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ON THE CLASS NUMBER OF A UNIT LATTICE OVER

A RING OF REAL QUADRATIC INTEGERS

YOSHIO MIMURA

§ 1. Introduction

Let K be a totally real algebraic number field. In a positive definite
quadratic space over K a lattice En is called a unit lattice of rank n if
En has an orthonormal basis {e19 , en). The class number one problem
is to find n and K for which the class number of En is one. Dzewas
([1]), Nebelung ([3]), Pfeuffer ([6], [7]) and Peters ([5]) have settled this
problem. The present state of this problem is: If n ;> 3, then the class
number of En is one if and only if "K = Q, n ^ 8", "K = Q(vΊf), n ^ 4",
"K = Q(VT), n ^ 4", "K = QWVt), n = 3", "K = K^\ n = 3" or "K = ϋΓ(148),
n = 3"9 where Q is the rational number field and 2Γ(49) (resp. JΓ(U8)) is the
unique totally real cubic number field with discriminant 49 (resp. 148).
The class number two problem has been studied by Pohst ([10]), who gets
a nearly complete result for n ^ 4: If n >̂ 4, then the class number of
#„ is two only if "K = K^\ n = 4" or "K = Q(V~W), n = 5, 6, 7", and the
class number of En is two in the first two cases. Pfeuffer ([8]) has shown
that the class number of En is three for K = Q(VΊ>) and n = 6. In the
special case that A" is a real quadratic field, it remains to consider the
class number of Ez over K (^Q(VT), Q(VΊΓ), Q(VΪ7)).

All former proofs of the "only if" assertions and nearly all proofs
of the class number one (or two) for special fields K and special n use
the Siegel Mass Formula. On the other hand we have another method
by which Kneser ([2]) has found the class number of En for Q. Using
this method Salamon ([11]) has found the first result for Q(V~3). In this
paper we shall prove the following theorem by using the Kneser method.

THEOREM. In the case of real quadratic fields, the class number of

En (with n >̂ 3) is two if and only if
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QO/2") , n = 5 ,

, n = 5 ,

Q(VΪ3) , Λ = 3 ,

Q(V33) , n = 3 ,

Q ( Λ / 4 Ϊ ) , 72 - 3 .

The class number of En is a monotone increasing function of n for
a fixed K ([4], 105:1). In Section 2 we discuss some properties of adjacent
lattices. In Section 3 we find some special adjacent lattices to En and
prove that the class number of En is more than two unless K is one of
the exceptional eight fields (cf. Proposition 8). In Section 4 we treat
the above exceptional cases and determine the class number by using
the Kneser method. The notation used in this paper will generally be
those of [4].

§2. Adjacent lattices

Let p be an odd prime number. Put

A ; = ί(au '-.,an)eZn; f]a\ = 0moάp, (au - . . , α n ) ^ ( 0 , . - . , 0 ) m o d p ) ,

where Z is the ring of rational integers. We define an equivalence
relation — on An

p\ (a19 , αn) ~ (bί9 , bn) if and only if there is a per-
mutation {V, 2', , n'} of {1, 2, , n} and an integer c prime to p such
that b\ Ξ ca\, modp for all ί. In each equivalence class we can choose
a representative (al9 , an) satisfying

0 <; αj <; α2 ^ <I αn

and

for all (bί9 •••,&») i n the class. By i?£ we denote the set of the above

representatives. Let, (au , an) and (bu , bn) be in the same class

and (θj, , αn) e i ζ . We define the norm and the type of (bu •••,&„) (or

the class):
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T(bu . ., bn) = m i n i f y ; Σ c A Ξ 0 modp, (c1? .,cn) =£ (0, . . .,0)1 .
U=i ί=i J

It is easy to prove the following

PROPOSITION 1. The number of the equivalence classes of the specified

type T in Az

v is as follows:

p = 3

p ΞΞ 1 mod 24

p = 5 mod 24

p ΞΞ 7 mod 24

p == 11 mod 24

p ΞΞ 13 mod 24

p = 17 mod 24

p ΞΞ 19 mod 24

p ΞΞ 23 mod 24

T = l

0

1

1

0

0

1

0

0

T = 2

1

1

0

0

1

0

1

1

o

0

1

0

1

0

1

0
-J

o

T ^ 4

0

(p-25)/24

( P - 5)/24

( P - 7)/24

(p-ll)/24

(p-13)/24

(p-Γ7)/24

(p-19)/24

(P+ D/24

Moreover if the type is one or two, then the norm is one.

Let K = Q(VD) be a real quadratic field over Q with a square-free

rational integer D and o be the ring of integers in K. By genL we

denote the genus containing a lattice L in a quadratic space V over K.

A lattice L is said to be even if Q(L) c 2o. For vectors x1? , xm in

V, [x19 , xm] denotes the lattice generated by {x1? . . , xm) over o.

Let α be a non-zero ideal of o and L be a unimodular lattice in

V. For xea~ιL such that Q(x) e o, we put

L(x) = ox + {z e L; B(x, z) e o} ,

which is called an α-adjacent lattice to L (Cf. [2]). The following Lemmas

1-4 are valid.

LEMMA 1. Let L be a unimodular lattice and L(x) be an a-adjacent

lattice to L. Then L(x) is unimodular. If a is prime to 2o or L(x)p ~

Lp for any dyadic spot p, then an a-adjacent lattice to L belongs to gen L.

LEMMA 2. Let L be a unimodular lattice in V, and L(x) and L(xf)

two a-adjacent lattices to L. If B(x, x') e o and x — ΐx' eL for some ϊ e o

prime to α, then L(x) ~ L(x').

LEMMA 3. Let L be a unimodular lattice in V and L(x) and L(xf)

be two a-adjacent lattices to L. If xf = ax for some a in O(L), then L(x)
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LEMMA 4. Let L be a unimodular lattice in V and L(x) be an a-

adjacent lattice to L. If there is a vector w in L such that 2/Q(x — w)

and (Q(x) — Q(w))IQ(x — w) are in a, then L(x) ~ L.

