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CLASSICAL SOLUTIONS OF THE THIRD
PAINLEVE EQUATION

YOSHIHIRO MURATA
1. Introduction and main results

The big problem “Do Painlevé equations define new functions ? ”, what is cal-
led the problem of irreducibilities of Painlevé equations, was essentially solved by
H. Umemura [16], [17] and K. Nishioka [9]

Umemura [16] analyzed Painlevé’s Stockholm Lessons [15] and extracted the
concept of “classical functions”. To define “classical functions”, Umemura intro-
duced the permissible operations to construct new known functions from already
known functions. First, we note that we identify a holomorphic function f on an
open set U € C with its restriction f|, onto an open subset VC U. Let S be a
certain set of meromorphic functions on a domain D C C. We assume that all the
elements in S are already known functions. Permissible operations to construct
new known functions from the set S are as follows.

DeFINITION 1 (16, Part II §2]. (O) Let f(¥) € S. Then the derived function
f’(t) is a new known function.
(P1) If f,, f, € S, then the sum f; + f, and the product f,f, are new known func-
tions. Moreover if f, # 0, then the quotient f, /f, is a new known function.
(P2) Let a,,**,a, € S. Then any solution f of an algebraic equation f” -+
a,f 4 a, = 0 is a new known function.

(P3) Let f() € S. Then the quadrature ff(t)dt is a new known function.

(P4) Let a,,---, a, € S. Then any solution f of a linear differential equation
d*f/dt" + a, d"'f/dt" + --- + a,f = 0 is a new known function.

(P5) Let ' C” be a lattice such that the quotient C" /I is an abelian variety.
Let 7: C"— C"/TI be the projection. Let f,, -, f, € S be holomorphic functions
on a domain D € C and ¢ be a meromorphic function on C”" /I Then the function
¢ (f, ", f,) is a new known function if it is not the constant function taking
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infinity.

In any operation of (P2),---, (P5), we consider that we take an appropriate
subdomain D’ C D such that the néwly constructed function is meromorphic and
single valued on D’. Using these permissible operations, Umemura defined “clas-
sical functions” as follows:

DeriviTioN I (16, Part II §2, Definition (2.27)]. Let f be a meromorphic
function on a domain D € C, M, be the set of all meromorphic functions on D
and C(#) be the field of rational functions in a variable £ The function f is called
classical if and only if there exists a tower of differential subfields K, = Cc®,
K., -, K, of My such that

(i) For any y=1, -+, m, K; = K; ,{g?> = K;_,(g;, &/, &, "), where g; is
a meromorphic function obtained by one of permissible operations (P2),---,
(P5) from the field K;_,.

(ii) f € K,

In this sense, rational functions in one variable, e', log ¢, elliptic functions,
the hypergeometric function and confluent hypergeometric functions are examples
of classical functions. It is non-classical functions that are essentially new func-
tions. We call a non-classical function an irreducible function.

Using the idea of Nishioka [9] and the fact that Painlevé I does not have
algebraic solutions, Umemura [17] showed the theorem that every solution of Pain-
levé 1 is irreducible. After that, by the same idea, M. Noumi [10] clarified the dis-
tribution of classical solutions and irreducible solutions of Painlevé II, K. Okamoto
[14] solved the case of Painlevé IV. They slightly generalized the techniques of
Umemura [17] and used the facts on rational solutions of Painlevé II and IV and
on solutions of Riccati equations contained in Painlevé II and IV [7]. Then our
next target is Painlevé III. In this paper, we investigate the distribution of classi-
cal solutions of Painlevé III’, which is equivalent to Painlevé III, in connection with
the transformation group of solutions. Particularly, we completely determine all
algebraic solutions. In the forthcoming paper [8], we prove a theorem that except
for classical solutions derived in this paper, any solution of Painlevé III' is irre-
ducible.

1.1. Two expressions of the third Painlevé equation

Painlevé III has an equivalent equation Painlevé III' [13, Introduction];
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dy _ 1 <dy 1 dy b
(LD Pura?—y H) ‘x‘“E‘*‘ (ay +8 + 7 +;
d’q _1(dg\* 1dg q 5 5
42 P a4 (dt) T T ettt
In fact, a solution of Pj; corresponds to that of Py by the change of the vari-
ables:

In this paper, we mainly treat Py, because it has a transformation group with
good structure (See 1.2).

