1), so Y0 � Y1 ⊆ (abs ◦ conc)(Y0 � Y1).
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To see that conc ◦ abs≥ id, suppose b ∈ Xi. Then by the induc-
tion hypothesis b≤ (conci ◦ absi)(b), and by unraveling the definition,
(conci ◦ absi)(b) ∈ ↓ conci[↓ absi[Xi]]. Since ↓ conci[↓ absi[Xi]] is downward
closed, b ∈ ↓ conci[↓ absi[Xi]]⊆ (conc ◦ abs)(X0 � X1).

�

Proposition 12. W→V is a model.

Proof From Propositions 10 and 11 and the fact that TyAbsV is total. �

The definition of the abstraction and concretization functions in Figure 23 looks fairly
canonical, so a natural question is whether for any two models of the recurrence language
one can extend given functions on the interpretations of base types to all small types. In
fact these definitions are an instance of a general pattern, but to state the pattern we will
need a few definitions. A 2-category is a generalization of a category with a notion of
morphism-between-morphism: if X and Y are objects, and f , g : X −→ Y are morphisms,
then we will write f ≤C g : X −→ Y for a 2-cell from f to g. We will mainly con-
sider the 2-category Preorder, whose objects X , Y are preordered sets, whose morphisms
f : X −→ Y are monotone functions, and whose 2-cells f ≤ g : X −→ Y are bounds ∀x :
X .f (x)≤Y g(x). We will also need Preorderop (the 1-cell dual of Preorder): the objects
are again preorders, a 1-cell X −→Preorderop Y in Preorderop is a 1-cell in Y −→Preorder X ,
i.e. a monotone function Y → X , but the 2-cells f ≤Preorderop g : X −→Preorderop Y are still
the 2-cells f ≤Preorder g : Y −→Preorder X , i.e. ∀y : Y .f (y)≤X g(y). A standard construc-
tion is to take the cartesian product of two 2-categories, where the objects, 1-cells, and
2-cells are given pointwise; in particular we will consider Preorder× Preorder and
Preorderop × Preorder. A 2-functor F : C →D between 2-categories acts on objects,
1-cells (preserving identity and composition either strictly or up to 2-cell isomorphism),
and 2-cells. For example, a (strict) 2-functor F : Preorder→ Preorder consists of (0) for
each preorder X , a preorder F(X ); (1) for each monotone function f : X → Y , a mono-
tone function F(f ) : F(X )→ F(Y ) such that F(id)= id and F(g ◦ f )= F(g) ◦ F(f ); (2) if
∀x : X .f (x)≤Y g(x) then ∀w : F(X ).F(f )w≤F(Y ) F(g)w. I.e. F sends preorders to preorders
and monotone functions to monotone functions, in such a way that if g bounds f then F(g)
bounds F(f ).

An abstract interpretation in the sense above is often called a Galois insertion, which
is a reflection in Preorder: a (strict) reflection of A into C consists of a pair of 1-cells
abs� conc where abs : C→ A and conc : A→C, with an equality abs ◦ conc= idA and a
2-cell idC ≤C conc ◦ abs. A standard observation is that any 2-functor F : C →D preserves
reflections (this is used, for example, in domain theory Smyth & Plotkin, 1982): if abs�
conc is a reflection then F(abs)� F(conc) is a reflection between F(C) and F(A). Applying
F to the equality abs ◦ conc= idA and using strict preservation of identity and composition
gives F(abs) ◦ F(conc)= idF(A), and using the action on 2-cells of F on idC ≤C conc ◦ abs
(and again preservation of identity and composition) gives idF(C) ≤F(C) F(conc) ◦ F(abs).

This all means that we can lift the abstraction and concretization from base types to
any type constructor that extends to a 2-functor. The product of preorders X × Y is the
action on objects of a functor Preorder× Preorder→ Preorder, where the action on
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Fig. 24: Linear-time list reversal and its extracted recurrences.

maps f0 : X0 → X ′0 and g : X1 → X ′1 is given by

f0 × f1 : X0 × X1 → X ′0 × X ′1 := z 	→ 〈f0(π0z), f1(π1z)〉
This acts on 2-cells (preserves bounds) because pairing and application are monotone oper-
ations. To show that it preserves composition, we need a full β-reduction equation and to
show that it preserves identity, we also need the corresponding η/surjective pairing equa-
tion. However, these are true for the standard cartesian product of preorders. A reflection
in Preorder× Preorder is a pair of reflections for each component. Unwinding these
definitions gives the definitions of absσ0×σ1 and concσ0×σ1 in Figure 23.

The case of sums is more interesting. The standard coproduct of preorders X + Y is the
disjoint union X � Y ordered as defined above. This extends to a 2-functor Preorder×
Preorder→ Preorder with f0 + f1 defined via case-analysis. This is bound-preserving
because the branches of a case-analysis (on the standard coproduct in preorders) are
a monotone position and preserves identity/composition if we have βη equations for
case-analysis, which X + Y does.

In the models under consideration, we do not define Dσ0+σ1 to be Dσ0 +Dσ1 , but
O(Dσ0 +Dσ1 ). However, it is also the case that O is a 2-functor Preorder→ Preorder:
Of : OX →OY is ↓ {f (x) : x ∈ X }, which preserves bounds and identities and compo-
sitions. The composition of 2-functors is again a 2-functor, so O(−+−) : Preorder×
Preorder→ Preorder is as well, and unwinding definitions gives absσ0+σ1 and concσ0+σ1

from Figure 23.
For functions, the preorder of pointwise-ordered monotone maps X → Y extends to

a mixed-variance 2-functor Preorderop × Preorder→ Preorder, with functorial action
given by pre- and post-composition. Moreover, a reflection abs� conc in Preorder is
a reflection conc� abs in Preorderop with the roles of concretization and abstraction
exchanged. This unpacks to the definitions of absρ→σ and concρ→σ in Figure 23, where
abstraction precomposes with concretization, and vice versa.

Thus, while our general definition of model does not require types to be interpreted as
2-functors—for example, being a model does not require the η law for pairs that ensures
preservation of identities—a number of more specific models will have this form, and thus
admit the same definition of relativized model, given abstraction and concretization for
base/inductive types. For example, we may freely apply in the interpretation of any type
constructor, e.g., defining Dσ0×σ1 to be O(Dσ0 ×Dσ1 ) for more precision.

7.4.1 Example: list reverse

To get a sense of how polymorphic abstraction behaves, let us analyze the polymorphic
linear-time list reverse function given in Figure 24 in the model W→V. We choose
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this model because on the one hand W provides enough information for analyzing
monomorphic functions like sumtree that depend on more than just the usual notion of
size, yet we still want to analyze a polymorphic function like list reversal in terms of list
length, ignoring any information about the elements of the argument list. Since polymor-
phism in the source language arises only via let-bindings, the recurrence for rev′ that is
given is the recurrence that is substituted for for rev′ according to the definition of extrac-
tion for let-expressions. A typical informal analysis of rev would really analyze rev′ and
might define S(n, m) and T(n, m) to be the size and cost of rev′ xs ys when xs and ys have
length n and m, respectively. One would then observe that S and T satisfy the recurrences

S(1, m)=m

S(n, m)= S(n− 1, m+ 1)

T(1, m)= 1

T(n, m)= 1+ T(n− 1, m)

from which one establishes the O(n) bound on cost.
Just as with our other models, to analyze rev, we must consider its instantiation at some

arbitrary small type σ . In the model W, this would entail understanding how to compute
FoldW s φ for arbitrary φ, which would be defined in terms of all φ′ ≤ φ. The key point of
W→V is that while we cannot avoid considering the instantiation of rev at arbitrary σ ,
we only need to know how to compute FoldW s φ for those φ that are the concretizations of
values in Vσ list. To see this, let us define φσ list

n = concσ list(n)—observe that φσ list
n maps

σ list to n and all other datatypes to ∞—and then compute rev′, where we write fσ φ

for �foldσ list xs of {nil⇒· · · | cons⇒· · ·}�η{xs 	→ φ}:

�rev′�= TyAbs(λλσ .λλφWσ list
.�foldα list xs of {nil⇒· · · | cons⇒· · ·}�{α 	→ σ , xs 	→ φ})

= TyAbs(λλσ .λλφWσ list
.�foldσ list xs of {nil⇒· · · | cons⇒· · ·}�{xs 	→ φ})

= TyAbs(λλσ .λλφWσ list
.fσ φ)

= λλσ .abs(λλφWσ list
.fσ φ)

= λλσ .λλnVσ list
.abs(fσ φσ list

n )

= λλσ .λλnVσ list
.( , abs(fσ φσ list

n )p)

= λλσ .λλnVσ list
.( , λλmVσ list

.abs((fσ φσ list
n )p φσ list

m ))

= λλσ .λλnVσ list
.( , λλmVσ list

.( , abs((fσ φσ list
n )p φσ list

m )p))

When restricted to concretizations of abstract values, FoldW is straightforward to compute.