LEMMA 5. Let p be an odd prime number dividing D and p a prime

ideal dividing p. Then a p-adjacent lattice to En is isometric to some

En(x) with x = (VΣ>IP) Σ ? = I a&i and (a19 , αn) e i ζ U {(0, , 0)}.

Proof. Note that po = p2 and ojp ~ ZjpZ. Take an element z =

Σl=i aiei e p~ιEn with Q(z) e o. We can find α { e Z such that

V D a* = at mod p
P

since Λ/D ateo and Djp is prime to p. Put x = (Λ/D jp) ΣS=i atei` Then

x e p~1En and z — x e En. We have Σ!=ι a\ = 0 modp since Q(^) e o.

Hence Q(#) e o and (α1? . , an) e A% if x 6 2Sn. Since — 2JB(X, 2) = Q(z — x)

— Q(x) — Q(z) e 0 and B(x9 z) e p~2, we have B(x, z) e 0. By Lemma 2

we have En(z) — En{x). Considering the structure of O(En), we may have

(a19 - ,an)eRn

pΌ {(0, , 0)} by Lemmas 2 and 3.

§3. Special adjacent lattices to En

PROPOSITION 2. Let bu ,bn be positive rational integers satisfying

2]?=i &i = D. Assume n I> 3. Consider the lattice A = En(z) — [z] J_ A

1) A e gen En,

2) A is e?;e?z i/ n = b^ = = bn = 1 mod 2,

3) A e gen £?„_! unless n Ξ ^ Ξ Ξ ί)n Ξ 1 mod 2,

4) A ~ E2 if n = 3, D = 1 mod 4 and 6̂  = 6̂  for some ί < j ,

5) 1 g Q(A) unless n = 3, D Ξ I mod 4 and 6̂  = 6, /or some i < j .

Proo/. ( i ) Suppose that D is odd. By Lemma 1 we have A e gen En

Let p be a dyadic spot on K. We can assume that bx is odd. Put υt =

6 ^ - 6 ^ for £ = 2, 3, , 71. Then Ap = [v29 , un]p with JB^, Vj) e Z

and det(jB(^, v3)) = b\^-2)D ΞΞ 1 mod 2. The assertion (2) is clear. We

shall show (3). Consider a lattice M = [v2, , vn] over Z. Then M2 ~

<1> 1 -L <1> ± <£>> or M2 ~ <1> J . ••• X <1> J_ <D> J_ <D> ± <K> since

M is not even and the Hasse symbol of M2 takes the value + 1 , where

M2 is the 2Z-completion of M. So Ap ~ En_lί? since ô  ID Z2 and

By Lemma 1 we have the assertion (3).
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(ii) Suppose that D is even. We can assume that bx and b2

are odd. Let p be dyadic. Then Ap — [bxz — VD eί9 v3, , vn]p with

det (Biυ,, v3)) = &?<W- >(D - bξ) = 1 mod 4. Thus A, - fa,..., υn]p ±(D- 6J>.

By a similar argument as in (i) we have Ap ~ En_lp. By Lemma 1 we

have A e gen En_ί9 and so A e gen En.

(in) Suppose that n — 3, D Ξ I mod4 and 61 = 62. Thus 6 3 Ξ 1

mod 2. Take / and g in Z such that 262/ — &3£ = 1. Put

wx = —(b3f+ b2g)z + f\/De3 + | (1 + g^/D)e1 + J(—1 + g\/D)e2

and z#2 = w1 — e1 + β2. Then A = [w J _[_ [w2] ~ E2.

(iv) We shall show the assertion (5). Any non-zero vector u e A

can be written as u = — az + Σ?=i (c* + dί^/D)eί with α = Σ?=i ^^i e %>

Σ?=i îĈ  = 0, |α| ̂  | D , ĉ  e | Z , dt e \Z and ct — dte Z for all ί. Thus

Q(w) = Σcl + D`Σdl- a2 + 2 V5" Σ C A

= Σ c] + Σ (Mi - & A)2 + 2VF Σ ctdt.

If the number of the pairs (i,j) such that bβj — bjdt Φ 0 and i <Cj is

less than n — 1, then δ ^ — & ^ — 0 for all / and jr. Hence d1jbι = =

dj&n = c for some ceQ. Since the g.c.d. of 6/s is one, we have ce\Z

or c e Z according as D Ξ 1 mod 4 or not. Thus a — Σ?=i M* = c Σ?=i ^

= cZλ This implies c = 0 and a = dj = = dw = 0. Hence <̂  e Z for

all i and so Σ?=i c? ^ 2. This shows Q(u) Φ 1. Suppose that the number

of the pairs (/, j) such that bίdj — bjdi Φ 0 and i < jf is not less than

71 — 1. If all dt's are in Z, then Σί<j ( M j ~ &ĵ t)2 ^ n — 1 ^> 2, so Q(w)

^ 1. Thus we may assume that D = 1 mod 4 and d̂> $ Z for some i\

Thus c4, e Z. Then 2]?=i c2^ ̂  % since δjδ, bn Φ 0. Hence

Σ c\ + Σ ( 6 ^ - ό,cQ2 ^ i + i(/ι - 1) = i(Λ + 1) ̂  1
ι=l i<y

and the equality holds only when n — 3 and Σ?=i c\ = i This case occurs

only when n = 3 and 6̂  = 6;. for some i < j since Σ?-i ̂ zcz = 0 ^ u ^ ^ s

is excluded.

PROPOSITION 3. Lei Z) ̂  1 mod 4. Lβί p 6β an odd prime dividing D.

