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TOPOLOGICAL RINGS OF QUOTIENTS
WILLIAM SCHELTER

We investigate here the notion of a topological ring of quotients of a topo-
logical ring with respect to an arbitrary Gabriel (idempotent) filter of right
ideals. We describe the topological ring of quotients first as a subring of the
algebraic ring of quotients, and then show it is a topological bicommutator of a
topological injective R-module. Unlike R. L. Johnson in [6] and F. Eckstein in
[2] we do not always make the ring an open subring of its ring of quotients.
This would exclude examples such as C(X), the ring of continuous real-valued
functions on a compact space, and its ring of quotients as described in Fine,
Gillman and Lambek [3].

Let R be a ring with 1 and & a Gabriel filter of right ideals for R. Let M be
a right R-module, Q4(M) its quotient module with respect to &, T'¢(M) the
torsion submodule, and Fg(M) be M/T4(M). We shall omit the subscript £
if we are only dealing with one Gabriel filter. We now consider an operator T3,
which assigns to subsets of M, subsets of Q(M). We require the following
properties to hold, where X, Xo C M, X3 C R and

ENY

is an R-homomorphism:

(1) X1+ T'(M)/T(M) S Tu(X),

(2) X1 € Xo=Ty(X1) C I'y(Xy),

(3) Toun o Ty = Ty,

(4) Tu(X)Te(Xs5) S Ty(X1X5),

(5) FM(XI) -+ PJI[(X2) - FM(XI + Xz), if 0 € X;or X,

6) Q(NTw(X1) T Tu(F(X1)).

Properties (1), (2) and (3) say that if M is torsionfree divisible, then T'j; is a
closure operator. (4), (5) and (6) just express compatibility with the R-module
structure. To put a topology on the quotient ring, we shall take as neighbor-
hoods of 0 the images under T' of neighborhoods of 0 in R, but first we give
some examples of possible choices of T.

Example 1. Let T'p(X) be the image of X under the canonical map
M — M/T(M). This corresponds to making R/T(R) an open subring of its
quotient ring.

Example 2. If X C Q(M) let
X+ = {q € Q(M): there exists D € & so thatforalld € D, ¢qd € Xd}.
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If ZC M, let
I'v(Z) =MN{X2Z+TM)/T(M): X CQ(M) and X = X+}.

We verify that I'y, satisfies property (4), the others are checked similarly. First
we show that X,*X;+ C (X1X;)* whenever X; € Q(M) and X3 C Q(R). Take
¢: € X/, and let D; € @, such that ¢d € Xd all d € D;, © = 1, 3. Let
Dy = Dy M ¢ '(D1). Now if d € Dy, then (qig3)d = qi(gsd) = x1(gsd) =
x1(x3d) = (x1x3)d for some x; € X4, ¢ = 1, 3. Thus qigs € (X1X3)*+. Now let
XiC M, X SR, X1 =X:1+T(M)/T(M), X3 =X+ T'(R)/T(R), and
X, = X.X; We then define for each ordinal «

XiOZXiy
Xf=@&H" ifa=8+1,

X =UX/ ifaisa limit ordinal,
p<a
for 2 = 1, 3, 4. For a sufficiently large v we have X, = I'y,(X,), 7 =1, 3, 4.
We show by induction that X1#X 2 C X If « = 8 + 1, then
X BHIX A+ = (Xlﬂ)+(X2ﬂ>+ C (X16X26)+ C (X4B)+ = X ,p*

using the inductive assumption X £X ¥ C X ,f and the easily checked fact that+
is monotone. If « is a limit ordinal, and if ¢; € X2 ( = 1, 3), then ¢; € X 5,
for some 8 < a, and s0 q1gs € X FX# C X C XA

Example 3. Let R be a commutative ring, X € M, where M is any R-module.

We define
Py(X) ={2X (& + TR)/T(R))gs: x: € X, ¢4 € QR)}.
It is easily verified that properties (1), (2), ..., (6) hold. Commutativity is

necessary for (3).

We now assume that R is any topological ring, & any Gabriel filter of right
ideals, and T an operator satisfying the conditions (1), (2), ..., (6). We shall
usually omit the subscript for T. Let #” be the neighborhood filter at 0 of R.
Let = {Tx(V): V €¥}. Let

Q* ={q € Q(R): for all W€ W, there exists V€ ¥, qV C W, Vg C W}.
We may later write Q,*(R) = Q*.
PRrOPOSITION 1. Q* is a topological ring, with W a base for the neighborhood
filter at 0.