As is well known [13, Proposition 1.1], by the change of the variables: ¢ = ¢,
q=t/q,, Py.(a, B, 7, 0) is transformed into Py.(— B, — a, — &, — 7). In the
same way, by the change of the variables:t = tlz, q= qlz, Py (a, B,0,0) is
transformed into Py, (0, 0, 2a, 26) [11 II, Remark 1]. The correspondence (1.3)
implies that P, (a, B, 7, 6) also has similar transformations to the above ones.

From these facts, we may consider that the values of the complex parameters
a, B, v, 0 of Py, and Py, satisfy one of the three cases:

A a=7=0(rB=06=0)
(1.4) B) r=0,a0%+0 (or 6 =0, By +0)
(C) yé6 # 0.

In the case (A), Py and Py are solvable by quadratures [13, Proposition 1.5]. In
the case (B), V. I. Gromak [1], [4, Theorem 2], [5, 2] showed that P,; has
3-sheeted algebraic solutions for special values of 8 (or a). In the case (C), any
solution of Py (resp. Py;) governs the isomonodromic deformation of a second
order linear differential equation L, (resp. L,;) which has irregular singularities
of Poincaré rank 1 at the origin and at infinity, and a nonlogarithmic singularity
at ¢ [11 II, Proposition 1], [12, 4.3]. Then the case (C) is essential for Py, and
Py In this case, Gromak [5, Theorem 9] obtained the necessary and sufficient
conditions for Py (a, B, 1, — 1) to have rational solutions by the use of trans-
formations of solutions of Py;,;. But, as we will mention in 1.2, the transformation
group of solutions of Py, is isomorphic to the Affine Weyl group of the type B,,
and so, we can treat Py, more successfully than Py;. Therefore, in this paper, by
the help of this transformation group of Py, and by different approaches from
those of Gromak (5], in this case (C), we investigate algebraic solutions and solu-
tions expressible by Riccati solutions of Py in detail. In the process of studying
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algebraic solutions of Py, we obtain a result on algebraic solutions of Py, which
contains the theorem by Gromak [5, Theorem 9].

Let parameters (&, B8, 7, 0) satisfy the case (C). Then (&, 8, 7, 0) can be
replaced by other parameters (1, %, 0, 6.) [11 11, 2];

(1.5) a=—4n0., B=41,(6,+ 1), y =41}, 6 = — 4n .
In addition, by the change of variables:
(1.6) t=At, q=upq, Au+0),

Py Moy Mooy By, 0.) is transformed into Py ((A/ ) ng, N, Oy 6.). Then, if the
values of A and g are chosen appropriately, Py (0, e, 0o, 0.) is transformed
into a canonical type equation Py (1, 1, 6,, 6,), which we express by Py (6,
0.). From now on, we mainly consider this canonical type equation

d 1d 6, +1 1
Pm,(ﬂo, 0) q (7?) 77?"}" l] (q )+0—t—_7]—'

P (ny, M., 6, 6.) is also transformed into a canonical type equation

dy 1 (dy 1 dy 2 3
Pm(eo, GM).dxz——y_<E> "E%"i‘—(—‘ 0y +6,+1 +4y ——

by a similar transformation to (1.6).

1.2. Transformation groups of P, and Py,

As Okamoto [13, Introduction] pointed out, Py (19 Nw, 6y 0.) is trans-
formed into a Hamiltonian system. In fact, putting

q9=4q

2
(1.7) p= tdq/dt + 7]qu+ 0,9 — not’
2q

then we get a Hamiltonian system

d oH

. o= [Zq b= (g + 6g = nd] = 55
' d 1 0H
(B = — 2w = @+ 09p+ 6, + 601 = — 5,

where  H= 1/8[¢"0" — (n.g®+ 6, — nodp + A/2)0.(6, + 6.)ql.  Let
H,;; (6, 6,) denote the Hamiltonian system which corresponds to Py, (6,, 6.), ie.,
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the system (1.8) with parameters (1, 1, 6,, 6..). Okamoto obtained a transforma-
tion group Gy of Hy (6, 6.) and showed that it is isomorphic to the Affine Weyl
group of the type B, [13, Theorem 1]. In this paper, we consider the transforma-
tion group G’ of Py (6,, 6.) which is derived from G} by (1.7).