Consider the lattice B = £J3(^) ί̂ iί/i y = (V-D/p) Σ?=i a A a ^ (ai> a2> as) e ^l-

Then
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(1) B

(2) B ~ Ex J_ Bf and 1 e Q(Bf) if D = p = ΣU a\ or if T(au α2, α3) = 1,

(3) 1 6 Q(J5) ήf Γίttj, α2, α3) ̂  2 and unless D = p = Σ L i «<•

Proof. By Lemma 1 we have JB e gen Ez. Suppose that T(au a2, α3) ̂ > 2

and Q(w) = 1 for some u e B. We can write u = ay + Σ L i (ci + di

where aeZ, cteZ, dte Z, Σ L i aιcι Ξ 0 modp and \a\ < Jp. Then

= Q(M) = f; cj + D. 1 2 (αα, + M) 2 + - ^ - Σ ^(αα, + pdz) .
ίi p p ii p ii

Hence we have Σ L i c ? = 0 and D = p = Σl=i(aai + pdt)2 since jΓία^ α2, α3)

^ 2. Thus the assertion (3) holds. Now let D =p = Σ L i α«. Then

5 = Ly] _L ΰ / a n d ^ £ / ) 2 1 b ^ (5) o f Proposition 2. If r(a 1 ? α2, α3) = 1,

then ^ = 0, D ψ p and B = [ej _]_ B7. Similarly we have 1 g

PROPOSITION 4. Lei D Ξ I mod 4 and p be a prime dividing D. Con-

sider the lattice B = Sn(y) with y = (*/D /p) 2?=i a A a w c ^ (ai> * •> a«) β i2j.

Assume that n ^ 3. Pwί Γ = Γ(a!, , an) and iV = N(al9 , an). TTiβn

( 1 ) BegenEn,

( 2 ) J5 - Eλ _]_ JB' M iίΛ 1 β Q(JBO if n = 3, D ψp and T = 1,

( 3) 1 g Q(B) and 2 e Q(JB) if Όψp and T = 2,

( 4 ) 1 g Q(JB) and 2 e Q(JB) if D Φ p and T ^ 3,

( 5 ) B ~EB if n = 3, D =p and T£2,

(6) B - S i J . S ' ii iίA 1 6 Q(£') if D = p, N= 1 and T ^ 3 ,

(7) 1 g QCB) if D=p, N=2 and T^S,

(8) l€5Q(B) if D=p9 ΛΓ^3 and T ^ 2 ,

(9 ) 2 g Q(S) if n = 3, D=p, N^S and T ̂  3,

(10) 2 e QCB) if D=p with N = 2 or if T = 2.

Proof. By Lemma 1 we have (1). (10) holds trivially. Take a non-

zero vector u in B and write

w = ay + Σ (ct +
ί = l

with α e Z, |α| < ip, cέ e JZ, d̂  e £Z, ct — dte Z and 2 2]j β l α ^ ΞΞ 0 mod p.

Then

Q(u) = X+Y+ 2^®- £ φa, + pdx) ,
p t-i

where X=Σ?=i<3 and Y = (D/p)(l/p) Σ t i (ααt + pd,)2. If 7 = 0 , then
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a = d, = 0 for all i, so ci e Z for all ΐ. Thus X^T. If X = 0 and Y φ 0,

then ct = 0 for all i and Y ̂  DiV/p. If X =£ 0 and 7 =£ 0, then X + Y ^

(T/4) + (D/p)(Nl4). Thus (3), (7), (8) and the half of (4) hold. Now sup-

pose that D Φ p and Γ ^ 3 or that D = p, T ̂  3, iV ̂  3 and n = 3.

Thus X ^ } and Y ̂  J. If X = } with y = | o r l - | with Y = f, then

we have 2 Ξ 4 I - 4 Y Ξ ΣJ = 1 (2C,)2 - Σ?-i (2cQ2 = 0 mod 4, which is a

contradiction. If X = Y = 1, then Z> - p and £]?=i c? - 1. Thus Z> = p

and 7z ̂  4, which is a contradiction. Hence (9) and the rest of (4) hold.

If n - 3, D Φ p and T = 1, then αx = 0 and B == [ej J_ JB7 with β 7 =

[e2, e3](^). Hence we have 1 g Q(B') by a direct calculation. So the

assertion (2) holds. Assume that n = 3, Z) = p and Γ ^ 2. Then N = 1.

If Γ = 1, then B - [ej _L [y] _L [/] - ^3 with / = (llSp)(a& - α2β3). If

Γ - 2, then B - ^3 by Proposition 2, (4). Thus (5) holds. Finally (6)

follows from Proposition 2, (5).

PROPOSITION 5. Let D = 3 mod 4. Consider the lattice C = 228(Λ;) =

(1) CegenEs,

(2) 1 g Q(C') ifD>3,

(3) C7 is eyê i if and only if D = 7 mod 8.

Proof. We have

+ 1)

/D 4

Let p be dyadic. If D = 3 mod 8, then C is not even and C7 ~ (\{Ώ + 1))

J_ (\(D + 1)> ~ #2 p since 3 e K\. If D = 7 mod 8, then C7 is even and

C; - (J J), so Cp ̂  <1> J_ (J J) - £J3P since - 1 e K\. Thus (1) and (3)
are proved by Lemma 1. It is easy to show (2) directly.

PROPOSITION 6. Let D Ξ 5 mod 12. Consider the lattice G = Es(x) =

[e3] _L G7 with x = ̂ (β! + D/De2). Then

(1) G e gen JE8 and G7 e gen E2,

(2) 1 g Q(G') and 2 g Q(G7) if D ^ 29.

Proof. (1) follows from Lemma 1. We have G7 = [x, 3e2]. It is easy

to show (2) by a direct calculation.

PROPOSITION 7. Lβί D be a prime p = 1 mod 12. TTieft £/ιe number

of the classes in A*p whose type is six is one or zero according as
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p ~1 mod 24 or p Ξ 13 mod 24. Let (au a2y α3) e Rz

p with T = T(a19 α2, α3)

I> 3 and N(au a2, a3) = 2. Put x = (l/V70(aiei + azez + ŝ̂ s)- ΐf ίΛβre are

two vectors ux and u2 in B — E3(x) such that Q(ux) == Q(u2) — 2B(ulf u2)

= 2, then T = 3 or T = 6.

