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ON THE CLASS NUMBER OF A UNIT LATTICE OVER
A RING OF REAL QUADRATIC INTEGERS

YOSHIO MIMURA

§1. Introduction

Let K be a totally real algebraic number field. In a positive definite
quadratic space over K a lattice E, is called a unit lattice of rank n if
E, has an orthonormal basis {e, ---,e,}. The class number one problem
is to find n and K for which the class number of E, is one. Dzewas
([1]), Nebelung ([3]), Pfeuffer ([6], [7]) and Peters ([5]) have settled this
problem. The present state of this problem is: If n > 3, then the class
number of E, is one if and only if “K =Q, n < 8", “K = Q(W 2), n < 4",
“K=Q(W5),n<4”, “K=QWIT), n =3", “K = K*, n=3" or “K = K,
n = 37, where @ is the rational number field and K (resp. K®) is the
unique totally real cubic number field with discriminant 49 (resp. 148).
The class number two problem has been studied by Pohst ([10]), who gets
a nearly complete result for n > 4: If n > 4, then the class number of
E, is two only if “K =K“, n=4" or “K=Q(/5),n =25,6,7", and the
class number of E, is two in the first two cases. Pfeuffer ([8]) has shown
that the class number of E, is three for K = Q(v'5) and n = 6. In the
special case that K is a real quadratic field, it remains to consider the
class number of E, over K (+Q(v 2), QIW'5), Q(17)).

All former proofs of the “only if” assertions and nearly all proofs
of the class number one (or two) for special fields K and special n use
the Siegel Mass Formula. On the other hand we have another method
by which Kneser ([2]) has found the class number of E, for Q. Using
this method Salamon ([11]) has found the first result for Q(+/3). In this
paper we shall prove the following theorem by using the Kneser method.

TuEOREM. In the case of real quadratic fields, the class number of
E, (with n = 3) is two if and only if
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QW'2),
QW'3),
QW5),
QW13),
Q(W33),
QW41) ,

The class number of E, is a monotone increasing function of n for
a fixed K ([4], 105:1). In Section 2 we discuss some properties of adjacent
lattices. In Section 3 we find some special adjacent lattices to E, and
prove that the class number of E, is more than two unless K is one of
the exceptional eight fields (cf. Proposition 8). In Section 4 we treat
the above exceptional cases and determine the class number by using
the Kneser method. The notation used in this paper will generally be
those of [4].
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§2. Adjacent lattices

Let p be an odd prime number. Put
A;=:§a“-~,mge2ﬂ;i:@EEOnmdp,mn--uagez<a--30)nmdp},
i=1

where Z is the ring of rational integers. We define an equivalence

relation ~ on AZ:(a,, ---,a,) ~ (b, ---,b,) if and only if there is a per-
mutation {1, 2, ---,n’} of {1,2,---,n} and an integer c prime to p such
that b2 = ca? modp for all i. In each equivalence class we can choose
a representative (a,, - - -, a,) satisfying
Oéaléazé"' éan
and
DI I
=1 i=1
for all (b, ---,b,) in the class. By R} we denote the set of the above
representatives. Let (a,,---,a,) and (b, ---,b,) be in the same class
and (a,, ---,0a,) € R;. We define the norm and the type of (b, ---,b,) (or
the class):
1 n
N(b,, -+, b,) = — 3. 0}
p i=1
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=1

T(bl’ "':bn) = mm{znlcf, iczbz =0 mOdp, (Cn "‘)cn) :r& (0’ ,0)} .

It is easy to prove the following

ProrositioN 1. The number of the equivalence classes of the specified
type T in A} is as follows:

| T:l{ T=2 | T=3 | T=4 |
p= 3 j o | 1 o | 0 }
p= 1mod24 | 1 1 1 | (p-25)/24 |
p= 5 mod?24 ; 1 5 0 0 -5 |
= Tmod24 | 0 | 0 1 (p— T)/24 |
p=1lmod24 | 0 | 1 0 | (p—11)/24
p =13 mod 24 } 1 0 1 (p-13)/24
p=17 mod24 | 1 ' 1 0 (p-1n/24
p =19 mod24 o | 1 ’ 1 (p-19)/24
p =23 mod 24 ’ o | o | 0o | @+t |

Moreover if the type is one or two, then the norm is one.

Let K = Q(WD) be a real quadratic field over Q with a square-free
rational integer D and o be the ring of integers in K. By genL we
denote the genus containing a lattice L in a quadratic space V over K.
A lattice L is said to be even if @(L) < 20. For vectors x,,---, %, in
V, [x, - -, x,] denotes the lattice generated by {x,, ---, x,,} over o.

Let a be a non-zero ideal of o and L be a unimodular lattice in
V. For xea 'L such that Q(x) eo, we put

L(x) = ox + {ze L; B(x, 2) €0},
which is called an a-adjacent lattice to L (Cf. [2]). The following Lemmas
1-4 are valid.

LEMMA 1. Let L be a unimodular lattice and L(x) be an a-adjacent
lattice to L. Then L(x) is unimodular. If a is prime to 20 or L(x), ~
L, for any dyadic spot p, then an a-adjacent lattice to L belongs to gen L.

LemMmA 2. Let L be a unimodular lattice in V, and L(x) and L(x')
two a-adjacent lattices to L. If B(x,x)eo and x — 7x’ € L for some 7 co
prime to a, then L(x) = L(x').