Proposition 13. If f n= �foldσ list y of {nil⇒ enil | cons⇒ (x, r).econs}�η{y 	→ φσ list
n }W,

then

f 1= �enil�η

f n= �enil�η ∨ �econs�η{x, r 	→∞σ , f (n− 1)} (n > 1).

With this in mind, set S̃(n, m)= abs((fσ φσ list
n )p φσ list

m )p. Our goal is to write a recurrence
for S̃(n, m). We start with
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S̃(1, m)= abs((fσ φσ list
1 )p φσ list

m )p

= abs((�(1, λzs.(0, zs))�)p φσ list
m )p

= abs(λλφ.(0, φ) φσ list
m )p

= abs(0, φσ list
m )p

= abs(φσ list
m )

=m.

To compute S̃(n, m) for n > 1, we first compute

f φσ list
n = �(1, λzs.(0, zs))�∨ �(1, λzs.rc +c rp (cons((x, zs))))�{x, r 	→∞, f φσ list

n−1 }
= (1, λλφ.(0, φ)∨ λλφ.(f φσ list

n−1 )c +c (f φσ list
n−1 )p(χFσ list + φ))

= (1, λλφ.(0, φ)∨ (f φσ list
n−1 )c +c (f φσ list

n−1 )p(χFσ list + φ))

and so(
(f φσ list

n )p φσ list
m

)
p
= (

(0, φσ list
m )∨ (f φσ list

n−1 )c +c (f φσ list
n−1 )p(χFσ list + φσ list

m )
)

p

= (
(0, φσ list

m )∨ (f φσ list
n−1 )c +c (f φσ list

n−1 )p φσ list
m+1

)
p

= φσ list
m ∨ ((f φσ list

n−1 )p φσ list
m+1 )p

and hence in the end we have

S̃(n, m)= abs
(
(f φσ list)p φσ list

m

)
p

= abs φσ list
m ∨ abs((f φσ list

n−1 )p φσ list
m+1 )p

=m∨ S̃(n− 1, m+ 1)

= S̃(n− 1, m+ 1).

Analysis of cost proceeds in a similar manner. We have again extracted the recurrences
we expect from an informal analysis, but instead of those recurrences being in terms of
arbitrary values in Wσ list, they are in terms of the length of the argument list.

Stepping back a bit, recall from Section 7.1 that we can apply parametricity to the stan-
dard model to reason about the cost of rev xs, which seems comparable to what we have
just done. But there is a difference. The result from parametricity tells us that the cost of
the result is determined by the length of the argument, but it does not tell us how to com-
pute the former in terms of the latter. What we have done here is to formally justify the
recurrence that does just that.

7.5 Lower bounds and an application to map fusion

So far, we have focused on extracting recurrences for upper bounds. However, the syn-
tactic bounding theorem is agnostic with respect to the actual interpretation of the size
order. We take advantage of this to derive recurrences for upper and lower bounds in
the main constructor counting model of Section 7.2. Let us consider the map function
given in Figure 25. By reasoning that is by now hopefully somewhat mundane, if we set
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Fig. 25: List map and its extracted recurrence.

Tmap f (n)= (�map� f n)c, then we obtain the recurrence

Tmap f (1)= 1 Tmap f (n)= 1+ (f ∞)c + Tmap f (n− 1).

Solving this recurrence yields an upper bound of Tmap f (n)= n(1+ (f ∞)c). Now let us
apply this to the two sides of the usual map fusion law

map f (map g xs)= map (f ◦ g) xs.

We hope to show that the right-hand side is less costly than the left. Working through
the recurrence extractions, we conclude that the cost of the left-hand side is bounded
by Tmap f ◦map g(n)= 2n(1+ (g∞)c + (f ∞)c), whereas the right-hand side is bounded by
Tmap(f ◦g)(n)= n(1+ (g∞)c + (f (g∞)p)c). Even under the assumption that the costs of f
and g are independent of their arguments does not result in the desired conclusion, because
we only know that these recurrences yield upper bounds, and the fact that one upper bound
is larger than another tells us nothing about the actual costs. What we would like to know
is that these recurrences are tight, and for that we need lower bounds as well.

As we already mentioned, as long as we have a model of the recurrence language in
which the interpretation of the size order satisfies the axioms of Figure 11, the bounding
theorem holds. So to obtain lower bounds, we would want a model in which the order on
the interpretation of C is the reverse of the usual order. That means we would have two
models in hand, one that gives us upper bounds and one that gives us lower bounds; we
would then have to ensure that the recurrences in each model can be sensibly compared.
As it turns out, we can arrange that by using the model in Section 7.2 because the interpre-
tations of the types are all complete upper semi-lattices. We take advantage of the fact that
a complete upper semi-lattice is in fact a complete lattice, where greatest lower bounds are
defined by

∧
X =∨{x | ∀y ∈ X : x≤ y}. This permits us to define the dual interpretation of

the model (Usm, Ulg, {Vσ }σ ) to be (Usm, Ulg, {(V ∗)σ }σ ), where (V ∗)σ = (Vσ ,≤∗σ ) and x≤∗σ y
iff y≤σ x. Because all of the size-order axioms except (βδ) and (βδfold) are witnessed by
identities in V (i.e., the left- and right-hand sides of the axioms have the same denotation),
we can take the semantic functions in V∗ not related to datatypes to be those of V. For
datatype-related functions, it is unnecessary to change either sizeF or CF ; the only change
needed is that we define

D∗F(n)=
∧
{a |CF(a)≥ n}.

We can verify that (βδ) holds by observing that

D∗F(CF(a))=
∧
{a′ |CF(a′)≥CF(a)} ≤ a
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and hence D∗F(CF(a))≥∗ a as required. Of course, the value of the destructor is different in
this model, but not by much; a routine calculation shows that

DFσ list
(x)=∅ � ({⊥σ } × ↓N∞1 (x− 1));

compare this to the calculation in Section 7.2.
We likewise can define the semantic fold function in this model by

Fold∗F s x=
∧
{s(Map(Fold s) z) |CFz≥ x}

Similar to the computation of DF , we have an analogue of Proposition 7: if f n=
�foldσ list y of {nil⇒ enil | cons⇒ (x, r).econs}�η{y 	→ n}, then

f 1=⊥σ

f n= �econs�η{x, r 	→⊥σ , f (n− 1)}.
Returning to our discussion of comparing the costs of map f ◦ map g and map( f ◦ g), we

now conclude that T�
map f ◦ map g(n)= 2n(1+ (g⊥)c + ( f ⊥)c) is a lower bound on the cost

of map f ◦ map g, so to show that map ( f ◦ g) is the more efficient alternative, it suffices to
show that

n(1+ (g∞)c + ( f (g∞)p)c)≤C 2n(1+ (g⊥)c + ( f ⊥)c),

which is trivial when the costs of f and g are independent of their arguments.

8 Recursion

We have not included general recursion in our languages in order to focus on the key
idea that different models formally justify various informal cost analyses. The presence of
recursion does not change this perspective, but it does complicate the model descriptions
in ways orthogonal to our main thrust. We sketch the approach of Kavvos et al. (2020)
here.

For the syntax, we add recursive definitions to the source language with a stan-
dard letrec construct and to the recurrence language with a standard fix constructor,
corresponding to the usual approach for call-by-value and call-by-name languages.
The details are given in Figure 26, where we also give two new size-order rules
to replace (βδfold). In these new rules, E is an elimination context and fixn x.e is
defined by

fix0 x.e= fix x.x fixn+1 x.e= e{fixn x.e/x}.
The two rules codify the relation between the size order and the information order that
is implicit in the presence of fix: a more defined bound is a better (i.e., smaller) bound.
In the presence of nontermination, the bounding relation requires a slight adjustment:
e� E provided: if E terminates, then eθ ↓n v, where n≤ Ec and v �val Ep. This is the only
place a (standard) operational semantics is needed in the recurrence language, and we are
investigating how to eliminate its use.

For the semantics of the recurrence language, we impose additional structure on our
applicative structures. We call the new structures sized domains and they are defined
just like applicative structures, except that for each U ∈Usm, DU = (DU ,≤U , U ,⊥U ),
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Fig. 26: Adding general recursion to the source and recurrence languages.

where (DU ,≤U ) is a preorder as before, and (DU , U ,⊥U ) is a complete partial order. The
semantic domains must satisfy two additional constraints:

• If x U y, then y≤U x; and
• If y0  U y1  U · · · and for all i, x≤U yi, then x≤⊔

yi.

That leaves us with verifying that the models that we presented in Section 7 are sized
domains. For each of the models, we take  N∞i to be the usual flat order with ⊥N∞i =∞
(again, cf. Rosendahl, 1989) extended pointwise and componentwise for functions and
products. For sums, set X  Y if Y ⊆ X . It is a straightforward exercise to show that Dρ+σ

is a CPO that satisfies the constraints just given. To show that we have a model, it suffices
to verify that the semantic functions are simultaneously monotone with respect to ≤ and
continuous with respect to  , after which Proposition 6 can be extended with the clause
that λλa.�� � e : σ �η{x 	→ a} is continuous with respect to . Verification of continuity for
Case relies on two facts that hold in these models at all types:

• If a a′ and b b′, then (a∨ b) (a′ ∨ b′); and
• If a0  a1 · · · and b0  b1 · · · , then

⊔{ai ∨ bi} = (
⊔

ai)∨ (
⊔

bi).