Proof. Let (61? 62, 63) e Â , whose type is six. Thus we may assume

that 63 = 2b, + 62. Hence 0 = Σ?-i 6? Ξ 2(b, + 62)
2 + 36? mod/?. So (-6/p)

= 1, i.e., p = 1 mod 24. If p = 1 mod 24, then there is an integer c such

that c2 = — 6 mod p. Hence ±c(6χ + δ2) = 3δj mod p. Thus (6^ 62, bz) —

(c, 3 — c, 3 + c), i.e., there is one and only one class whose type is six.

We shall show Γ = 3 o r T = 6 . Suppose that T Φ 3 and T Φ 6. Thus

T = 5 or T 2> 7. Take a vector u in B with Q(M) = 2 and write

3

M = ax + Σ (ct + dij~p)eί
t = l

with α e Z, jα| < Jp, cέ e \Z, di e \Z, ct — dt e Z, 2 2?= 1 αέcέ Ξ 0 modp. Then

Q(u) = X+Y+ (2/Vp )̀ Σ Ϊ - I c/αα, + pd,), where X = ΣU c? and Y =

(l/p)ΣLi(00« +P^z)2 Hence we have one of the following:

( i ) X = 0 and Y = 2,

(ii) Z - f and Y=l

(iii) X - f and Y = \.

In the case (ii) we have 1 = ΣU&ctf = Σϊ-iίZd,)2 = Σti(2αα, + 2pdz)
2

— 3p = 3 mod 4. This is a contradiction. In the case (iii) we have

(al9 α2, α3) — (c, 3 — c, 3 + c) for an integer c with C2 + 6 Ξ 0 modp by the

argument used above since X = f. Since T must be five we have c =

± 1 , ±2, ± 3 , ± 6 or ± 9 modp, which is a contradiction to the fact that

p divides c2 + 6. In the case (i) we have ct = 0 and dte Z for all i.

Hence we can write ux — ax + V Ϊ ^ Σ U i ^ A — (1/VP`) Σ\=\fιei a n ( i 2̂ =

^ x + / P Σ?-i d ^ - (1/V^) Σ?-i/ίβi w i t h α^ β/» ^» <*ί> Λ» /< € Z. Thus /4 =
ααέ modp and f\ ΞΞ a'at modp. Hence fj'j — fjft = 0 modp. Since 3p2 =

(2pγ -p> = ΣUfl Σ ϊ - i / ? - (ΣΪ-iΛΛ)2 = Σ*<i (Λ/y - //0 2 , we have //;

- fjfi - Λ^P - ± P whenever i φ j . Since 0 = ftfjί - /3/0 + /2(/3/ί - fjζ)

+ fzififί - Λ/ί), we have 0 = fjι2z + /"2Λ81 + fjιm i.e., α^,, + a2hn + σ8Λ12 =

0 modp. This implies that T <£ 3. This is a contradiction.

LEMMA 6. Lei D be a square-free positive integer. In order that

D = b\ + b\ + b\ + b\ for some positive integers 6lf b2, b3 and 64, it is nec-

essary and sufficient that Dφ 1,2, 3, 5, 6, 11, 14,17, 29, 41.
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PROPOSITION 8. Let n^>3. Then the class number of En is more than
two unless D is one of the following: 2, 3, 5, 13, 17, 29, 33, 41.

Proof It is enough to find two lattices L and M in gen Ez such that
L φ E3, MφEz and L Φ M.

( i ) Let D = 2 mod 4. For L we take the lattice A in Proposition
2 if 23 = 10. If D Φ 10, then there is an odd prime q(φ5) dividing
2λ By Proposition 1 there is an element (μί9 α2, α2) e 22J whose type is
more than one, for which we consider the lattice B in Proposition 3.
Then put L = B if D Φ 10. Next take an odd prime p dividing 2λ If
p = 1 mod 4, then there is an element (a19 a2, a3) e R\ whose type is one,
for which we consider the lattice B in Proposition 3. If p = 3 mod 4,
then we can consider the lattice A in Proposition 2. Then put M = B
or M = A according a s ^ Ξ l mod 4 or p = 3 mod 4. Note that 1 g Q(L)
and M - ^ l F with 1 g Q(AP).

(ii) Let D Ξ 3 mod 8. For L we take a lattice A ~ 2̂  _L A with
an even lattice A in Proposition 2. For M we take the lattice C ~
i?! _]_ C" with an odd lattice C and 1 g Q(C) in Proposition 5.

(iii) Let J ) Ξ 7 mod 8. For L we take a lattice A with 1 g Q(A) in
Proposition 2 and for M we take the lattice C ~ 2̂  J_ C with 1 g Q(C0
in Proposition 5.

(iv) Let D = 1 mod 4 and not a prime. If no prime divisor of Z)
is congruent to 7 mod 8, then by Proposition 1 we have two elements
(a19 α2, α3) e R3

P and (α(, a'2, aζ) e R\ for some prime divisors p and q of D
(possibly p = q) such that T(μί9 a2, α3) = 1 and T(a'19 a

f

2, aζ) ̂  2 or such that
Γ(αi, a29 α3) = 2 and T(a'19 a'%9 aζ) ̂  3. For L and M we take the lattice B
for (a19 α2, α3) and the lattice B for (αί, αj, aζ) in Proposition 4. If D has
a prime divisor p = 7 mod 8, then there is an element (α^ α2, α3) e 2?̂ , whose
type is more than two, for which we can consider the lattice B with
Q(B) 3 1 in Proposition 4. Put L = 23. There are positive integers &1? δ2

and 63 such that b\-\- b\ + b\ = D since 25 = 1 mod 4 and p = 3 mod 4.
We have bi Φ bά whenever / Φj since (—2/p) = — 1. Hence we can con-
sider a lattice A = Ex ±A with 1 g Q(A). Put 2lf = A.

(v) Let D be a prime p = 1 mod 12. Since p = 3α2 + 62 for some
positive integers a and b, we can consider the lattice A for (α, α, α, 6)
in Proposition 2. Put L = A. Then 1 g Q(L) and there are two
vectors 1̂  and u2 in L such that Q(u:) = Q(w2) = 2B(u19 u2) — 2. First
suppose P Ξ I mod 24. Then there are at least two elements (a19 a2, α3)
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and (ai, a'2, a'3) in R3

P whose types are more than three by Proposition 1.