LEmMA 3. Let L be a unimodular lattice in V and L(x) and L(x')
be two a-adjacent lattices to L. If ¥’ = ox for some ¢ in O(L), then L(x)
~ L(x').
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Lemma 4. Let L be a unimodular lattice in V and L(x) be an a-
adjacent lattice to L. If there is a vector w in L such that 2/Q(x — w)
and (Q(x) — Qw))/Q(x — w) are in a, then L(x) ~ L.

Lemma 5. Let p be an odd prime number dividing D and p a prime
ideal dividing p. Then a p-adjacent laitice to E, is isometric to some
E.(x) with x = (WD [p) X7, ae, and (a,, - -+, a,) e R: U {(O, - - -, 0)}.

Proof. Note that po = §* and of/p =~ Z/pZ. Take an element z =
n e, ep'E, with Q@) eo. We can find ¢, ¢ Z such that

VDo, = Eai mod p
b

since ¥Da,c0 and D/p is prime to p. Put x = (vD/p) 37, ae,. Then
xep'E, and z—xcE, We have > a2=0 modp since @(z)eo.
Hence Q(x)eo and (a,, ---,a,) e A" if x¢ E,. Since —2B(x, 2) = Q(z — x)
— Q(x) — Q) eo and B(x,2)ep-?, we have B(x,z)eo. By Lemma 2
we have E,(2) = E,(x). Considering the structure of O(E,), we may have
(@, ---,a,)eR: U {0, ---,0)} by Lemmas 2 and 3.

§3. Special adjacent lattices to E,

ProposiTioN 2. Let b, ---, b, be positive rational integers satisfying
S, b=D. Assume n>3. Consider the lattice A =E/(2)=1[z] | A
with z = (1/¥D) >, be,. Then

1) Acgenk,,
2) Aisevenif n=b=..--=b,=1 mod?2,
3) AegenkE,  unless n=b,=.--=b,=1 mod?2,

4 A~E,if n=3 D=1mod4 and b, = b, for some i < j,
5) 12 @Q(A) unless n =3, D=1 mod4 and b, = b, for some i <.

Proof. (i) Suppose that D is odd. By Lemma 1 we have A cgenE,
Let p be a dyadic spot on K. We can assume that b, is odd. Put v, =
be, — be, for i=2,3,...,n. Then A, =[v, - --,v,], with B(v,v)eZ
and det (B(v, v,)) = bj"-?D =1 mod 2. The assertion (2) is clear. We
shall show (3). Consider a lattice M = [v,, ---,v,] over Z. Then M, ~
1y L -+ 11y 1 (DY or My=(1y | -+~ 1 <1y | (DY | (D) | (D) since
M is not even and the Hasse symbol of M, takes the value 41, where
M, is the 2Z-completion of M. So A, ~ E,_,, since 0, D Z, and VD eK.
By Lemma 1 we have the assertion (8).
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(ii) Suppose that D is even. We can assume that b, and b,
are odd. Let p be dyadic. Then A, = [bjz— +De, v, ---,v,], with
det (B(v,, v))) = bi*9(D — b)) =1mod4. Thus A, =~ [v, ---,v,], | (D —b.
By a similar argument as in (i) we have A, ~ E, ,, By Lemma 1 we
have AecgenE,_,, and so A cgenE,.

(iii) Suppose that n =3, D=1 mod4 and b, =b,, Thus b, =1
mod 2. Take f and g in Z such that 2b,f — b,g = 1. Put

w, = —(bf + b,8)z + fVDe, + 31 + gvD)e, + }(—1 + gv/D)e,

and w, = w, — e, + €. Then A = [w] | [w,] = E,.

(iv) We shall show the assertion (5). Any non-zero vector ue A
can be written as u = —az + >, (c; + dW/D)e, with a =37 ,bd, e Z,
>rabe,=0,la|<iD, c;e3Z, d,eiZ and ¢, — d, e Z for all i. Thus

Qu =3 ¢+ Dy d—a +2vD Y cd,
i=1 i=1 i=1

_ Z ¢+ 3 (bd, — bd) + 2/D z cd; .
If the number of the pairs (i,j) such that bd, — b,d;, + 0 and i < is
less than n — 1, then b,d;, — b,d, = 0 for all i and j. Hence d,/b, = --- =
d,/b, = ¢ for some ce Q. Since the g.c.d. of b’s is one, we have ceiZ
or ce Z according as D = 1mod 4 or not. Thuse =37,bd,=c> 7, b2
= cD. This implies c=0and e =d,=..- =d, =0. Hence c,eZ for
all i and so >, c? = 2. This shows @Q(u) #+ 1. Suppose that the number
of the pairs (i,j) such that bd, — b,d, + 0 and i <j is not less than
n— 1. If all ds are in Z, then >, ,(bd, — b, d) =n —12>=2, so Q(u)
# 1. Thus we may assume that D =1 mod4 and d,& Z for some 7.
Thus ¢, & Z. Then >, ¢} > since bb,--- b, +0. Hence

M=

&+ S 0d,—bdrzi+in—D =i+ =1

1=1 1<J

and the equality holds only when n = 3 and > 7., ¢} = {. This case occurs
only when n = 3 and b, = b, for some i <j since > 7, b,c, = 0. But this
is excluded.