Extracting syntactic recurrences from general recursive functions and interpreting them
in our models follows the same pattern we have already seen several times. But now the
recurrences may have more complex solutions (such as poly-log solutions). For example,
Kavvos et al. (2020) analyze the standard implementation of merge-sort and interpret it
in the model of Section 7.2. Under the usual assumption that the cost of the comparison
function is constant the recurrence clause of the semantic recurrence is T(n)= c+ dn+
T(n/2) for some constants c and d (that arise from the analyses of the functions that divide
a list in two and merge two sorted lists), just as expected. Now one may reason in the
semantics to establish the O(n lg n) cost from this recurrence.
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Quick-sort provides an interesting example of how more complex models can be used
to capture subtle information that may be necessary for an asymptotic analysis. Quick-
sort relies on a partitioning function part : α→ α list→ α list× α list such that
part x xs= (ys, zs), where ys consists of the elements of xs that are < x and zs those ele-
ments that are ≥ x. A key part of the analysis of quick-sort is the fact that the sum of the
lengths of ys and zs is the length of xs. In the models we have presented in Section 7, the
extracted recurrence will not yield such a bound. For example, in the main constructor-
counting model, the best we can conclude about the extracted recurrence is that in the
semantics, part x n= (n, n). The problem is that the interpretation of products requires that
we choose some specific pair that is a bound on all pairs (k, �) such that k + �= n, and (n, n)
is the least such bound. But we have seen this situation before when it came to interpreting
sums, and the solution is the same: instead of taking Vρ×σ = Vρ × Vσ , we can instead take
Vρ×σ =O(Vρ × Vσ ). While the calculations become more tedious, in such a model we can
show that part x n= {(k, �) | k + �≤ n}. However, it turns out this is not quite enough. Both
the source and recurrence languages have negative products, which means that projections
must be used to extract ys and zs. In the interpretation of the extracted recurrence, projec-
tion of a set of pairs maximizes over the corresponding component, and so πi (part x n)= n
(because n+ 0= 0+ n= n), which again leads to a weak bound. Instead, we must use pos-
itive products with an elimination of the form split (x, y)= eρ×σ in e′. The corresponding
elimination form in the recurrence language can be interpreted by maximizing �e′� over all
pairs in �e�, which is precisely what is needed to carry out the rest of the usual analysis of
quick-sort.

9 Related work

We first expand upon a couple of observations that we made earlier and mention some
motivating history behind some technical details. Then we address how our work fits into
the literature on cost analysis.

We touched on an application of parametricity in Section 7.1. Seidel & Voigtländer
(2011) have interpreted free theorems (Wadler, 1989) to obtain relative complexity infor-
mation. Their work can be viewed as applying parametricity to the standard model, but in
a somewhat more general setting of a recurrence language that has a monadic type con-
structor C(σ ) for “complexity of σ ,” with projections for cost and potential. They define a
notion of lifting relations to complexities (much as relations are lifted to inductive types),
which allows them to interpret a free theorem such as f (hd xs)= hd(map f xs) in such a
way that the interpretations of both sides yield complexity information, and the identity
then allows them to conclude, e.g., that the cost of the left-hand side is no greater than that
of the right-hand side. With our approach, we would simply extract recurrences from the
left- and right-hand sides and reason about them as in Section 7.5. While on the topic of
relative cost information, we would be remiss to not mention the type-and-effect system of
Çiçek et al. (2017), which permits a very precise analysis of the relative cost of different
algorithms on the same arguments or the same algorithm on different arguments. We have
not investigated whether our techniques can be adapted to provide comparable analyses.

We drew an analogy with abstract interpretation (AI) in Section 7.2.6 and made use of
the existence of a Galois connection of the sort that arises in AI in Section 7.4. Rosendahl
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(1989) uses AI to extract cost bounds directly from a first-order fragment of Lisp. She
first defines a program translation similar to our syntactic extraction and interprets it in the
standard model D of S-expressions. She then defines an AI from P(D) into a finite-height
lattice of “partial structures,” whose values are essentially truncated standard values. Given
a notion of size s : D→N and a computable bound on λλn.α({x | s(x)= n}), the interpreta-
tion of the syntactic recurrence in the abstract domain is a computable upper bound on the
cost of the original program. This work is restricted to first-order programs and does not
handle branching data structures well (e.g., if s(t) is the number of nodes in the tree t, then
for n > 1, α({x | s(x)= n}) is a node structure that is truncated at its children, so the bounds
are all trivial). But these ideas may provide an approach to computing bounds on semantic
recurrences in models where the semantic recurrence itself is not computable (a situation
that does not arise in the models we have presented).

While our notion of potential is drawn most directly from Danner & Royer (2007), it
traces back at least to Shultis (1985), who defines a denotational semantics for a simple
higher order language that models both the value and the cost of an expression. He devel-
ops a system of “tolls,” which play a role similar to that of our potentials. The tolls and
the semantics are not used directly in calculations, but rather as components in a logic for
reasoning about them. Sands (1990) defines a translation scheme in which each identifier f
in the source language is associated to a cost closure that incorporates information about
the value f takes on its arguments, the cost of applying f to arguments, and arity. Cost
closures record information about the future cost of a partially applied function, just as
our potentials do. The idea of using denotational semantics to captures cost information
has been seen before. We have already mentioned Rosendahl (1989) and Shultis (1985).
Van Stone (2003) defines a category-theoretic denotational semantics that uses “cost struc-
tures” (these include the C×−writer monads we use here) to capture cost information and
shows that it is sound with respect to a cost-annotated operational semantics for a higher
order language. Our bounding theorem is roughly analogous to Van Stone’s soundness
theorem, but is a bit more general because we show an inequality (using the size order on
the complexity language) instead of an equality, which allows the bounding theorem to
apply to models with size abstraction.

Turning now to the literature on cost analysis, constructing resource bounds from source
code has a long history in Programming Languages. The earliest work known to the authors
is that of Cohen & Zuckerman (1974), which extracts programs that describe costs from an
ALGOL60-like language that are intended to be manipulated in an interactive system, and
Wegbreit’s (1975) METRIC system, which extracts recurrences from simple first-order
recursive Lisp programs. An interesting aspect of the latter system is that it is possible to
describe probability distributions on the input domain (e.g., the probability that the head of
an input list will be some specified value), and the generated bounds incorporate this infor-
mation. Le Métayer’s (1988) ACE system converts FP programs (Backus, 1978) (under a
strict operational semantics) to FP programs (under a nonstrict semantics) describing the
number of recursive calls of the source program. The first phase is comparable to the cost
projection of our recurrence extraction; the potential projection is the original program.
Both METRIC and ACE yield nonrecursive upper bounds on the generated cost functions
(this is the bulk of the work for ACE). These systems are restricted in their datatypes and
compute costs in terms of syntactic values; the notion of “size” is somewhat ad hoc and
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second class. Many approaches to cost analysis rely on the idea that the cost can be treated
as an additional output of the program, or as a piece of program state; Wadler (1992)
observed that this can be represented by a monadic translation—though in our case we use
the writer monad rather than the state monad, since we do not give programs access to their
cost.

There are many approaches to type-based cost analysis (Crary & Weirich, 2000;
Hofmann & Jost, 2003; Jost et al., 2010; Hoffmann & Hofmann, 2010; Hoffmann et al.,
2012, 2017; Jost et al., 2017; Knoth et al., 2019, 2020; Avanzini & Dal Lago, 2017; Çiçek
et al., 2017; Wang et al., 2017; Dal Lago & Gaboardi, 2011; Handley et al., 2019; Rajani
et al., 2021). At a high level, these systems include special-purpose judgments or types
that track cost, indexed or refinement types that track the size of values, and a type check-
ing or inference mechanism that can automatically determine some resource bounds. For
example, the Automatic Amortized Resource Analysis (AARA) technique of Hoffmann
et al. (2012), Hoffmann et al. (2017), Jost et al. (2017), Hofmann & Jost (2003), Jost et al.
(2010), Hoffmann & Hofmann (2010), with an implementation at Hoffmann (2020), com-
putes cost bounds by introducing a type system with size information that is parameterized
by an integer degree, and then performing type inference. If inference is successful, then
the program cost can be bounded by a polynomial of at most that degree (and a bound is
reported); otherwise it cannot). As its name suggests, AARA automatically incorporates
amortization, resulting in tighter bounds for some programs than our extracted recurrences
yield (but see Cutler et al., 2020 for an extension of our approach to amortized analysis).
The basic AARA technique has been extended in numerous ways, e.g., with refinement
types (Knoth et al., 2019, 2020) for synthesizing programs with desired resource bounds,
and for more precise tracking of potential in values. The Timed ML system of Wang et al.
(2017) also uses refinement types (indexed types in the style of DML Xi & Pfenning,
1999) that permit the user to define datatypes with their own notion of size and to include
cost information in the program type. Type inference produces verification conditions that,
if solvable, validate the cost information. That cost information may be very concrete,
or left more open-ended, in which case the verification conditions end up synthesizing
(recurrence) relations that must be satisfied. Avanzini & Dal Lago (2017) develop a non-
amortized type-based analysis, which uses a translation similar to our recurrence extraction
to explicitly represent the cost as a unary numeral. As a result, the evaluation cost of the
original program is reflected in the size of the cost component of the translated program.
They then make use of an extension of sized types (Hughes et al., 1996) to infer a type for
the translated program, which therefore includes a bound on the cost in terms of the size
of the arguments.