Hence we can assume that T(a19 α2, α3) Φ 6 by Proposition 7. We put

M — B for (a19 a2, α3) in Proposition 4. Hence M Φ E3. And M Φ L if

N(a19 a2, α3) Φ 2. If M ~ L and N(a19 a2, α3) = 2, then (noting the existence

of the pair {uί9 u2}) we have T(aί9 a2, α3) = 3 or 6 by Proposition 7. This

is a contradiction. Secondly suppose that p = 13 mod 24. There is an

element (au α2, α3) e J2̂  whose type is more than three by Proposition 1.

For M we take the lattice B for (a19 α2, α3) in Proposition 4. If iV^, α2, α3)

= 1, then B = EX±_B' with 1 g Q(B') If Λfai, <h, α j ^ 3, then 1 g Q(β)

and 2 g Q(B). If ΛΓ(α15 α2, α8) - 2, then 1 g Q(B) a n d ΰ ^ L by Proposition 7.

(vi) Let D be a prime p = 5 mod 12. For L we take the lattice A

with 1 g Q(A) in Proposition 2. For M we take the lattice G = Ex J_ Gr

with 1 g Q(G7) in Proposition 6.

§ 4. Special values of D

For the explicit value of the class number of En we use the Kneser

Method. Following [4] we state the method. By J we denote the group

of ideles of the field K. For a finite spot p on K we put

Jp =z {/ == (ιq) e J ; ιq is a unit in Oq for all finite spot q φ p} .

Put V = KEn and P == ̂ (O+(y)), where θ is the spinor norm and O+(V)

is the proper orthogonal group of V. Consider P as the image of P under

the natural isomorphism K*^>J. Recall Theorem 104:9 in [4]:

LEMMA 7. Let n >̂ 3, Vp be ίsotropic and J = PJP. Then for any

L e gen En there is a lattice M isometric to L such that Mq = Enq for all

finite spot q Φ p.

By Proposition 101: 8 in [4] we have

LEMMA 8. Let n I> 3 and the ideal class number of K be one. Assume

that the norm of the fundamental unit in K is — 1 or that the norm of a

generator of p is negative. Then J = PJP.

LEMMA 9. Let n >̂ 3, p be a spot dividing D and M e gen En with

Mq = Enq for all finite spot q Φ p. Assume that n is odd and D = 2 if p

is dyadic. Then there is a chain of lattices

En = LQ,Li9 - ,Lt = M

in genEn with Lι+1 p-adjacent to Lt.
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Proof. Following the proof of 106:4 in [4], we can prove this asser-

tion. It is enough to find a chain of lattices Enp = Up, Up, , Up = Mp

in Vp with Lft^-adjacent to Up and Up ~ Enp. Put Lo = En. Then Mp

= (;LOί) for some (jeO(Fp). By expressing σ as a product of symmetries

on Vp we see that it is enough if we assume that σ is a symmetry. Then

σ = τu with u a maximal anisotropic vector in LOp. Then there is either

a 1- or 2-dimensional unimodular sublattice K of LOp which contains u.

If the rank of K is one, then Lop = τuLOp = Mp, so Mp is }>adjacent to LOp.

If the rank of K is two, then we take the splitting LOϋ = K J_ if7. Then

if7 = rω-K"' c Mp and so we have a splitting Mp = K/ K =

prx + opy and K" = ĉ x + pry with a non-negative ir e we

may put Up = LOp, Up = (p'-`x + py) ± K'= Up(πr-`x), , Up = Mp = K"

_L Kr = (opx + pr^) J_ iί 7 = i^iίx), where p = 7rop. We must show that

Up ~ £Jwp. It is trivial when i = 0 or i = r. Assume that 1 <̂  ί rg r — 1.

If p is non-dyadic, then p^'x + py ~ <1> J_ < - l > ~ K, so L^p) - K ±_ Kr

C=L Enp. If p is dyadic, then n is odd, hence X7 = [z] J_ i? ; / / with Q(z) = ε

a unit in ov. It is enough to show that (|Drx + opy) J_ o^ ^ (p7""^ + ply)

J_ op0 for 1 ^ i ^ r — 1. We can assume that prB(x, y) — op. Since y e

K a Lop~ Enp and p = V^Op, we have Q(j') Ξ 0 or 1 mod 2. Similarly

Q(x) = 0 or 1 mod 2 and ε = 1 mod 2. If Q(y) ΞΞ 0 mod 2, then (prx + op;y)

_L opz ~ (J J) _L O> ^ (j)-*x + p^) J_ o^. If Q(y) Ξ 1 mod 2 and π*rQ(x)

= 0 mod8, then tfx + opy) ± opz ~ <Q(y)> JL <-Q(y)> ± <ε> - <ε> J_

< -ε> i . <ε> ~ (J J) ± <ε> - (p'-*x + p*y) J_ V If Q(x) = Q(y) = 1 mod 2,

r = 2 and ί = 1, then (p2x + opy) ± opz ~ (Q(y)) ± (3Q(y)) ± (e) ~ (ε>

± <3ε> J_ <ε> ~(* 2) -1 <̂ > - (px + ^ ) JL 0pz.

PROPOSITION 9. Let D = 2. Γ/ιe7i ί/ie cZαss number of En is one if

n <̂  4, ίico if n — b and more than two if n ^ 6.

Proo/. There are three lattices £;, #e((l//2") (βl + . . . + e4)) and

^(( l /V^)^ ! + * + β6)) in gen £J6, any two of which are not isometric.

Let n — 5. Take p = (\/Γ2) and a p-adjacent lattice -B5(x) in gen 2£5.

Write x = (1/VΊΓ) Σϊ=i ^ίei Note that O(E5) contains all permutations

of {βj, , e5}. And note that Q(x) = 0 or I m o d 2 since Eb(x) e gen E5.