ProposiTiON 3. Let D = 1 mod4. Let p be an odd prime dividing D.
Consider the lattice B = E(y) with y = (¥ D [p) >3}_, a.e, and (a,, a,, a;) € R2.
Then
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(1) BegenkE,
(2) B~ E1 J_ B and 1¢ Q(B/) lf D= p= Z‘jﬁ:l a% or lf T(au a,, as) = la
3 1¢Q(B) if T(a, a,a,) =2 and unless D =p = 33  a

Proof. By Lemma 1 we have B e gen E,. Suppose that T(a,, a,, ;) = 2
and Q(u) = 1 for some ue B. We can write u = ay + 33%_, (c, + d.v/D)e,
where ae Z, c,eZ, d,eZ, >3 ,a,c, =0 modp and |a| < ip. Then

1= Qu) =3¢ +——z<aa +pd) + 2”’z:cxaa +pd) .

Hence we have >2 ;¢ =0and D =p = >3_ (ae,; + pd,) since T(a,, a,, a,)

= 2. Thus the assertion (3) holds. Now let D =p = >% ,a% Then
=[y] | B and Q(B’)z1 by (5) of Proposition 2. If T(a,a, a,) =1,

then o, =0, D#p and B = [e,]] | B’. Similarly we have 1¢ Q(B).

ProposiTION 4. Let D =1 mod4 and p be a prime dividing D. Con-
sider the lattice B = E,(y) with y = (VD [p) Y7, ae, and (a,, ---,a,) € R
Assume that n>3. Put T= T(a,, ---,a, and N= N(a,, ---,a,). Then

(1) Begenk,

(2) B~E, | B uwithleQB)ifn=3 D+pand T=1,

(3) 1¢QB) and 2¢Q(B) if D+p and T = 2,

(4) 1¢QB) and 2¢QB) if D +p and T = 3,

() B=E,ifn=3 D=pand T<2,

(6) B=E, | B with1¢QB)if D=p, N=1and T =3,

(7)) 1¢eQB)if D=p, N=2and T =3,

(8) 1¢QB) if D=p, N=3 and T = 2,

(9) 2¢QB)if n=3, D=p, N=3 and T = 3,

(10) 2eQB) if D=p with N=2or if T = 2.

Proof. By Lemma 1 we have (1). (10) holds trivially. Take a non-
zero vector u in B and write

u=ay+ i(ci + d/D)e,

with ae Z, |a| < ip, c;e3Z, d,e$Z, ¢, —d,e Z and 237, a,c;, = 0 mod p.
Then

Qu)y =X+ Y+ ZZD Zc(aai+pd¢),

where X = > ,¢? and Y = (D/p)(1/p) > 71 (aa; + pd). If Y =0, then
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a=d,=0for all i, so c,e Zforalli., Thus X=7T. If X=0and Y+0,
thenc,=0for alli and Y>DN/p. If X0 and Y-£0, then X + Y >
(T/4) 4+ (D[p)(N/4). Thus (3), (7), (8) and the half of (4) hold. Now sup-
pose that D+ p and T'>3 or that D=p, T=3, N>3 and n = 3.
Thus X>2 and Y= 3% If X=2% with Y=2% or X = 4§ with Y = £, then
we have 2=4X —4Y =>7,(2c) — > 7.,(2d))’ = 0 mod 4, which is a
contradiction. If X =Y =1, then D=p and >7,c¢=1. Thus D=p
and n > 4, which is a contradiction. Hence (9) and the rest of (4) hold.
If n=3 D+#p and T =1, then 0,=0 and B=1[¢] | B with B =
[e., e.J(v). Hence we have 1¢ @Q(B) by a direct calculation. So the
assertion (2) holds. Assume that n =3, D =p and T< 2. Then N = 1.
If T=1, then B=[e] | [y] I [y] = E; with y' = (1/y/ p)ae, — ae)). If
T = 2, then B ~ E, by Proposition 2, (4). Thus (5) holds. Finally (6)
follows from Proposition 2, (5).

ProposITION 5. Let D =3 mod 4. Consider the lattice C = E(x) =
le] | C” with x = 4(e, + ¥/ De,). Then

(1) Cegenk,

@) 1¢QC)H if D >3,

B) C’ is even if and only if D =7 mod 8.

Proof. We have
D+ 1) J‘E)

vD 4 )

Let p be dyadic. If D = 3 mod 8, then C’ is not even and C] =~ (i(D + 1))
1 GEMD+1))~E, since 3eK. If D=7 mod8, then C’ is even and
C, ~ (0 1), so C, =1y | (0 1) ~ E,, since —1e K2 Thus (1) and (3)

1 0 1 0
are proved by Lemma 1. It is easy to show (2) directly.

C’ = [x, 2¢,] ~ (

ProprosiTioN 6. Let D =5 mod 12. Consider the lattice G = E(x) =
le] | G with x = (e, + Dy De,). Then

(1) GegenE, and G’ cgen E,,

@) 1¢Q(G) and 2¢ Q(G) if D = 29.

Proof. (1) follows from Lemma 1. We have G’ = [x, 3¢,]. It is easy
to show (2) by a direct calculation.

PropostTioN 7. Let D be a prime p =1 mod 12. Then the number
of the classes in A} whose type is six is one or zero according as
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p=1mod24 or p=13 mod24. Let (a,a,a)c R, with T = T(a,, a,, a,)
=3 and N(a, a, a,) = 2. Put x = (1// D) ae, + a.e, + aey). If there are
two vectors u, and u, in B = E(x) such that Q(u) = Q(u,) = 2B(u,, u,)
=2, then T=3 or T = 6.