All of these type-based approaches are impressive in the breadth of successful analy-
ses and/or automation thereof. However, we believe it is nonetheless worth studying cost
analysis by recurrence extraction for several reasons. First, the process of inferring bounds
using these specialized type systems and their associated solvers is not, in our opinion,
very easy for a person to do, while our focus is on formalizing the method that we read-
ily teach students to do. Second, automated approaches necessarily impose some limits
on the kinds of bounds that can be inferred and the notions of size that are supported to
facilitate inference (though Handley et al., 2019 also allows explicit proofs; see the dis-
cussion of techniques in proof assistants below). For example, AARA infers polynomial
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bounds, while our approach (adapted to the setting of general recursion) can produce recur-
rences with nonpolynomial solutions. Third, type-based approaches make the size and cost
an intrinsic feature of the code: in approaches based on refinement types, one must, for
example, define one tree type where size means number of nodes, and a different tree type
where size means height, which causes code duplication if both are necessary; in amor-
tized approaches, one must choose the potential annotations when defining a type (though
sometimes this can be mitigated by parametrizing the datatypes Knoth et al., 2020). In
our approach, cost and size are an extrinisic property of the code, so the same function
can be interpreted in different models with different notions of size for different analyses,
which can be useful, e.g., for a library function that is used in two different programs by
other functions that require two different notions of size. That said, this does not address
situations where two different notions of size for a type are needed in a single program—
one possible solution is a model in which the potential is the pair of these sizes, but this
would have similar reuse problems to changing a refinement type to include additional
information, in that all existing analyses would formally need to be modified.

Let us now consider work that, like ours, externalizes cost from programs that are typed
in a more-or-less standard type system. Avanzini et al. (2015) carefully defunctional-
ize higher order programs to first-order programs in order to take advantage of existing
techniques from first-order rewrite systems. This leverages existing technologies to great
effect, but does not match the kind of recurrence extraction that we are aiming for in this
work. The COSTA project (Albert et al., 2012) extracts cost recurrences from Java byte-
code; Albert et al. (2013) provide techniques for constructing closed forms for both lower
and upper bounds on these recurrences. This group has also pushed forward on parallel
cost (Albert et al., 2018), something that Raymond (2016) has looked into in our setting,
but the COSTA work has focused on first-order, low-level languages.

Cutler et al. (2020) adapt our technique to handle amortized analysis. Reinforcing our
goal of formalizing informal approaches, the source language there includes constructions
for describing a credit allocation policy (the banker’s method) and extraction of an amor-
tized cost recurrence, to which a general theorem applies that total amortized cost bounds
total actual cost. The language is sufficient for describing structures like splay trees in
which the number of credits allocated to different parts of the structure is not constant, and
the source language type system ensures that credits are not misused. The key point is that
the amortized cost recurrence is extracted into essentially the same recurrence language
as we have presented here, reflecting the fact that the recurrences that we use to describe
amortized cost do not themselves refer to credits.

Kavvos et al. (2020) give an approach to extending our technique to handle general
(as opposed to structural) recursion by using call-by-push-value (CBPV) (Levy, 2003)
as an intermediate source language into which both call-by-value and call-by-name can
be embedded. While CBPV includes a fine stratification of types into computational and
value types, analyzing a program still really just relies on notions of size and cost. Thus,
the syntactic recurrence language differs from the one just described only in replacing
primitive recursion with a general fixpoint operator, along with corresponding axioms for
the size order, thereby changing it from a version of System T with inductive types to a
version of PCF with inductive types.
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Atkey (2011), Guéneau et al. (2018), Charguéraud & Pottier (2019), and Zhan &
Haslbeck (2018) develop imperative program logics for reasoning about cost based on
separation logic, essentially by treating the number of timesteps taken as part of the heap.
A Coq or Isabelle implementation of these logics allows for reasoning about code, and the
subgoals that arise during verification result in synthesizing recurrence relations, which
play the role of our syntactic recurrences. While quite sophisticated algorithms and data
structures can be analyzed this way, including imperative ones, for analyzing functional
programs, we find it more congruous to use (and teach to students) standard functional
program verification techniques like inductive reasoning about outputs, as opposed to
imperative program verification techniques like weakest precondition/characteristic for-
mula generation. And as we note in Section 10, we conjecture that our approach extends
to the analysis of many imperative programs because the description of cost itself is
frequently a functional description.

Turning now to semi-automated/manual reasoning in a functional style, Danielsson
(2008) verifies a number of lazy functional programs in Agda using a dependent type
tracking the number of steps a program takes. McCarthy et al. (2018) investigate a vari-
ant, implemented in Coq, using a monad parametrized by both the number of steps and a
specification, given as a relation between the cost and value. The specifications are used
both for functional correctness and for reasoning about cost, and this design allows Coq’s
extraction to OCaml to erase all costs and reasoning about them. The library also provides
a source-to-source translation that translates simply typed code into the monad, inserting
appropriate ticks, which is analogous to our recurrence extraction. Radiček et al. (2017)
define a specification logic for reasoning about monadic costs as an extension of higher
order logic.

Benzinger’s (2004) ACA system might be the closest in philosophy to ours, in that it
extracts (higher order) recurrences from call-by-name NUPRL programs that bound the
cost of those programs. There we find (moderately complex) expressions that correspond
to applying higher order functions to arguments (necessarily alternating with projections)
to describe the cost of a fully applied function argument, corresponding to our notion of
higher-order potential. But this does not address more realistic call-by-value or call-by-
need evaluation.

Since these approaches (Benzinger, 2004; Danielsson, 2008; Radiček et al., 2017;
McCarthy et al., 2018) take place inside of a general-purpose logic or proof assistant, one
can express costs in terms of the sizes of inputs by explicitly referring to an appropriate
size function and proving how operations transform the size. Relative to this, a main con-
tribution of our approach is to systematize and partially automate the reasoning about size,
in the sense that our semantic interpretation of the potential of a function f gives a direct
inductive definition of the fused “size of the result of f on inputs of size –” function. This is
possible because we step outside of the programming language into a denotational setting
where, e.g., arbitrary maximums exist. We claim that this corresponds better to informal
analyses than using the full power of a proof assistant to carefully prove how functions
act on sizes, because the fused size-to-size function will simplify in ways that the original
function does not. For example, because in these models most or all contexts are monotone
in the size order, one can freely ignore branches whose size is dominated by another.
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10 Conclusions and further work

We have presented a technique for extracting cost-and-size recurrences from higher order
functional programs that provably bound the operational cost in terms of user-definable
notions of size, thereby giving a formal account of the process of many informal cost
analyses. The technique applies to the pure fragment of strict languages such as ML and
OCaml. Although we have not investigated the question carefully, it also seems that it
applies to much reasoning about imperative programs. The reason is that such analysis
often consists of extracting functional cost recurrences whose validity only depends on
the fact that certain imperative operations have certain costs. For example, the analysis
of many functions on an arrays depends on the fact that indexed access and update is
constant time. But the analysis does not typically result in a recurrence that even refers to
an array, much less destructively updates one. In our setting, we would either hard-code
the costs of access and update in the syntactic recurrence extraction or we would leave
those functions as identifiers and analyze the semantic recurrence under the assumption
that those identifiers are interpreted by constant-time functions. The de facto standard for
such reasoning is Separation Logic, and the work that ours seems closest to in spirit is that
of Zhan & Haslbeck (2018). Our goal would be to provide relatively simple approaches to
formalizing reasoning about many imperative programs. This is certainly speculative, and
we have not investigated how far one can push this idea before requiring the machinery of
something comparable to Separation Logic.

A natural direction to extend our work would be to handle cost analysis of lazy lan-
guages. Okasaki (1998) describes a technique of amortized analysis in which costs are
split into “shared” and “unshared” costs in order to correctly account for the memoization
of computations, and we believe our approach can be adapted to formalize this technique.
Hackett & Hutton (2019) show that lazy evaluation is a form of “clairvoyant” call-by-
value and that cost can be described nondeterministically rather than in terms of shared
and unshared costs. We hope to adapt our approach to yield corresponding recurrences,
especially as they actually compute costs via an interpretation in a denotational model that
appears to mesh nicely with our approach.