Proof. We first note that every element of % is contained in Q* by (1) and
(5). To show that Q* is a topological group we need to show thatif V € #7, then

(a) thereisa U € ¥, T'(U) + T(U) C T(V);

(b) thereisa T € ¥, T(T) € —I'(T).
For (a), take U € ¥ such that U + U C V, and apply (4). To see (b), we
have (I'(V))(—1) C T(V)T'(—1) = —T'(V) by (1) and (4). Then letting
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T=-V,T(T C —-T(—T) = —T(V). It remains to check continuity of
multiplication. If ¢ € Q*, W € W, W = T'(V),V € ¥, take U, T € ¥  such
that U+ UC V and ¢7T C T'(U), T¢qC T'(U), and T T C U. Thus
(¢ + T(1)) T(T) S qT(T) + T(I)T(T) S T(gT) + T(IT) < T(U) +
T(U) C T(V).

We shall call Q* the topological quotient ring of R with respect to & and T.

Example A. Let R be C(X), X compact Hausdorff, the & be the Utumi
filter, the topology for R be the one induced by the sup norm, and I' be as
defined in Example 2. Then Q* is the ring of real-valued functions which are
continuous and bounded on a dense open subset of X, and its topology is that
induced by the sup norm. We recall from [3] that Q(R) is the ring of all real-
valued functions continuous on a dense open subset of X, and an ideal D of R

is in & if and only if the cozero set of D is dense. To prove our assertion about
Q% if e > 0let

W ={g € QR):|g(x)] < eall x in an open dense set & C X}.

We claim that T(W M R) = W. Take g € (W N R)*. Thus
there exists D € & such that for alld € D, gd € (W N R)d.

The cozero set of D is open and dense, and for x € coz D choose d € D,
d(x) % 0. Then g(x)d(x) = w(x)d(x) = ed(x). Thus |g(x)| = ¢ and we have
g € W. Conversely if g € W, and O is the open dense set in the definition
of W, let

D' = {d € R:d(0) is a neighborhood of X\ 7}.
Since X is normal, coz D’ = €, and thus D’ ¢ &. We define

0on X\O
w(x) = <g(x) on the closure of X\d~1(0)
otherwise extend it continuously with values in [—e, €.

We have gd = wd, w € W M R), and therefore g € (W M R)*. We have shown
that (WM R)* = W, but it is easily verified that W+ = W, and thus
I'(WNR) =W. Every function which is bounded and continuous on a
dense open set is in some W for a sufficiently large ¢, and therefore in
T(WNR) CT(R) C Q* Conversely if g € Q*, then there exists § > 0 such
that

g IfCR:|f| <8} S W.

Thus g-6 = w, for some w € W, and g = w/§, a function which is bounded
(by €/8) on a dense open set. That the topology on Q* is the sup norm, is
clear from (W M R) = W.

Example B. This example also uses T as in Example 2. We give here a general
construction, which applies to any ring, and which when applied to a ring of
algebraic integers gives the ring of Adele’s (together with its topology) modulo
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the Archimedean part (see [1]). Let R be a ring, & the Utumi filter of right
ideals. Let R be the Hausdorff completion. R will have a linear topology, i.e.
a base for the neighborhood filter at 0 consisting of right ideals, so let £’ be the
smallest Gabriel filter containing it. We now form the topological ring Q* 5. (R).
To see what this is if R is a ring of algebraic integers, we first note that
R = H Rp,-

Pi;ESpecR
by [3] where Rp, denotes the P adic completion of R. The topology on R is the
product topology, and thus ideals in & are of the form II; X;, where X ; = Ry,
for almost all 4, and otherwise X; = A%, n, € N, #; the maximal ideal in
Ry, Let M ;= aRp,. Qg (R) is then the local product of the Q; = a,R5,, with
respect to the Rp;. 0g:(R) = Qg*(R), and it is clear that the topology of Q*
is the usual one.

Example C. If R commutative, I' is as in Example 3, and if we localize at a
prime P, then Q* = Rpand its topology is the M-adic topology where M = PRp_

Example D. If R is any topological ring, & the Utumi filter, and T is as in
Example 1, then Q* = C(R), where C(R) is defined by R. L. Johnson in [6].

We now wish to show that Q0* can be obtained as a topological bicommutator.
If M is a topological R-module, E the ring of continuous endomorphisms

End (Mg, Mgz), and S = End (zM, M), we shall call S, endowed with the
topology of pointwise convergence, the topological bicommutator of M. It
comes equipped with the continuous canonical ring homomorphism R — S.

Given & a Gabriel filter for R, and T an operator satisfying (1), (2), ..., (6)
we let

I=]] {ER/K,): K;=.,R,R/K, torsionfree}.

jeJ

Let ¢o = (1 + K;)jcs € I. A base for neighborhoods of 0 in I, will be
U = (T,0V): V €?}

where ¥~ is the neighborhood filter of 0 in R. We let
I* = {i € I:for all U € % there exists V € ¥ with iV C U}.

It is clear that I* is a topological R-module.