Proof. Let (b, b, b;) € A2 whose type is six. Thus we may assume
that b, = 2b, + b,. Hence 0 = >%_, b? = 2(b, + b,)* + 3b2 mod p. So (—6/p)
=1, 1e, p=1mod24. If p=1mod24, then there is an integer ¢ such
that ¢* = —6 modp. Hence +c(b, -+ b,) = 3b, modp. Thus (b, b, b)) ~
(¢,3 —¢,3 -+ ¢), i.e., there is one and only one class whose type is six.
We shall show T'=3 or T = 6. Suppose that T3 and T # 6. Thus
T=50r T="17 Take a vector v in B with Q(u) = 2 and write

u=ax + Z_; (c; + di/D)e;

withae Z, |a| < ip,c,etZ,d,ediZ,c,—d,eZ, 2>  a,c,=0modp. Then
Q) = X+ Y+ 2/yp) 2Ziiclaa; + pd), where X = 2iiac and Y=
(/p) 335, (aa, + pd)®. Hence we have one of the following:

(i) X=0and Y=2,

(ii) X=%and Y=3,

(i) X=% and Y=14
In the case (ii) we have 1= >32_,(2¢) = >} ,(2d)* = X3, Qaa, + 2pd,)?
= 3p = 3 mod4. This is a contradiction. In the case (iii)) we have
(a, a5, a;) ~ (¢, 3 — ¢, 3 + ¢) for an integer ¢ with ¢® 4+ 6 = 0 mod p by the
argument used above since X = §. Since T must be five we have ¢ =
+1, +2, 43, +6 or +9 mod p, which is a contradiction to the fact that
p divides ¢* - 6. In the case (i) we have ¢, =0 and d,e Z for all i.
Hence we can write u, = ax + /p >, de, = (A// D) D5 fe, and u, =
a'x + o/ p Xiadle, = (v p) X5 fle; with a,d',d,, di,f,, fie Z. Thusf, =
aa, modp and f] = a’a, mod p. Hence f,f; — f,fi = 0 modp. Since 3p* =
(ZP)Z - p2 = 23:1 ff Z§=1f§2 - (Zi:lfif:’)z = Zi<]’ (fzf;, - fjfé)z’ we have fif;,
— fifi = hyp = +p whenever i = j. Since 0 = f\(f.f; — fof2) + [fof1 — fif3)
+ ffifi — f.f), we have 0 = fih,, + fihy + fihy, ie., ahy + ahy + ahy, =
0 mod p. This implies that T'< 3. This is a contradiction.

= B

LemMA 6. Let D be a square-free positive integer. In order that
D = b + bl + b} + b2 for some positive integers b,, b, b, and b,, it is nec-
essary and sufficient that D #+ 1,2, 3,5, 6,11, 14, 17, 29, 41.
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ProrosiTioN 8. Let n = 3. Then the class number of E, is more than
two unless D is one of the following: 2, 3,5, 13, 17, 29, 33, 41.

Proof. It is enough to find two lattices L and M in gen E, such that
L+E, M+ E, and L = M.

(i) Let D=2 mod4. For L we take the lattice A in Proposition
2 if D=10. If D = 10, then there is an odd prime ¢ (s5) dividing
D. By Proposition 1 there is an element (a,, @, a,) € R} whose type is
more than one, for which we consider the lattice B in Proposition 3.
Then put L = B if D = 10. Next take an odd prime p dividing D. If
p =1 mod 4, then there is an element (a, a,, ;) € R} whose type is one,
for which we consider the lattice B in Proposition 3. If p = 3 mod 4,
then we can consider the lattice A in Proposition 2. Then put M = B
or M = A according as p = 1mod4 or p = 3mod4. Note that 1¢ Q(L)
and M ~ E, | M’ with 1¢ Q(M’).

(ii) Let D =3 mod8. For L we take a lattice A ~ E, | A with
an even lattice A in Proposition 2. For M we take the lattice C ~
E, | C’ with an odd lattice C’ and 1¢ @(C’) in Proposition 5.

(1ii)) Let D =T mod8. For L we take a lattice A with 1¢ Q(4) in
Proposition 2 and for M we take the lattice C ~ E, | C’ with 1¢ @Q(C’)
in Proposition 5.

(iv) Let D=1 mod4 and not a prime. If no prime divisor of D
is congruent to 7 mod 8, then by Proposition 1 we have two elements
(a,, a5, a)) e RS and (a}, 0}, a}) € R} for some prime divisors p and g of D
(possibly p = ¢) such that T(a,, a,, a,) = 1 and T'(al, a}, ;) = 2 or such that
T(a, a, a,) = 2 and T(a}, a;, ;) = 3. For L and M we take the lattice B
for (a,, a,, a,) and the lattice B for (al, a}, ;) in Proposition 4. If D has
a prime divisor p = 7 mod 8, then there is an element (a,, a,, a;) € R} whose
type is more than two, for which we can consider the lattice B with
Q(B) 21 in Proposition 4. Put L = B. There are positive integers b, b,
and b, such that & + b + b2 =D since D=1 mod4 and p = 3 mod 4.
We have b, + b, whenever i =+ j since (—2/p) = —1. Hence we can con-
sider a lattice 4 = E, | A with 1¢ Q(A). Put M = A.