We have presented several models making use of different notions of size. It is no
surprise that it is easier to work in models with simpler notions of size, and we saw in
Section 7.4 that a simpler notion of size corresponds to a more abstract model. Formalizing
the connection between more abstract and more concrete models so that information from
the latter may be pulled into the former would improve the usefulness of this sort of
reasoning. This sounds like an analogy with safety and liveness theorems from abstract
interpretation, and this is probably a fruitful direction for further study. More complex
models should enable more sophisticated analysis. For example, the average case com-
plexity of deterministic quick-sort can be described by assuming a (uniform) probability
distribution on the inputs. That would seem to correspond to interpreting the usually
extracted recurrence in a model in which inductive types are interpreted by probability
distributions or random variables. Barnaby (2018) has made preliminary progress in this
direction, which indicates that it is probably necessary to have at least limited forms of
dependent typing in the recurrence language.

We have focused on the extraction of semantic recurrences to show that they are the
ones that are expected from informal analysis. We have not studied techniques for solving
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the semantic recurrences, which in general are higher order functions. Benzinger (2004)
discusses techniques for solving them by reducing them to first-order recurrence equations
and then using off-the-shelf solvers such as MATHEMATICA and OCRS (Kincaid et al.,
2017). Another fruitful direction would be to formalize the extracted semantic recurrences
in proof assistants and make use of the formalization of standard theorems like the Master
Theorem and of asymptotic reasoning as in Guéneau et al. (2018). This would permit a
formal development in a setting where complete automation is not possible.

The extraction of the syntactic recurrence is straightforward to implement, and a future
project is to produce an end-to-end tool from source code to semantic recurrence to solu-
tion. We know that automated cost analysis is a complex project that many have attempted,
and so this goal as stated is probably too ambitious, and we warn the reader that our
thoughts here are pies in the sky at the time of writing. Our vision is more along the
lines of an interactive system, in which recurrences are extracted and “easy” ones solved,
but allowing the user to step in to provide assertions (hopefully proved!) about the solu-
tions to difficult ones. Familiarity with recurrence extraction as a cost analysis technique
would hopefully lower the entry barrier of such a tool. We could also hope that that same
familiarity would enable users to work backward from an unexpectedly poor recurrence
to the code from which it results (cf. Benzinger, 2004). Wang & Hoffmann (2019) adapt
AARA to provide worst-case inputs that validate the tightness of the produced bounds,
which could be used to similar effect. Another direction such a project could take would
be to pull either the syntactic or the semantic information back as additional interface-level
components of a language library, so as to modularize cost reasoning and take advantage
of the compositionality of our approach. However, this is not so straightforward. One issue
that arises is that the denotation a type that is appropriate for analyzing an algorithm is not
necessarily the one that is appropriate for using it. For example, the recurrence extraction
approach works best to analyze binary search tree algorithms in terms of their heights, but
a client who uses a binary search tree implementation is probably more interested in under-
standing the cost in terms of the size. This is a setting in which composing recurrences does
not work as smoothly as we might hope. Understanding how to mesh them together, and
more generally how to hide analyses that possibly require more complex types (such as
those by Cutler et al., 2020) behind an interface, is ongoing work.
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1 Type preservation for the source language

Type preservation depends on the usual substitution lemmas.

Lemma 10. If �, x : ρ � e(θ − x) : σ and � v : ρ, then � � eθ{x 	→ v} : σ .

Lemma 11. If y : ρ � v′ : σ and � v : ρ, then v′{v/y} is a value and � v′{v/y} : σ .

We now have the type preservation theorem.

Theorem (Type preservation, Theorem 1).

1. If � eθ : σ and eθ ↓ v, then � v : σ .
2. If � (mapF y.v′′ into v′)θ : F[σ ] and mapF y.v′′ into v′ ↓ v, then � v : F[σ ].
3. If � mapvF y.v′′ into v′ : F[σ ] and mapvF y.v′′ into v′ ↓ v, then � v : F[σ ].

Proof The proof is a simultaneous induction on the height of the derivation that referred
to in each part. We give just a few of the more interesting cases, starting with part (1).

CASE: xθ ↓ θ (x). By the hypothesis, � xθ : σ , so by the typing rules for closures, there
must be some �′ such that �′(x)=∀�α.ρ and σ = ρ{�σ/�α}, and θ is a �′-environment. But
that means that in particular, � θ (x) : ρ{�σ/�α}, as required.

CASE: (case e of {x.ei}i=0,1)θ ↓ v. The typing must have the form

� � e : σ0 + σ1 {�, x : σi � ei : σ }i=0,1

� � case e of {x.ei}i=0,1 : σ θ a �-environment

� (case e of {x.ei}i=0,1)θ : σ

and the evaluation must have the form

eθ ↓ ιi (vi) eiθ{x 	→ vi} ↓ v

(case e of {x.ei}i=0,1)θ ↓ v

By definition � eθ : σ0 + σ1, so by the induction hypothesis, � ιi vi : σ0 + σ1, and hence
by inversion, � vi : σi. That means that θ{x 	→ vi} is a (�, x : σi)-environment, and hence
� eiθ{x 	→ vi} : σ . So by the induction hypothesis, � v : σ , as required.

CASE: (λx.e)θ ↓ (λx.e)θ . If � (λx.e)θ : σ → σ ′, then we must show that
� (λx.e)θ : σ → σ ′ as a value. For this we must show that � (λx.e)θ : σ → σ ′ as a

closure, which is precisely the hypothesis we started with.

CASE: (e0 e1)θ ↓ v. The typing has the form

� � e0 : ρ→ σ � � e1 : ρ
� � e0 e1 : σ θ a �-environment

� (e0 e1)θ : σ

and the evaluation has the form

e0θ ↓ (λx.e′0)θ ′0 e1θ ↓ v1 e′0θ
′
0{x 	→ v1} ↓ v

(e0 e1)θ ↓ v
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Since θ is a �-environment, � e0θ : ρ→ σ , so by the induction hypothesis,
� (λx.e′0)θ ′0 : ρ→ σ and similarly � v1 : ρ. By definition we have that there is some �′

such that �′ � λx.e′0 : ρ→ σ and θ ′0 is a �′-environment; by inversion we have
that �′, x : ρ � e′0 : σ . Since � v1 : ρ, θ ′0{x 	→ v1} is a (�′, x : ρ)-environment, and so
� e0θ

′
0{x 	→ v1} : σ , and so by the induction hypothesis, � v : σ , as required.

CASE: (foldδ e′ of x.e)θ ↓ v. The typing must have the form

� � e′ : δ �, x : F[σ susp]� e : σ

� � foldδ e′ of x.e : σ θ a �-environment
� (foldδ e′ of x.e)θ : σ

and the evaluation must have the form

e′θ ↓ cδ v′ mapvF y.(delay (foldδ y of x.e))θ into v′ ↓ v′′ eθ{x 	→ v′′} ↓ v

(foldδ e′ of x.e)θ ↓ v

where without loss of generality we assume y /∈ dom � and y /∈ dom θ .
By the assumptions and induction hypothesis, � cδ v′ : δ, and so by
inversion, � v′ : F[δ]. From �, x : F[σ susp]� e : σ , we conclude that
�, y : δ � delay (foldδ y of x.e) : σ susp. Since θ is a �-environment, we conclude
that y : δ � (delay (foldδ y of x.e))θ : σ susp. These two judgments allow us to conclude
that � mapvF y.(delay (foldδ y of x.e))θ into v′ : F[σ susp], so by the induction
hypothesis applied to the evaluation of the mapv expression, � v′′ : F[σ susp]. That means
that θ{x 	→ v′′} is a (�, x : F[σ susp])-environment, and so by the induction hypothesis
applied to the evaluation of eθ{x 	→ v′′}, � v : σ , as required.

For (2), suppose (mapF y.v′ into e)θ ↓ v. The typing must have the form

y : ρ � v′ : σ � � e : F[ρ]

� � mapF y.v′ into e : F[σ ] θ a �-environment

� (mapF y.v′ into e)θ : F[σ ]

and the evaluation the form

eθ ↓n v′′ mapvF y.v′ into v′′ ↓ v

(mapF y.v′ into e)θ ↓n v

As in previous cases, � v′′ : F[ρ], and so � mapvF y.v′ into v′′ : F[σ ], and so the result
follows from the induction hypothesis applied to this mapv expression.

We now prove (3).

CASE: mapvt y.v′ into v ↓ v′{v/y}. From the typing assumption, we have that
y : ρ � v′ : σ and � v : ρ, so the result follows from Lemma 11.