A topological R-module E is said to be a topological injective (see [5]) if for
M’ an open submodule of a topological module 3, any continuous map
M’ — E admits a continuous extension to M.

LEMMA. I:* is a topological injective.

Proof. Let

M'LI*
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as in the definition. We know there is a map
ML
extending f. If m € M and U € %, thereisa V € ¥  such that mV C f-(U).
Thus f(m)V C U, so f(M) C I*. Continuity is clear since M’ is open and
flu, is continuous.
THEOREM. Q* s the topological bicommuiator of I*.

Proof. First we show that E¢g = I*. Take ¢ € I*. Define h:i,R — I*:
iy —>ir. Wecanextend htoh: I* > I. If x € I*, and U € % we know there
isa VeEy with<V C Uand a W €% such that xW C T'(4,V). We have
)W = h(xW) C k(T (V) C T(h(Z,V)) = T(EV) € T(U) = U. Thus
h(I*) C I*. kis continuous, for if U € %, take V € ¥  such thatiV C U, and
then 2(I'(z,V)) C U.

Since Ei, = *, we have a monomorphism S — I*: s > 7,s. We wish to show
that

R5S
is essential, or equivalently 7,R C 7,5 is essential. Suppose for 7 = 445 € 7,5,
iR M 4,R = 0. Then we define e: iR + 7,R — I* by e(4) = 2 and e(ip) = 0. eis
continuous, and by an argument similar to that above one obtains a continuous
extension &: [* — I*. Thus

i = e(t) = (1) = e(1os) = (&lo)s = 0.

It is clear that Ker(R —.5) = T(R). Thus we have shown that Sy is an
essential extension of R/T(R). In order to show that S is a subring of Q(R)
(i.e., Qz(R)) it suffices to show that S(R)/x(R) is Z-torsion. We know
Sr/k(R) = 1,Sg/ieR. Suppose

ioSa/ieRL I, 50,

We know there is an

I*LI

extending the map

iS5 oS /iR L T.
I*-
S~ 3
~ ~

~
~

ioS—_‘—> ioS/igR———E;I

We claim f(I*) C I* and f is continuous. Take 7 € I* and U € ¥". Then there
is a V¥, such that iV C I'(4oU) C Qg(i¢R). Thus f(iV) = 0, since
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Q2(1R) /1R is D-torsion. Since f(i)V = 0 we certainly have f(i) € I*.
Similarly, f(T'(#,V)) C IT'(f(zeV)) = TI'(0), so f is continuous. Now for any
s €S, fw(ies) = f(1os) = (fig)s = 0. Therefore f = 0. Thus we may think of
S and Q¥ as two subrings of Q(R) containing R/T(R). To show that Q* C §, it
will suffice to show that g: I* — I*: 7 — 4g is a well defined and continuous
E-homomorphism. We know I is a Q(R) module. Let ¢ € I* and ¢ € Q*.
Take U€ % and V €% such that {1V C U. Take W € ¥  such that
gW C T(V). Then (ig)W C «T(V) C T(V) C IT'(U) = U. Therefore ig € I*.
To check continuity, V’ € #". Then there isa W € ¥  such that Wq C I'(7").
T(i,W)g S T(0eWq) S T I(V')) S T(T (V")) = T (@ V).

It remains to check that g is an E-endomorphism. Take ¢ € E, I € I*, and
D ¢ 9 such that ¢(D) € R/T(R). Then (e(ig) — (et)q)d = e(igd) — (ei)qd =
(et)gd — (ei)gd = 0, each d € D. Since I* is D -torsionfree, e(ig) = (ei)q.

We now show S C Q* Take V € 7. We know ,['(V) C T'(i))I'(V) C
T'(2V) € Q(eR) = 1Q(R). Let

20R L R:ig— 1.
Q) (T (E,V)) T T(f(4oV)) = T(V). Thus T (2o V) S 2,I'(V),ice., T (4 V) = 4,0(V).
Since s is a continuous endomorphism, there isa W € ¥, such that

(1oW)s ST T(1,W)s C T (V) = (Z,T(V)).

Thus Ws C T(V).On the right side, since 445 € I*, thereisa W’ € ¥~, such that
@)W S T(30V) = 2,0(V), 1.e., s W C T(V). Therefore s € Q*.

Finally it remains to show that the topology of pointwise convergence on .S
coincides with the topology of Q*. If £ € I* and VV € ¥, a typical neighborhood
of 0inSis X = {s € S:4s € T(5,V)}. If © = 7, then this is just I'(V) so the
topology of S is finer than that of Q*. Conversely, we know 7 = eipsome e € E.
Thus X = {s € S:4es € e (T'(40V))}. Since e is continuous, I'(Z,V) is a neigh-
borhood of 0 in I*, i.e. there is a W € ¥ such that e }(I'(4,V)) D T'(4,W) =
1,0 (W). Thus X D I'(W).
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