(v) Let D be a prime p =1 mod12. Since p = 3a* + b* for some
positive integers a and b, we can consider the lattice A for (a,a, a, b)
in Proposition 2. Put L=A. Then 1¢Q(L) and there are two
vectors u, and u, in L such that Q(u) = @(u,) = 2B(u,, u,) = 2. First
suppose p = 1 mod 24. Then there are at least two elements (a,, a,, a;)
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and (¢}, a;, ;) in R} whose types are more than three by Proposition 1.
Hence we can assume that T(a, a,, a,) = 6 by Proposition 7. We put
M = B for (a, a,, a;) in Proposition 4. Hence M« E,, And M =« L if
Ma, a,,a;) + 2. If M ~ L and N(a,, a,, @,) = 2, then (noting the existence
of the pair {u,, u,}) we have T(a,, a,, a;) = 3 or 6 by Proposition 7. This
is a contradiction. Secondly suppose that p = 13 mod 24. There is an
element (a,, a,, a;) € R} whose type is more than three by Proposition 1.
For M we take the lattice B for (a,, a,, a,) in Proposition 4. If N(a,, a,, a,)
=1, then B=E, | B’ with 1¢ @(B’). If N(a, a,, a,) = 3, then 1¢ Q(B)
and 2 ¢ Q(B). If Na,, a,, a,) = 2, then 1 ¢ Q(B) and B # L by Proposition 7.

(vi) Let D be a prime p =5 mod 12. For L we take the lattice A
with 1¢ Q(4) in Proposition 2. For M we take the lattice G = E, | &
with 1¢ Q(G’) in Proposition 6.

§4. Special values of D

For the explicit value of the class number of E, we use the Kneser
Method. Following [4] we state the method. By J we denote the group
of ideles of the field K. For a finite spot p on K we put

J*={i = (@,)ed; i, is a unit in O, for all finite spot q = p} .

Put V = KE, and P = 6(0*(V)), where 6 is the spinor norm and O*(V)
is the proper orthogonal group of V. Consider P as the image of P under
the natural isomorphism K* — J. Recall Theorem 104:9 in [4]:

LEmMa 7. Let n =3, V, be isotropic and J = PJ*. Then for any
Legen E, there is a lattice M isometric to L such that M, = E,, for all
finite spot q + p.

By Proposition 101:8 in [4] we have

LEmMmA 8. Let n = 3 and the ideal class number of K be one. Assume

that the norm of the fundamental unit in K is —1 or that the norm of a
generator of p is negative. Then J = PJ>.

LEMMA 9. Let n >3, p be a spot dividing D and Megen E, with
M, = E,, for all finite spot q + p. Assume that n is odd and D =2 if p
is dyadic. Then there is a chain of lattices

EnzLo’Lla"'vchM

in gen E, with L,,, p-adjacent to L,.
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Proof. Following the proof of 106:4 in [4], we can prove this asser-
tion. It is enough to find a chain of lattices E,, = L{®, L, - - -, L¥ = M,
in V, with L®,p-adjacent to L and LY ~ E,,. Put L, = E,. Then M,
= ¢L,, for some g€ O(V,). By expressing ¢ as a product of symmetries
on V, we see that it is enough if we assume that ¢ is a symmetry. Then
¢ = r, with u a maximal anisotropic vector in L,. Then there is either
a 1- or 2-dimensional unimodular sublattice K of L, which contains u.
If the rank of K is one, then L, = ¢,L,, = M,, so M, is g-adjacent to L,
If the rank of K is two, then we take the splitting L,, = K | K’. Then
K = 7,K’ © M, and so we have a splitting M, = K’ K =
p’x + 0,y and K" = o,x 4+ p"y with a non-negative ir ‘e we
may put LP = Ly, L = (p""'x + py) | K’ = LP(z""'x), - - -, LY = M, = K"’
1 K’ =(ox + p7y) | K’ = L®»(x), where p = z0,, We must show that
L ~ E,. Itis trivial when i =0 ori=r. Assumethatl <i<r-—1.
If p is non-dyadic, then p™~'x + p'y ~ (1> | (~1> =K, so Ly ~ K | K’
~ E,. If p is dyadic, then n is odd, hence K’ = [z] | K" with Q(2) = ¢
a unit in o, It is enough to show that (px + 0,y) | 0,2 =~ (" 'x + p'y)
lozfor1<i<r—1 We can assume that p"B(x,y) =0, Since ye
KcL,~E, and p =420, we have Q) =0 or 1 mod2. Similarly
Q(x)=0or1lmod2 and ¢ =1mod2. If @(y) =0 mod?2, then (p"x + 0,y)

1 oz= ((1) (1)> 1 ey =@ x4+ py) | 0,2 If Q(y) =1 mod2 and zQ(x)
=0 mod8, then (p'x 4 0,y) | 0,2 = Q) L<{=Q)) L <> =) |
(= 1<y = (] g) L=+ Loz I QW =Q()=1mod2,
r=2 and i=1, then (px + 0,5) | 0,2 = <Ry 1 BR))> | (&> =&
L@ L =(F 3) L& =6x+p) Los

ProposiTiON 9. Let D = 2. Then the class number of E, is one if
n <4, two if n =5 and more than two if n = 6.