CASE: mapvρ→F y.v′ into (λx.e)θ ↓ (λx.mapF y.v′ into e)θ . The typing must have the
form
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y : ρ � v′ : σ

�, x : ρ � e : F[ρ ′]
� � λx.e : ρ→ F[ρ ′] θ a �-environment

� (λx.e)θ : ρ→ F[ρ ′]
� mapvρ→F y.v′ into (λx.e)θ : ρ→ F[σ ′]

Thus, we obtain a typing of the value as

y : ρ ′ � v′ : σ �, x : ρ � e : F[ρ ′]
�, x : ρ � mapF y.v′ into e : F[σ ]

� � λx.mapF y.v′ into e : ρ→ F[σ ] θ a �-environment

� (λx.mapF y.v′ into e)θ : ρ→ F[σ ]

�

2 Typeability of extracted recurrences

In this appendix we prove that extracted recurrences are typeable. It is worth remember-
ing that 〈〈ρ→ σ 〉〉 = 〈〈ρ〉〉→ ‖σ‖, so extraction “commutes” with type substitution in the
expected way.

Lemma 12. 〈〈ρ{�σ/�α}〉〉 = 〈〈ρ〉〉{ �〈〈σ 〉〉/�α}. Since shape functors are a subset of types, this
implies that 〈〈F{�σ/�α}〉〉 = 〈〈F〉〉{ �〈〈σ 〉〉/�α} and 〈〈F[ρ]〉〉 = 〈〈F〉〉[〈〈ρ〉〉]

Lemma 13. If �, x : τ ′ � e : τ and � � e′ : τ ′, then � � e{e′/x} : τ .

Lemma 14. If � � c : C and � � e : ‖σ‖, then � � c+c e : ‖σ‖.

Proposition (Typeability of extracted recurrences, Prop. 1). If � � e : σ is in the core
language, then 〈〈�〉〉 � ‖e‖ : ‖σ‖.

Proof The proof is by induction on the derivation of � � e : σ ; we just do a few of the
cases, since they are all fairly routine.

CASE: �, x : ∀�α.ρ � x : ρ{�σ/�α}. ‖x‖ = (0, x,) and ‖ρ{�σ/�α}‖ = C× 〈〈ρ{�σ/�α}〉〉 =
C× 〈〈ρ〉〉{ �〈〈σ 〉〉/�α}; the recurrence language typing is

〈〈�〉〉, x : ∀�α.〈〈ρ〉〉 � 0 : C

〈〈�〉〉, x : ∀�α.〈〈ρ〉〉 � x : ∀�α.〈〈ρ〉〉
〈〈�〉〉, x : ∀�α.〈〈ρ〉〉 � x : 〈〈ρ〉〉{ �〈〈σ 〉〉/�α}

〈〈�〉〉, x : ∀�α.〈〈ρ〉〉 � (0, x) : C× 〈〈ρ〉〉{ �〈〈σ 〉〉/�α}
CASE: � � λx.e : ρ→ σ . ‖ρ→ σ‖ = C× (〈〈ρ〉〉→ ‖σ‖) and we have �, x : ρ � e : σ , so
by the induction hypothesis, 〈〈�〉〉, x : 〈〈ρ〉〉 � ‖e‖ : ‖σ‖ and hence

� � 0 : C
〈〈�〉〉, x : 〈〈ρ〉〉 � ‖e‖ : ‖σ‖

� � λ(x : 〈〈ρ〉〉).‖e‖ : 〈〈ρ〉〉→ ‖σ‖
〈〈�〉〉 � (0, λ(x : 〈〈ρ〉〉).‖e‖) : C× (〈〈ρ〉〉→ ‖σ‖)
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CASE: � � foldδ e′ of x.e : σ . The typing derivation has the form

� � e′ : δ �, x : F[σ susp]� e : σ

� � foldδ e′ of x.e : σ

so by the induction hypothesis 〈〈�〉〉 � ‖e′‖ : C× 〈〈δ〉〉 and 〈〈�〉〉, x : 〈〈F〉〉[‖σ‖]� ‖e‖ : ‖σ‖.
Writing (c′, p′) for ‖e′‖, by inversion we have that 〈〈�〉〉 � c′ : C and 〈〈�〉〉 � p′ : 〈〈δ〉〉.
We must show that 〈〈�〉〉 � c′ +c fold〈〈δ〉〉 p′ of (x : 〈〈F〉〉[‖σ‖]).1+c ‖e‖ : ‖σ‖. This follows
directly from the typings given by the induction hypothesis, making use of the fact that
〈〈F{η}〉〉 = 〈〈F〉〉{ �〈〈σ 〉〉/�α} and Lemma 14.

CASE: � � let x= e′ in e : σ . The typing derivation has the form

� � e′ : ρ �, x : ∀�α.ρ � e : σ �α /∈ ftv(�)

� � let x= e′ in e : σ

The induction hypothesis tells us that 〈〈�〉〉 � ‖e′‖ : ‖ρ‖, so if ‖e‖′ = (c′, p′), then
〈〈�〉〉 � c′ : C and 〈〈�〉〉 � p′ : 〈〈ρ〉〉. From the latter we conclude that 〈〈�〉〉 � ��α.p′ : ∀�α.〈〈ρ〉〉
because �α /∈ ftv(�) implies that �α /∈ ftv(〈〈�〉〉). The induction hypothesis also tells
us that 〈〈�〉〉, x : ∀�α.〈〈ρ〉〉 � ‖e‖ : ‖σ‖. Together with Lemma 13 we conclude that
〈〈�〉〉 � ‖e‖{��α.p′/x} : ‖σ‖ and so Lemma 14 yields the desired conclusion.

�

3 The syntactic bounding theorem

In this appendix, we prove the syntactic bounding theorem (Theorem 5). The proof relies
on two lemmas that describe bounding for mapv and fold expressions.

Lemma 15 (Syntactic bounding for mapv). Suppose ftv(F)⊆ {t} and that the following all
hold:

1. y : ρ � v′ : σ and y : 〈〈ρ〉〉 � E′ : 〈〈σ 〉〉.
2. � v : F[ρ] and E :: v �val

F[ρ] E;
3. If � w0 : ρ and E0 :: w0 �val

ρ E0 is a subderivation of E then v′{w0/y} �val
σ E′{E0/y};

4. mapvF y.v′ into v ↓ v′′.

Then v′′ �val
F[σ ] (〈〈F〉〉)[(y : 〈〈ρ〉〉).E′, E].

Proof The proof is by induction on F.

CASE: F = t. Assumption (4) tells us that v′′ = v′{v/y}, so we must show that
v′{v/y} �val

σ E′{E/y}, which follows from assumption (3), taking v0 and E0 to be v and E,
respectively.

CASE: F = τ0. Assumption (4) tells us that v′′ = v, so we must show that v �val
τ0

E, which
follows from assumption (2).
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CASE: F = F0 × F1. Assumption (2) and inversion tells us that v = (v0, v1), and assump-
tion (4) tells us that v′′ = (v′′0 , v′′1 ), where

{mapvFi
y.v′ into vi ↓ v′′i }i=0,1

mapvF0×F1
y.v′ into (v0, v1) ↓ (v′′0 , v′′1 )

We must show that (v′′0 , v′′1 )�val (〈〈F0〉〉[(y : 〈〈ρ〉〉).E′, π0 E], 〈〈F1〉〉[(y : 〈〈ρ〉〉).E′, π1 E]), for
which it suffices to show that v′′i �val 〈〈Fi〉〉[(y : 〈〈ρ〉〉).E′, πi E] for i= 0, 1. To do so, we
apply the induction hypothesis taking Fi for F, vi for v, πi E for E, and v′′i for v′′. Verifying
the assumptions is straightforward, noting that (3) follows because the derivation that
vi �val πi E is a subderivation of (v0, v1)�val E.

CASE: F = F0 + F1. Assumption (2) and inversion tells us that v = ιi vi, where there is Ei

such that vi �val Ei and ιi Ei ≤〈〈Fi〉〉[ρ] E. Assumption (4) tells us that v′′ = ιi v
′′
i , where

mapvFi
y.v′ into vi ↓ v′′i

mapvF0+F1
y.v′ into ιi vi ↓ ιi v

′′
i

We must show that

ιi v
′′
i �val case E of {(x : 〈〈Fi〉〉[〈〈ρ〉〉]).ιi (〈〈Fi〉〉[(y : 〈〈ρ〉〉).E′, x]}i=0,1.

Let us write E∗ for the right-hand side. Now we must show that there is E′′i such that
v′′i �val E′′i and ιi E′′i ≤ E∗. We apply the induction hypothesis taking Fi for F, vi for v, Ei

for E, and v′′i for v′′ to conclude that v′′i �val E′′i where E′′i = 〈〈Fi〉〉[(y : 〈〈ρ〉〉).E′, Ei], and we
notice that

ιi E′′i = ιi (〈〈Fi〉〉[(y : 〈〈ρ〉〉).E′, Ei])

≤ case ιi Ei of {(x : 〈〈Fi〉〉[〈〈ρ〉〉]).ιi (〈〈Fi〉〉[(y : 〈〈ρ〉〉).E′, x]}i=0,1

≤ E∗

as required. The assumptions for the induction hypothesis are straightforward to ver-
ify, noting that (3) follows because the derivation that vi �val Ei is a subderivation of
ιi vi �val E.