By Lemmas 2 and 3 we have only to consider the following three cases:

(i) ax = a2 = az = α4 = a5 = 0. Then E5(x) == £J5. (ii) at = a2 = 1 and α3 =

a, = a, = 0. Then ^(x) 2̂  E5. (iii) ^ = αr2 = α3 = α4 = 1 and a, = 0. Then
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E$(x) = E°4± [ej, where E\ = E£u) with u = (l/VH^fo + -ej. Hence a

^-adjacent lattice to 2£5 in gen£J5 is isometric to E5 or E'δ = 2£J J_ [e5].

Next take a p-adjacent lattice E'δ(y) to £5 in genE5 and write -/2"y = w

+ <xe5 with α e o and weE\. Since Q(y) e0 and #2 is even, we have

aep. By Lemma 2 we have E'Λ(y) = E'Λ((1I</2Γ)w) = JSJ((l/vΊί)ii;) ± [ej.

Hence we may write \^Yy = αw + 2t=i «A where ^ e o , α e {0,1} and

ΣUi αf = 0 mod v Ί Γ Note that Q(y) Ξ O O Γ I mod 2 since E'h(y) e gen J£5.

If a = 0, then we have the following four cases by Lemmas 2 and 3:

(i) Uχ = α2 = α8 = αr4 = 0. Then 2?£(y) = 2%. (ii) ax = / 2 " and <*2 = α3 =

^4 = 0. Then E'ΰ(y) = E5. (in) a, = αr2 = 1 and or, = αr4 = 0. Then ^ ( y )

= E%y) ± M = JSMα/VTXβ, + e2)) ± M l / V D f e + βj) ± [βj - £ 5. (iv)

^ = α2 = 1, <χ3 = Λ/T and ar4 = 0. Then E'Λ(y) 2̂  JEJ. Next consider the

case of a = 1. Since rβl e O(£?0, we have \/~2τeiy = u + (—ax — ^ffifa +

^2e2 + . Hence we may assume that <*έ = 0 mod 2 or ^ = 1 mod 2.

Thus we have only to consider the following cases by Lemmas 2 and 3:

(v) ax = a2 = a3 = a4 = 0 or ax = a2 = a3 = a4 = 1. Then E'b(y) ~ E5. (vi)

«! = — 1, a2 = 1 and a3 = α4 = 0. Apply Lemma 4 to this case taking

H; = u - /2"e l e Then JBί(y) ~ E°4 ±_ [ej - JB̂ . Thus a ^-adjacent lattice

to JB^ is isometric to Eb or E'6. Hence {E'5, E5} is a set of all representa-

tives of classes in gen i?5 by Lemmas 7, 8 and 9. By Theorem 105:1 in

[4] this implies that the class number is one if n <ί 4.

From [11] we have

PROPOSITION 10. Let D = 3. 7%eπ *Λe c/αss number of En is one if

n <^29 two if n = 3 and more than two if n^> 4.

PROPOSITION 11. Let D = 5. Γ/iβTi ί/ie c/αss number of En is one if

n <ί 4, too if n = 5 and more than two if n ^ 6.

Proo/. Put x = (1/VTXβ! + + β5), j 2 = (1/^/TXβ, + β2 + 2e3 + 2e4)

and Λj = (l/vΊΓ)(βi + e2 + e3 + 2e4 + 2e5 + 2e6). Consider the lattice E'δ =

£5(x) = [JC] J_ E\. Then £JJ is even. If n = 6, then we have three lattices

JE6, E6(x) and J^ = ^(α:,) in gen E6. By Proposition 4, (8) we have 1 € Q(#0.
Thus the class number of 2?6 is more than two. Let p = (VTΓ) and n — 5.

Take a ^-adjacent lattice ^5(y) to ί?5. By Lemma 5 we may consider

y = (1/vΊΓ) Σ ϊ - i « A with (αlf , α5) € 25. Hence y e {0, x, (1/vΊΓXe,+2e2), y j .

Thus EM = JS5, £5(x) = E'δ and ^((1/VTX^ + 2e2)) ~ JS?5. By Lemma 4

~ E% taking w = J(l + /5")(e3 + e4) e £J5. Take a ^-adjacent lattice

to JBJ. By Lemma 2 we may assume that yΊΓz = αx + 2]?=i aίeι
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where a = 0 or 1, at = at + ^VΊΓ e Z[Λ/TΓ] and 2]Li α* Ξ 0 m ° d 5. If α = 0,

then we have only to consider the following three cases by Lemmas 2

and 3:

( i ) Gl = = α5 - 0. Then z = £ L i &A, so #£(*) = Eί or ££(*) -

JB5 according as Σ?=i &* Ξ 0 m o ( i 5 or not.

(ii) αx = = α5 = 1. Thus 2; = x + 21= 1 &A with ΣίU bi~0mod5,

so26E' δ . Hence JBί(̂ ) - E£.

(iii) ax = 1, α2 = — 1, α3 = 2, α4 = — 2, α5 — 6X = = 64 = 0 and 65

e {0,1}. If ί>5 = 0, then 0 e E'δ, so JEftz) = E'δ. If 65 = 1, then we have

E'δ(z) = [z0, z 1 9 ' - , z,] ~ E,, w h e r e zQ = z + ξe, + ζe 4 - e8, zx = z + x + ζeί

+ ζβ3 - e5, 02 = 2; + 2x + ζβ l - / T β 3 - ζe5, ^ = 2 - 2x + ζe2 + /5~e4 - ζe5

and ,ε4 = z — Λ: + ζe2 + ζe± — e5, where ζ = ^(1 + yΊΓ).

I f c = l, then we have only to consider the following six cases by

Lemma 2 (note that O(E$ contains all permutations of {e19 , β5}):

(iv) at = = a, = 0 and α5 = 2VT. Thus ££(*) = [2^ - 5β5, 22: -

€j — 4β 5 , 2,ε — β2 — 4β 5 , 22: — e 3 — 4e 5 , 2<ε — e 4 — 4β 5] cr: J575.

(v) a, = a2 = a, = 0, αr4 = 2 and α5 = 3 + 3Λ/T. Thus E'6(z) = [z +

2x - ζe4 - (3 + ΛΛ5>5, « - 2Λ - ζ(ex + e2 + e3) - (3 + ζ)β5, z - βx - ζe4 -

(3 + ζ)β5> 2; - e2 - ζe, - (3 + ζ)e5, « - ez - ζβ4 - (3 + ζ)βj - £ 5.