Proof. There are three lattices E, E((1/¥'2) (e, + --- +e)) and
E(1/¥2)e, + --- + ¢)) in gen E,, any two of which are not isometric.
Let n=5. Take p=(¥2) and a p-adjacent lattice E,x) in gen E,.
Write x = (1/4/2) >%_, ae;. Note that O(E;) contains all permutations
of {e, ---,e}. And note that Q(x) =0 or 1 mod2 since E(x)ecgen E,.
By Lemmas 2 and 3 we have only to consider the following three cases:
Day=ay=a,=a,=a;=0. Then E(x) = E,. (i) o, =a,=1and o, =
o, =0, =0. Then E(x) ~ E,. (ili)a;, =, =a, = a, = 1 and o, = 0. Then
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E(x) = E} | [e], where E! = E(u) with u = (1/v/2)(e, + ---¢,). Hence a
p-adjacent lattice to E; in gen E; is isometric to E, or E; = E} | [e].
Next take a p-adjacent lattice E4(y) to E} in gen E, and write v 2y = w
+ ae; with a«co and we E! Since @(y)eo and E! is even, we have
aep. By Lemma 2 we have Eyy) = E}(1/V 2)w) = EX(1/v 2)w) | [e].
Hence we may write v/ 2y = au + >\, e, where a, €0, ae {0,1} and
>4, a,=0mod+2. Note that Q(y) =0 or 1 mod 2 since E(y) ¢ gen E,.
If ¢ = 0, then we have the following four cases by Lemmas 2 and 3:
G) oy =, =a,=a,=0. Then E{(y) =E}. (i) o, =42 and a,=a, =
a, =0. Then E[y) =E, (i) oy =a, =1 and o, = o, = 0. Then E(y)
= EYy) | le] = Ef(1/ V2)(e + e) R A(eY) Ve Yes +e)) | le] =~ E.  (iv)
a,=a,=1 ;=42 and a, =0. Then E{y) ~ E,. Next consider the
case of @ = 1. Since z,, € O(E}), we have v 27,y = u + (—a, — v 2)e, +
ae, + ---. Hence we may assume that o, =0 mod2 or «, =1 mod 2.
Thus we have only to consider the following cases by Lemmas 2 and 3:
MNa=a,=a,=a,=0o0r a, =a,=a;, =a, =1. Then E{(y) = E,. (vi)
o= —1, a,=1 and o, =, = 0. Apply Lemma 4 to this case taking
w=u—+2e. Then E(y) ~ E} | [e] ~ E,. Thus a p-adjacent lattice
to Ej is isometric to E; or E;. Hence {Ej, E} is a set of all representa-
tives of classes in gen E; by Lemmas 7, 8 and 9. By Theorem 105:1 in
[4] this implies that the class number is one if n < 4.
From [11] we have

PropositioN 10. Let D = 3. Then the class number of E, is one if
n <2, two if n =3 and more than two if n = 4.

ProrositioN 11. Let D = 5. Then the class number of E, is one if
n <4, two if n =5 and more than two if n = 6.

Proof. Put x = (1/vV5)e + -+ + &),y = (1/V'5)(e, + e, + 2¢; + 2e)
and x, = (1/V/5 )e, + e, + e, + 2e, + 2e, + 2¢,). Consider the lattice E; =
E(x) =[x] | E%. Then Eliseven. If n = 6, then we have three lattices
E,, E(x) and E; = E(x,) in gen E,. By Proposition 4, (8) we have 1 ¢ Q(E}).
Thus the class number of E, is more than two. Let p = (vV'5) and n = 5.
Take a p-adjacent lattice E(y) to E,, By Lemma 5 we may consider
y=/V5)3 % ae with(a,---,a) e R}. Henceye {0, x, (115 )(e,+2e)), Yi}-
Thus E,0) = E,, E(x) = E; and E((1/v' 5 )(e, + 2¢;)) ~ E,, By Lemma 4
E(y,) ~ E; taking w = (1 4+ v 5 )(e; + e,) € E,. Take a p-adjacent lattice
E{(2) to E{. By Lemma 2 we may assume that +v52z = ax + > ae,
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wherea =0or1l, o, =a, + b,v/'5 €¢Z[vV5]and >’ a,=0mod5. Ifa=0,
then we have only to consider the following three cases by Lemmas 2

and 3:

(i) a=---=0a,=0. Then z= >3, b, so E{(z) = E, or Ei(z) =
E; according as >}, b, =0 mod5 or not.

(ii) a,=+---=a;,=1. Thusz=x+ 3% ,be, with >3, b,=0mod5,
so ze E;. Hence E{(2) = Ej.

Gii) ¢, =1, 0a,=-1,0a,=2,a¢,= —2,a¢,=b,=-.- =b,=0 and b,

€{0,1}. If b, =0, then ze E}, so Ej(z) = E;. If b, =1, then we have
Ei(2) = [2, 2, - - -, 2] = E;, where 2z, =2+ e, + e, — e, 2, =2+ x + le,
-{—663——65, z2=z+2x+Ce,—— \/—gea"cem 23=2—2x+?§€z+ﬁ€4—zes
and 2z, =2z — x + Ce, + Le, — e, where { = (1 + v/5).

If @ =1, then we have only to consider the following six cases by
Lemma 2 (note that O(E}) contains all permutations of {e, -- -, e;}):

(v) ay=:--=a, =0 and a; = 2/5. Thus E)2) = [22 — 5e,, 22 —
e, — de,, 2z — e, — de,, 22 — e, — 4de,, 22 — e, — 4de;] ~ E,.

(v) a,=a,=0,=0, o, =2 and oy, =3 + 3v'5. Thus E{2) = [z +
2x—C€4—(3+«/—§)€5, z—2x—C(e1+e2+e3)—(3+C)e5, 2—91—@4—
B+Qe, z—e,—Cle,— B+ ey, z2— e, —Le, — (B + Qe =~ E,.