CASE: F = τ0 → F0. Assumption (2) and inversion tells us that v = (λx.e)θ , and assump-
tion (4) tells us that v′′ = (λx.mapF y.v′ into e)θ . We must show that

(λx.mapF y.v′ into e)θ �val 〈〈τ0 → F0〉〉[(y : 〈〈ρ〉〉).E′, E]

= λ(x : 〈〈τ0〉〉).((E x)c, 〈〈F0〉〉[(y : 〈〈ρ〉〉).E′, (E x)p]).

To do so, fix v1 �val
τ0

E1; it suffices to show that
(mapF y.v′ into e)θ{x 	→ v1} �F[ρ] ((E E1)c, 〈〈F〉〉[(y : 〈〈ρ〉〉).E′, (E E1)p]). The evaluation of
the left-hand side has the form

eθ{x 	→ v1} ↓n w′ mapvF y.v′ into w′ ↓w

(mapF y.v′ into e)θ{x 	→ v1} ↓n w

so by Lemma 4 it suffices to show that n≤ (E E1)c and w�val 〈〈F〉〉[(y : 〈〈ρ〉〉).E′, (E E1)p].
Recalling that v= (λx.e)θ and v �val E by assumption (2), we have that
eθ{x 	→ v1} � E E1, and hence n≤ (E E1)c (our first obligation) and w′ �val (E E1)p.

https://doi.org/10.1017/S095679682200003X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200003X


68 N. Danner and D. R. Licata

To show that w�val 〈〈F〉〉[(y : 〈〈ρ〉〉).E′, (E E1)p] we apply the induction hypothesis taking
F0 for F, w′ for v, (E E1)p for E, and w for v′′. Assumptions (1), (2), and (4) are
straightforward to verify. For assumption (3), suppose that � w0 : ρ and E0 :: w0 �val E0 is
a subderivation of E ′ :: w′ �val (E E1)p. We need to show that v′{w0/y} �val E′{E0/y}. To
do so, it suffices to show that E0 is a subderivation of E :: v �val E, and for this it suffices
to show that E ′ is a subderivation of E . This follows from examining E :

· · ·
eθ{x 	→ v1} ↓n w′ n≤ (E E1)c

E ′

w′ �val (E E1)p

eθ{x 	→ v1} � E E1 · · ·
(λx.e)θ �val E

�

Lemma 16 (Syntactic bounding for fold). Suppose the following all hold:

1. (�, x : F[σ susp]� e : σ )�σ (〈〈�〉〉, x : 〈〈F[σ susp]〉〉 � E : ‖σ‖;
2. θ �val

�−x 
 (w.l.o.g., x /∈ dom 
);
3. v′ �val

δ E′.

Then (foldδ y of x.e)θ{y 	→ v′} �σ fold〈〈δ〉〉 E′ of (x : 〈〈F〉〉[‖σ‖]).1+c E{
}.

Proof The proof is by induction on the derivation of assumption (3), which necessarily
ends with the rule

v′ �val
F,δ E′′ c〈〈δ〉〉 E′′ ≤〈〈δ〉〉E′

cδ v′ �val
δ E′

To reduce notational clutter, we will write E∗[z] for fold〈〈δ〉〉 z of (x : 〈〈F〉〉[‖σ‖]).1+c E{
},
so we must show that (foldδ y of x.e)θ{y 	→ cδ v′} � E∗[E′]. Using the axioms for ≤, we
have that E∗[E′]≥ E∗[c〈〈δ〉〉 E′′]≥ 1+c E{
}{〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′]/x}. The evaluation
of interest has the form

yθ{y 	→ cδ v′} ↓0 cδ v′ mapvF y.(delay (foldδ y of x.e))θ into v′ ↓ v′′ eθ{x 	→ v′′} ↓n v

(foldδ y of x.e)θ{y 	→ cδ v′} ↓n+1 v

We apply Lemma 15 by taking F for F, δ for ρ, (delay (foldδ y of x.e))θ
for v′, E∗[y] for E′, v′ for v, E′′ for E, and v′′ for v′′ (we verify the
assumptions momentarily) to conclude that v′′ �val 〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′],
so by (2), θ{x 	→ v′′} �val

� 
{〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′]/x} and so by (1),
eθ{x 	→ v′′} � E{
{〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′]/x}}. This tells us that

1+ n≤ 1+ (E{
{〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′]/x}})c

= (1+c E{
{〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′]/x}})c

≤ (E∗[E′])c

and

v �val (E{
{〈〈F〉〉[(y : 〈〈δ〉〉).E∗[y], E′′]/x}})p

≤ (E∗[E′])p

as needed.
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We just need to verify the assumptions of Lemma 15:

1. y : δ � (delay (foldδ y of x.e))θ : σ susp and y : 〈〈δ〉〉 � E∗[y] : 〈〈σ susp〉〉.
2. � v′ : F[δ] and v′ �val E′′ with derivation E .
3. If � w0 : δ and E0 :: w0 �val E0 is a subderivation of E , then

(delay (foldδ y of x.e))θ{y 	→w0} �val E∗{E0/y}.
4. mapvF y.(delay (foldδ y of x.e))θ into v′ ↓ v′′

(1), (2), and (4) are immediate. Under the assumptions of (3), we must show that
(foldδ y of x.e)θ{y 	→w0} � E∗{E0/y}. Since E0 is a subderivation of E , the main induc-
tion hypothesis applies. �

Theorem (Syntactic bounding theorem, Thm. 5). If � � e : σ is in the core language, then
(� � e : σ )�σ (〈〈�〉〉 � ‖e‖ : ‖σ‖).

Proof The proof is by induction on � � e : τ . Most cases proceed by showing that
e� (c, p) for some c and p, where e ↓n v. By (β×), c≤ (c, p)c and p≤ (c, p)p, so it suffices
to show that n≤ c and v �val p, and we take advantage of this fact silently.

CASE: �, x : ∀�α.σ � x : σ {�σ/�α}. Fix θ �val
�,x:∀�α.σ 
; we must show that xθ �σ {�σ/�α}

(0, x){
} = (0, 
(x)). The evaluation of xθ has the form

xθ ↓0 θ (x)

The cost bound is immediate. For the value bound we must show that θ (x)�val
σ {�σ/�α} 
(x).

This follows from the definition of θ �val
�,x:∀�α.σ 
.

CASE: � � ( ) : unit. Fix θ �val
� 
; we must show that ( )θ �unit (0, ( )){
} = (0, ( )).

The evaluation of ( )θ has the form

( )θ ↓0 ( )

and we have that (cost) 0≤ 0 and (value) ( )�val ( ) by the definition of �val
unit.

CASE: � � (e0, e1) : σ0 × σ1. Fix θ �val
� 
; we must show that (e0, e1)θ �

(c0 + c1, (p0, p1)){
} = ((c0 + c1){
}, (p0, p1){
}), where ‖ei‖ = (ci, pi). The evaluation
of (e0, e1)θ has the form

e0θ ↓n0 v0 e1θ ↓n1 v1

(e0, e1)θ ↓n0+n1 (v0, v1)

Cost ni ≤ ci{
} by the IH so n0 + n1 ≤ c0{
} + c1{
} = (c0 + c1){
}.
Value vi �val pi{
} by the IH so (v0, v1)�val (p0{
}, p1{
})= (p0, p1){
} by the
IH.

CASE: � � πi e : σi. Fix θ �val
� 
; we must show that (πi e)θ � (c, πi p){
} =

(c{
}, (πi p){
}), where ‖e‖ = (c, p). The evaluation of (πi e)θ has the form

eθ ↓n (v0, v1)
(πi e)θ ↓n vi
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Cost n≤ (c){
} by the IH.
Value (v0, v1)�val p{
} by the IH, so vi �val πi (p{
})= (πi p){
} by the definition
of �val

σ0×σ1
.

CASE: � � ιi e : σ0 + σ1. Fix θ �val
� 
; we must show that (ιi e)θ � (c, ιi p){
} =

(c{
}, (ιi p){
}), where ‖e‖ = (c, p). The evaluation of (ιi e)θ has the form
eθ ↓n v

(ιi e)θ ↓n ιi v

Cost n≤ c{
} by the IH.
Value v �val p{
} by the IH, and ιi (p{
})≤ ιi (p{
}), so ιi v �val ιi (p{
})=
(ιi p){
} by the definition of �val

σ0+σ1
.