(vi) «j = α2 = αr3 = 0, a4 = 1 and a5 = 4 + vΊΓ. Thus we have E ^ ) =

[22? + 2x - ζ(ex + e2 + e3 + e4) - (3 + 2/T)e 5, 2̂ : - 2x - ζ(βt + e2 + β3) - e4

+ (3ζ - 4)e5, 2^ - (ex + e2) - ζe4 - (3ζ + l)β5, 2z - (β2 + β3) - ζe4 - (3ζ + l)e5,

2^ - (βl + β3) - ζβ4 - (3ζ + l)ej - JS?5.

(vii) «! = α2 = 1> az — at = —1 and α5 = 0. Thus we have E'δ(z) =

[z + x + ζeι - ζe2, z + x + ζe2 - ζβ1? z - x + ζβ3 - ζe4, 2r - x + ζβ4 - ζβ3, 2:]

(viii) αj = or2 = 2, <χ3 = α4 = —2 and α:5 = —5. By Lemma 4 we have

E'ΰ(z) ~ Ef

b by taking w = 3x - v^"(e3 + e4 + e5).

(ix) Λ l = 2, αr2 = 1, as — — 1, αr4 = —2 and α:5 = 2V

Γ5`". Then we have

•Eδ(z) = [22; + x - v ^ β ! - ζe2 - ζe4 - 4e5, 2z - 2x ~ ζex + VTe, + v^5"e4 +

(ζ - 5)e5, 2^ + 2x - Λ^e, - ΛAFe2 - ζβ4 - (ζ + 4)β5, 2^ - x - ζex - ζβ3 +

VTe4 — 4e5, 22; — VTex — ζe2 — ζez + VTΓe4 — 4β5] ^ £75.

Hence gen 2?5 contains just two classes by Lemmas 7, 8 and 9. {E5, E'5}

is a set of all representatives of classes in gen E5.

PROPOSITION 12. Let D = 13. Then the class number of En is one if

n <L2, two if n — 3 and more than two if n ί> 4.

Proof Let τι = 4. Then there are three lattices 2?4, i?4(;>Ί) and jB4(y2) in
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gen E, with VΪ3y1 = et + 2e2 + 3e3 + be, and VΪ3y2 = et + 3β2 + 4e3. By Proposi-

tion 4 Q(JE?4(yi)) 391, Q(£3(y2)) 351 and E,(y2) = E3(y2) J_ [ej. Thus the class

number of E± is more than 2. Let n — 3 and p e (\/l3). Take a p-adjacent

lattice E'3 — ^(x) to 2?8. By Lemma 5 and Proposition 4(5) we may con-

sider Vl3x = βj + 3e2 + 4e3. Thus

/2 0 I

Q(£0 3 l and J57J = [*, y, *] ~ 0 3 Vl3

\1 Vϊ§ 5

where y = e{ + e2 — e3 and 2 = 6x — Vl3(β2 + 2e3). Next consider a p-

adjacent lattice E% = £JJ(M) to E^ with VΪ31/ = ax + βy + ϊz e E's - pEi.

If j8 e p9 then we may assume that β = 0 and α = 1 by Lemma 2. Thus

we may assume that Γ = 2 or ϊ = — 5 since Q(&) e o by Lemma 4. If

T = 2, then E'z' = [u, y, VΪ3z] = [u - y, Au + 2y - VΪ32, 3w + 2y - VΪ3z]

~EZ. Ίfr= - 5 , then E'{ = [u, y, ^ΪSz] = [u + 2y, 3u + y + VϊSz, Au +

2y + Λ/13Z] 2̂  £J3. Let βgp. Then by Lemma 2 we may assume that a

and βeZ such that |αr| <: 6 and \ϊ\ ^ 6 and that β = 2 mod VΪ3. Since

^+VΪS»-3« τ"2a+vϊ3y-3*> ^ e O ® , we may assume that Vl3w = x(±2 +

2VΪ3)y - 6 .̂ Hence ££' = [w, ± ( 5 M - 9y) + x + (+2VΪ3 - 2)z, Au ± 2x

— Ay — ( ± 2 — Vl3)2] 2̂  J&3. By Lemmas 7, 8 and 9 we have the assertion.

PROPOSITION 13. Let D = 17. Then the class number of En is one

if n ^ 3 and more than two if n ^ 4.

Proof. Let n = 4. Then there are three lattices E4, E^y^ and A in

gen EA9 where V Π ^ = ex + Se2 + 4e3 + 5e4, Vϊ7y2 = eί + 2(e2 + ez + e, + e5)

and E5(y2) = [y2] _L A. By Proposition 4 QiE^yJ) 3 1, 2. By Proposition

2 Q(A) 9 1 and Q(A) a 2. Hence the class number of E± is more than

two. Let n = 3. Then by Lemma 5 and Proposition 4 a (Vl7)-adjacent

lattice to E3 is isometric to E3.

PROPOSITION 14. Let D = 29. Then the class number of En is more

than two if n^> 3.

Proof There are three lattices Ei9 Ez{y) and Ez{yf) in gen Es, where

= 2e, + 3β2 + 4β3 and 2yf = e, + J(l + V29)β2 + i ( l - V29K- Then

= [y\±M with 1 g Q(M). Clearly Q(S3(/)) ^ 1 since

/4 1 0

~ e2 + ej ^ 1 4 2^29 |

VO 2^29 31
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PROPOSITION 15. Let D = 33. Then the class number of En is one

if n <̂  2, two if n = 3 and more than two if n ^ 4.

Proof. There are three lattices 2?4, EJipc^) and i?4(x2) in gen £74 with

*! = (V33/11) (βj + e2 + 3e3) and x2 = (V33/H) (ex + e2 + 2e3 + 4e4). Then

EXxt) = Ez(xx) J_ [βj with 1 g QiE^xj) and 1 g Q(E,(x2)) by Proposition 4.