Vi) ay=a,=0;=0,0,=1and a; = 44 +v/5. Thus we have E/(2) =
[22 +2x —L(e, + e, + e, +e) — B+ 2V5)e, 22 — 2x — (e, + e, + ;) — e,
+ (8¢ — 4)e;, 22 — (e, + €;) — Le, — (3L + D)es, 22 — (e, + e;) — e, — (3¢ + Des,
2z — (e, + e) — Le, — (3¢ + De] =~ E..

(Vi) ay=a,=1, ¢y=a, = —1 and a; = 0. Thus we have E{(z) =
[z+x+Ce,—Ceyz+x+Cey—Le,2— x4+ Lo, — e, 2 — x + Le, — Cey, 2]
~ E..

(vili) oy =, =2,a, = a, = —2and @y = —5. By Lemma 4 we have

EY2) ~ E| by taking w = 3x — v5 (e, + e, + e,).

(x) y=2,0,=1, ¢, = —1, ¢, = —2 and o, = 2/ 5. Then we have
Ez) =[2z+x— vbe, — e, —le, — 4de, 22— 2x — e, + vVbe,+ V5e +
(C_5)es, 22—|—2x— ﬁex~ﬁez—ie4~(1§+4)€s, 22—30—4'61—593-}—
VbHe —4e, 22 — vV 5e, —le, —Ce,+ Vb e, —4e] ~ E,.

Hence gen E; contains just two classes by Lemmas 7,8 and 9. {E;, E}}
is a set of all representatives of classes in gen E,.

ProprositioN 12. Let D = 13. Then the class number of E, is one if
n <2, two if n =3 and more than two if n > 4.

Proof. Let n = 4. Then there are three lattices E,, E(y,) and E(y,) in
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gen E, with v/13y, = e, 4 2e, + 3e, + be, and v/13y, = e, + 3¢, + 4e,. By Proposi-
tion 4 QE(y)) 2 1, Q(E(y,)) 21 and E(y,) = E(y,) | [e]. Thus the class
number of E, is more than 2. Let n = 3 and p e (v/13). Take a p-adjacent
lattice E; = E(x) to E,, By Lemma 5 and Proposition 4(5) we may con-
sider 4/13x = e, + 3e, + 4e,. Thus

2 0 1
QE)21 and E,=[x,y,2]~|0 3 Vi3],
1 /13 5

where y =e, + e, — e, and z = 6x — 4/13(e, + 2¢,). Next consider a p-
adjacent lattice Ey = Ej(u) to Ej with +/13u = ax + By + 7z€ E; — pE;.
If peyp, then we may assume that § =0 and « =1 by Lemma 2. Thus
we may assume that ¥ =2 or 7 = —5 since Q(w)eo by Lemma 4. If
7 =2, then Ef = [u,y, V132] = [u — v, 4u + 2y — +/132, 3u + 2y — +/132]
~E,. If r = —5, then Ef = [u, y, v¥132] = [u + 2y, 3u + y + V132, 4u +
2y + +/132] ~ E,. Let fep. Then by Lemma 2 we may assume that
and 8¢ Z such that |o| <6 and |7] < 6 and that 8 =2 mod+/13. Since
Tot yBy-se ToosyBy-s T € O(E}), we may assume that +/13u = x(+2 +
2v13)y — 6z. Hence EY = [u, +(Bu — 9y) + x + (+2V13 — 2)z, 4u + 2x
— 4y — (+2 — /13)z] ~ E;. By Lemmas 7, 8 and 9 we have the assertion.

ProposiTION 13. Let D = 17. Then the class number of E, is one
if n <3 and more than two if n = 4.

Proof. Let n = 4. Then there are three lattices E, E(y,) and A in
gen E,, where \/ﬁy1 = e, + 3e, + 4e, + Se,, 1/1_73’2 =e + 2e, + e + e, +e)
and E(y,) =[y,] | A. By Proposition 4 Q(E(y))2 1, 2. By Proposition
2 Q(A)21 and Q(A)>2. Hence the class number of E, is more than
two. Let n = 3. Then by Lemma 5 and Proposition 4 a (4/17)-adjacent
lattice to E, is isometric to E,.

ProposiTiON 14. Let D = 29. Then the class number of E, is more
than two if n > 3.

Proof. There are three lattices E,, E(y) and E(y’) in gen E,, where
729y = %, + 3¢, + 4e, and 2y = e, + (1 + v29e, + (1 — +/29)e,, Then
E(y) = [y] | M with 12 Q(M). Clearly Q(E(y)) 2 1 since

4 1 0
E(y) =1y, 2¢, V29¢, — e, + e] =~ |1 4 2v29}
0 2v29 31
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ProposiTioN 15. Let D = 33. Then the class number of E, is one
if n <2, two if n =3 and more than two if n > 4.

Proof. There are three lattices E,, E(x) and E(x,) in gen E, with
x, = (/33/11) (e, + e, + 3e,) and x, = (v33/11) (e, + e, + 2e, + 4e,). Then
E(x) = E(x) | [e] with 1¢ Q(E,(x)) and 1¢ Q(E(x,)) by Proposition 4.
Thus the class number of E, is more than two. Put z = 11 4 24/33 and
=6+ +33. Let n =3 and p = (x). Then a p-adjacent lattice to E, is
isometric to E, or E,(x,) by Proposition 1 and Lemma 5. Note that

E(x) = [e, — e, x, — e, — 2e, + e;, 5x, + (1 — 1/3§)(61 +e) + 3 — \/3‘3)(33]