CASE: � � case e of {x.ei}i=0,1 : σ . Fix θ �val
� 
; we must show

that (case e of {x.ei}i=0,1)θ � (c+c case p of {(x : 〈〈σi〉〉).(ci, pi)}i=0,1){
} =
c{
} +c case p{
} of {(x : 〈〈σi〉〉).(ci, pi){
− x}}i=0,1, where ‖e‖ = (c, p) and ‖ei‖ = (ci, pi).
The evaluation of (case e of {x.ei}i=0,1)θ has the form

eθ ↓n ιi v eiθ{x 	→ v} ↓ni vi

(case e of {x.ei}i=0,1)θ ↓n+ni vi

By the IH for e, ιi v �val p{
}, so there is some E′ such that v �val E
′

and ιi E′ ≤
p{
}. If we set θ ′ = θ{v 	→ x} and 
′ =
{E′/x}, then θ ′ �val 
′, so by the IH for ei,
eiθ

′ � (ci{
′}, pi{
′}). Since ιi E′ ≤ p{
}, we have

(ci{
′}, pi{
′})= (ci, pi){
′}
≤ case ιi E′ of {(x : 〈〈σi〉〉).(ci, pi){
− x}}i=0,1

≤ case p{
} of {(x : 〈〈σi〉〉).(ci, pi){
− x}}i=0,1

and so

(c{
} + ci{
′}, pi{
′})= c{
} +c (ci{
′}, pi{
′})
≤ c{
} +c case p{
} of {(x : 〈〈σi〉〉).(ci, pi){
− x}}i=0,1

which we use to complete the next set of calculations.

Cost n≤ c{
} and ni ≤ ci{
′}, so

n+ ni ≤ c{
} + ci{
′}
≤ (c{
} + ci{
′}, pi{
′})c

≤ (c{
} +c case p{
} of {(x : 〈〈σi〉〉).(ci, pi){
− x}}i=0,1)c.

Value

vi �val pi{
′}
≤ (c{
} + ci{
′}, pi{
′})p

≤ (c{
} +c case p{
} of {(x : 〈〈σi〉〉).(ci, pi){
− x}}i=0,1)p.

CASE: � � λx.e : σ ′ → σ . Fix θ �val
� 
; we must show that (λx.e)θ �

(0, λ(x : 〈〈σ ′〉〉).‖e‖){
} = (0, λ(x : 〈〈σ ′〉〉).‖e‖{
− x}). The evaluation of (λx.e)θ has
the form
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(λx.e)θ ↓0 (λx.e)θ

so the cost claim is immediate.

Value Fix any v′ �val E′. We must show that
eθ{x 	→ v′} � (λ(x : 〈〈σ ′〉〉).‖e‖{
− x})E′; by definition, (β→), and Weakening,
it suffices to show that eθ{x 	→ v′} � ‖e‖{
{x 	→ E′}}. Since θ �val 
 and v �val E′,
this follows from the induction hypothesis.

CASE: � � e0 e1 : σ . Fix θ �val 
. We must show that (e0 e1)θ � ((c0 + c1)+c p0 p1){
},
where ‖ei‖ = (ci, pi). The evaluation of (e0 e1)θ has the form

e0θ ↓n0 (λx.e′0)θ ′ e1θ ↓n1 v1 e′0θ
′{x 	→ v1} ↓n v

(e0 e1)θ ↓n0+n1+n v

By the IH, n0 ≤ c0{
}, (λx.e′0)θ ′ �val p0{
}, n1 ≤ c1{
}, and v1 �val p1{
}. By def-
inition of �val, e′0θ

′{x 	→ v1} � (p0{
})(p1{
})= (p0 p1){
}, so n≤ ((p0 p1){
})c and
v �val ((p0 p1){
})p.

Cost n0 + n1 + n≤ c0{
} + c1{
} + ((p0 p1){
})c ≤ (((c0 + c1)+c p0 p1){
})c.
Value v �val ((p0 p1){
})p ≤ (((c0 + c1)+c p0 p1){
})p.

CASE: � � delay e : σ susp. Fix θ �val 
. We must show that (delay e)θ �
(0, ‖e‖){
} = (0, ‖e‖{
}). The evaluation of (delay e)θ has the form

(delay e)θ ↓0 (delay e)θ

so (cost) 0≤ 0 and (value) since eθ � ‖e‖{
} by the IH, (delay e)θ �val ‖e‖{
} by the
definition of �val

σ susp.

CASE: � � force e : σ . Fix θ �val 
. We must show that (force e)θ � (c+c p){
},
where ‖e‖ = (c, p). The evaluation of (force e)θ has the form

eθ ↓n (delay e′)θ ′ e′θ ′ ↓n′ v

(force e)θ ↓n+n′ v

By the IH, n≤ c{
} and (delay e′)θ ′ �val p{
}, so by definition of �val, e′θ ′ � p{
} and
hence n′ ≤ (p{
})c and v �val (p{
})p. So (cost) n+ n′ ≤ c{
} + p{
}c ≤ ((c+c p){
})c

and (value) v �val p{
}p ≤ ((c+c p){
})p.

CASE: � � cδ e : δ. Fix θ �val 
. We must show that (cδ e)θ � (c, c〈〈δ〉〉 p){
}, where
‖e‖ = (c, p). The evaluation of (cδ e)θ has the form

eθ ↓n v

(cδ e)θ ↓n cδ v

Cost n≤ c{
} by the IH.
Value By the IH we have that v �val

〈〈F[δ]〉〉 p{
}, and so by Lemma 2, v �val
F,δ p{
}.

Since c〈〈δ〉〉 p≤ c〈〈δ〉〉 p, the value bound follows by definition of �val
δ .
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CASE: � � dδ e : F[δ]. Fix θ �val 
. We must show that (dδ e)θ � (c, d〈〈δ〉〉 p){
} =
(c{
}, d〈〈δ〉〉 (p{
})), where ‖e‖ = (c, p). The evaluation of (dδ e)θ has the form

eθ ↓n cδ v

(dδ e)θ ↓n v

Cost n≤ c{
} by the IH.
Value By the IH, cδ v �val p{
}, and so by definition of �val

δ , there is E such that
v �val

F,δ E and c〈〈δ〉〉 E≤ p{
}. This latter fact along with the axioms for ≤ tell us that
E≤ d〈〈δ〉〉 (c〈〈δ〉〉 E)≤ d〈〈δ〉〉 (p{
}).

CASE: � � foldδ e′ of x.e : σ . The type derivation has the form

� � e′ : δ �, x : F[σ susp]� e : σ

� � foldδ e′ of x.e : σ

Fix θ �val
� 
 and without loss of generality assume that x /∈ dom � ∪ dom θ ∪ dom 
;

we must show that (foldδ e′ of x.e)θ � c′ +c fold〈〈δ〉〉 p′ of (x : 〈〈F〉〉[‖σ‖]).1+c ‖e‖ where
‖e′‖ = (c′, p′). The evaluation of (foldδ e′ of x.e)θ has the form

e′θ ↓n′ cδ v′ mapvF y.(delay (foldδ y of x.e))θ into v′ ↓ v′′ eθ{x 	→ v′′} ↓n v

(foldδ e′ of x.e)θ ↓n′+n+1 v

and so the following is also an evaluation, where we write θ ′ for θ{z 	→ cδ v′}:

zθ ′ ↓0 cδ v′ mapvF y.(delay (foldδ y of x.e))θ ′ into v′ ↓ v′′ eθ ′{x 	→ v′′} ↓n v

(foldδ z of x.e)θ ′ ↓n+1 v

The IH for e′ tells us that n′ ≤ c′{
} and cδ v′ �val p′{
}; combined with the IH for e,
Lemma 16 tells us that (foldδ z of x.e)θ ′ � fold〈〈δ〉〉 p′{
} of (x : 〈〈F〉〉[‖σ‖]).1+c ‖e‖{
} as
required.

CASE: � � let x= e′ in e : σ . The type derivation has the form

� � e′ : σ ′ �, x : ∀�α.σ ′ � e : σ �α not free in any �(y)

� � let x= e′ in e : σ

Fix θ �val
� 
 and without loss of generality assume x is fresh for �, θ , and 
 and that no

αi is free in any 
(y). We must show that (let x= e′ in e)θ � (c′ +c ‖e‖{��α.p′/x}){
} =
c′{
} +c ‖e‖{
}{��α.p′{
}/x} where ‖e′‖ = (c′, p′). The evaluation has the form

e′θ ↓n′ v′ eθ{x 	→ v′} ↓n v

(let x= e′ in e)θ ↓n′+n v

The IH for e′ tells us that n′ ≤ c′{
} and v′ �val
σ ′ p′{
}. If we can show

that v′ �val
∀�α.σ ′ ��α.p′{
}, then the induction hypothesis applied to e provides the
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remaining pieces of the argument. For this we need to show that for any
closed �ρ, v′ �val

σ ′{ �ρ/�α} (��α.p′{
}) 〈〈 �ρ〉〉, and by (β∀) and weakening, it suffices to show

v′ �val
σ ′{ �ρ/�α} p′{
}{〈〈 �ρ〉〉/�α}. This in turn requires us to show that if ftv(σ )= {�α, �β}, then

for any closed �ρ ′, v′ �val
σ ′{ �ρ, �ρ′/�α, �β} p′{
}{〈〈 �ρ, �ρ ′〉〉/�α, �β}, which follows from the fact that

v′ �val
σ ′ p′{
}.

�
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