Thus the class number of E± is more than two. Put π = 11 + 2\/33 and

α) = 6 + V33. Let n = 3 and p = (TΓ). Then a p-adjacent lattice to E3 is

isometric to E3 or ^(Xj) by Proposition 1 and Lemma 5. Note that

, - 2e2 + e3j 5x, + (1 - ^ 3 3 ) ^ + e2) + (3 -

Putting x = (V33/3)(e! + e2 + e8), then £^ = ^(x) = [eλ - e2, x + J(3 -

+ J(l — V33)e> + e3, x — 2(βj + e2) + 4e3] ^ ^(Xj). To find a ^-adjacent

lattice to Ez(x^) we have only to find a jo-adjacent lattice E" to £Jg. Let

E" = -Bg(̂ ) with 3/ e p " 1 ^ — £Jg. By Lemma 2 we can assume that y =

(V33/ll)^ with ^ e #£ - pE'3. Thus py c ωί:^ c ^ 3. Since x e #£ and B(x, y)

= B(eί + e2 + e3, 2) e B(i?3, £Ό c 0 we have x + y e E". For a vector

w e E3 such that JB(M;, x + y) e 0 we have πB(w, x) = B(w;, 7r(x + y)) —

B(w, πy) e 0, also ωB(w, x) e 0. Hence B(w, x) e 0, so we E'3. And hence

B(w, y) = B(α;, x + y) - B(w, x) e 0, so we E'3(y) = E?. Hence Ez(x + y)

C JB .̂ Since y = 2co(x + y) — (2ωx + ^y) with 2ωx + πy e Ez and S(y, 2cox

+ πy) e 0, we have y e Ez(x + y). For a vector w eEz such that B(&;, x) e 0

and B(w, y) e 0, we have B(w, x + y) e 0. Thus JSg' c i?3(x + ^). Hence

E? = S8(M) with M - x + y = (1/733X11^ + lle2 + lle3 + 3z) e (1/V33)^3.

Clearly V33w g pίζ, U ωS3. Write V33^ = Σ3

i=1 aiei with at e 0. By Lemma

2 and considering the structure of O(E3), we have only to consider the

following three cases:

( i ) aγ = a2 = 4 and α3 = 1. Then

E^ = [u, Au +

4ι/ - H I + V33)e1

( ϋ ) ax — a2 — 2 and αf3 = 5. Hence

Eϊ = [u, Ίu + i ( l - V33)βi - i ( l + V3S)e2 - V33e8,

7M - J ( l
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(iii) at = 1, a2 = 4 and az = 7. Thus

JS7J' = [M, 4W - V33e3, *i + 5e2 - 3e3] ~ JBJ .
Hence we have the assertion by Lemmas 7, 8 and 9.

PROPOSITION 16. Let D — 41. Then the class number of En is one

if n = 1, two if n = 2, 3 and more than two if n 2> 4.

Proo/. By Proposition 6 there is a lattice G' in gen E2 such that

1 g Q(G'). Hence there are three lattices # 4, G' J_ # 2 and G' _]__ G' in

gen E4. Thus the class number of E4 is more than two. Let n = 3 and

j) = (Λ/4Ϊ). A p-adjacent lattice to Ez is isometric to E3 or Es(x) with

! + 2e2 + 6β3) by Propositions 1 and 4 and Lemma 3. Thus

with y = 2βj — β2 and z = V^l(e1 + e3) — 7x. Take a p-adjacent lattice

E'z' = £?3(w) to E'z such that w έ £^. Write Vϊϊw = α:x + ^y + r^ with

a, β, ϊ e o. E α e j ) , then we may assume that a = 0 and r = 20 by Lemma

2. Since Q(w)eo, we may assume that β = ± 5 — 8\/iΐ by Lemma 2.

Thus £ ? = H 1 H , ± 10M + (2V4Ϊ ± 80)y - (8 ± 5 V4ϊ)z] - JSJ. K 0 € fc
then we may assume that a — 7, β — 0 and Γ = 1. Hence w = βj + e3 and

J5^ = Ez. If r e f>, we may assume that a = 6, /3 = 1 and r = 0. Thus

Eί' = M J_ [14M - 2Λ/4ΪJC - z] ± [7u - V4Ϊx - Vϊΐy + 2z] - E3. If αi3Γ 6

p, then we may assume that T = 1 and βe Z hy Lemma 2. Note that

contains the isometries

5,2, ^ -> 33y

- Vϊϊ)y + K3 -
- 13)y -

and

«* -> +x, y -

y -

Hence by Lemmas 2 and 3 we have only to consider the following two

cases:

( i) VSw = - ( - 2 ± 3 V S ) J C ± 3y + z and

(ii) V4ΪM = (10 ± 6VS)x + 30y + z.

In the case of (i) we have
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Ei' = [u, Vϊϊx, y ± 13*] = [v] ± [υu v2] ~ Eί ,

where

2v = (-19 ± V4Ϊ)w - (9 ± 3VS)VSx + (5 ± V4Ϊ)(y ± 13*) .

2υx = (11 ± V4ϊ)w + (15 ± 3Λ/S)VSX - (7 ± VS)(y ±

and

u2 = 2(±2 + VS)u + (±19 + 2v/4Ϊ)v/4Lx; - (±6

Then Q(ι ) = 1. In the case of (ii) we have

E'{ = [u, VSx, y ± 15x] = [ι/] J_ [uί, ̂ ] - ^^ ,

where

2y; = (-9 ± V4Ϊ)M - (101 ± 11Λ/4Ϊ)VSX - (-33 ± 7VS)(y ± 15*) ,

ϋί = (21 ± VS)M - (236 ± 11Λ/4Ϊ)Λ/4ΪX + (21 ± 15V4ϊ)(y ± 15x)

and

2ϋί = (25 ± 17VS)^ - (273 ± 19lVS)VSx + (501 ± 1 Vδ)(y ± 15x) .

Then Q(uO = 1. Hence the class number of £J3 is two, and that of E2 is
also two, by Lemmas 7, 8 and 9.
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