2 1 0
~l1 9 3v33
0 3v/33 35

Putting x = (v/33/3)(e, + e, + e,), then E; = E(x) = [e, — e,, x + 4(3 — ¥/33)e,
+ 3(1 — 4/33)e, + e, x — 2(e, + e,) + 4e,] ~ E(x)). To find a p-adjacent
lattice to E,(x,) we have only to find a p-adjacent lattice E; to E;. Let
E} = Ei(y) with yep'E, — E,. By Lemma 2 we can assume that y =
(v/33/11)z with z e E} — pE;. Thus py C wE}, C E,. Since x ¢ E} and B(x, y)
= Ble, +e,+ e, 2)c B(E;, E}) Co we have x4+ yeEy. For a vector
wekE, such that B(w,x +y)eo we have =zB(w,x) = B(w, z(x + ¥)) —
B(w, zy) e 0, also wB(w, x) co. Hence B(w, x) co, so we E]. And hence
B(w,y) = B(w,x +3y) — B(w, x)eo, so we E{y) = E;. Hence Ej(x + y)
c Ey. Since y = 20(x + ¥) — Quwx + zy) with 20x + 7y ¢ E, and B(y, 20wx
+ zy) € 0, we have y e E,(x 4+ y). For a vector w ¢ E, such that B(w, x) € o
and B(w, y)co, we have B(w,x + y)eo. Thus Ey c E(x + y). Hence
E! = E(u) with u =x+ y = (1/4/33)(11le, + 1le, + 1le, + 32) € (1/v/33)E..
Clearly +/33u ¢ pE, U wE,. Write v/33u = >?_, we, with @, c0. By Lemma
2 and considering the structure of O(E,), we have only to consider the
following three cases:

(i) a,=a, =4 and o, = 1. Then
Ey = [u, 4u + $(1 — v/33)e, — §(1 + v33)e,
4u — (1 + v/33)e, + (1 — v/33)e,] ~ E, .
(ii) o, =a, = 2 and o, = 5. Hence
Ey = [u, Tu 4+ 3(1 — v/33)e, — (1 + v/33)e, — +/33e,,
Tu — (1 + V33)e, + (1 — +/33)e, — v/33e,] =~ E, .
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(i) =1, ¢, =4 and o, = 7. Thus
E! = [u, 4u — +/33e,, e, + be, — 3e,] ~ E}.
Hence we have the assertion by Lemmas 7, 8 and 9.

ProrosiTioN 16. Let D = 41. Then the class number of E, is one
if n=1, two if n = 2,3 and more than two if n > 4.

Proof. By Proposition 6 there is a lattice G’ in gen E, such that
1¢ Q(G’). Hence there are three lattices E,G | E, and G | G’ in
gen E,. Thus the class number of E, is more than two. Let n =3 and
p = (vV41). A p-adjacent lattice to E, is isometric to E, or E(x) with
x = (1/v/41)(e, + 2e, + 6e;) by Propositions 1 and 4 and Lemma 3. Thus

5 2¢ﬁ>

Ej=E® =[x52 =) | (2 /i

with y = 2¢, — e, and z = 4/41(e, + e;) — Tx. Take a p-adjacent lattice
E! = E{(u) to E; such that ue¢E;, Write +/4lu = ax + By + rz with
a, B, 7eo. If acyp, then we may assume that « = 0 and 7 = 20 by Lemma
2. Since Q(u)co, we may assume that g = +5 — 8y/41 by Lemma 2.
Thus Ey = [x] | [—u, +10u + (2v/41 + 80)y — (8 & 5v/41)z] ~ E;. IfBep,
then we may assume that e =7, f=0and 7 = 1. Hence u = e, + ¢, and
E} =E, If rep, we may assume that « =6, =1 and 7 = 0. Thus
Ey = [u] | [M4u — 2/41x — 2] | [Tu — v41x — +/4ly + 22] ~ E,. If afr e
p, then we may assume that ¥ =1 and fe Z by Lemma 2. Note that
O(E}) contains the isometries

“p—> +x, y—>2/4ly — 5z, z— 33y — 2/412”,

“x > +x, ¥y — 317 — V/al)y + 38 — v/41)z,

z — (T4l — 18)y — (17 — V41)2”

and

“x— +x, y— 317 + VAl)y — 13 + V41)z,

y— 318 + WAy — 37 + VaD)z" .
Hence by Lemmas 2 and 3 we have only to consider the following two
cases:
(i) vV/4lu= —(—2=+ 34/4)x + 8y + 2z and
(i) +/41u = (10 + 64/41)x F 30y + 2.

In the case of (i) we have
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EY = [u, V4lx, y + 13x] = [v] | [v,v,] = Ej,

where

20 = (—19 + V4D)u — (9 + 3V4A)V41x + (5 + V41)(y + 13x) .
2v, = (11 &+ v4Du + (15 + 3vVAD)V41x — (T £+ VAI)(y + 13x)

and
U, = 22 + vVADu + (£19 + 2vV4D)V4AIx — (£6 + VAI)(y + 13x) .
Then @) = 1. In the case of (ii) we have
V= [u, Valx, y + 15x] = [v] | [v}, vi] = E7,

where

2V = (—9 + V4l)u — (101 + 11y/41)y/41x — (—33 + TV/41)(y + 15%) ,
v, = (21 + V4D)u — (236 + 11/41)v/41x + (21 + 15/41)(y + 15%)

and
2v; = (25 + 17V/41)u — (273 + 191v/41)v/41x + (501 + 11/41)(y + 15x) .

Then Q(v) = 1. Hence the class number of E, is two, and that of E, is
also two, by Lemmas 7, 8 and 9.
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