Generators of " and transformations which we use later are as follows:

t9—(G,Q = —t/9
(6,, 6) — (6,,6.) =(—6,—1,—6,— 1)

tdg/dt —q* + 6.q — t)
tdg/dt— q° + 6, — t
(6,, 6..) — (6,, 6.) = (6., 6,

(9=, @ = (14

¢t P—(G6,Q=(t —9
(6o, 0.) = (B, 0.) = (6,, — 6.)

t tdg/dt— q* — (6, + 2)q + ¢
t, oG, @ = (1, ~ L 10/A=a =t Da 1y
q tdg/dt—q° + 0.9+t

6,, 6.) — (6,, 6.) =6, +1,6,+1)

_ t tdg/dt+ q" + 6,g — t)
qtdg/dt+q" —6.qg—t

6, 6.) — (6, 6.)=(0,—1,6,—1)

(60—, @ = (1,

t tdg/dt+q" — (6, +2)g + t)
9  tdq/dt+q"— 6.q+t
(6,, 6.) — (6, 6.,) = (6, +1,6,—1)

(o=~ o=t

t tdg/dt — q° +6,9 — t)
"4 tdg/dt—q* + 09—t
{(00, 6,)— (6, 6. =6,—1,6,+1)

t @G, @ =r

[(t, Q—(,Q = —¢
(6,, 6.) — (6, 6.) = (—6,— 2, — 6..).

Each transformation of the above all is applicable only when a solution g(#) does
not vanish the numerator and the denominator of Q. G’ is generated by s;'s
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(7 =0, 1, 2). These transformations combine together like
s/ =1id (G =10,1,2),
1= (5,5,)%5,5,, m = s,05,, h = s;ms,,
Im=ml, hl=1"h, hm=m"h.

We also introduce the transformation group G of Py,;(6,, 6.), which is
derived from G’ by (1.3). Let S; denote the corresponding transformation to
s;G=0,1):

z,9)— w, V)= (, —1/y

S, o
0 6, 6.)— (6, 0.)=(—6.—1,—6,—1)

(x/2)(dy/dx) —xy°+ (0, +1/2)y — x
(x,y)—>(u,Y)=<x,y 2 )
S, (x/2)(dy/dx) —xy" + (6, +1/2)y — x

(00y 000) - (501 900) = (0007 00)-

S, is applicable under the conditions (x/2)(dy/dx) — xy’ + (6., +1/2)y — x
=0 and (x/2)(dy/dx) — xy* + (6., +1/2)y — x = 0. The transformation s,
corresponds to the transformation

(x, ) — (u, V) = (&x, &y)
(6,, 6.) — (6,, 6.) = (6,, — 6.),

where Eis i or — i (1 =+~ 1). S,, S, and S, generate G’. Correctly speaking, G’
=S,, S, S» =<S,, S;, S_ holds, because (S,)>= S = S;,. Here, we
have Sy =S =id and S,S_,=S_,S,=id. The transformation s;(j = 0,1)
actually corresponds to both of S, and (S¢)*S;. The transformation m corresponds
to the transformation

1 (x/2)(dy/dx) + 2y’ — (6,+3/2y+x
(z, ) — (u, Y)=<x,— ; >
M Y (x/2)dy/dx) +2y* — (6. —1/2y +x

6, 6.)— (6, 6. =6,+1,6,—1).

The transformation m " corresponds to the transformation

1 (x/2)(dy/dx) —xy" + 0, + 1/2zy — x

(z, y)**(u,Y)=<.r,— ; >

M Y (x/2)(dy/dx) —xy + (6, — 1/2)xy — x
6y, 6.) = (6, 6.) = (6,— 1, 6, + 1).

Here each transformation of the above two is applicable only when a solution
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y(x) does not vanish the numerator and the denominator of Y. The transformation
m (resp. m~) actually corresponds to both of M and (SE)ZM (resp. M~ and
(S)’M ™). Furthermore, whichever value & takes, we have M = S,(S,5,)%S,(S,S,).
Lastly, the transformation % corresponds to the transformation

@, — W, V) =(«&, —y
(6,, 6.) — (50, 6)=(—6,—2, —86.).

and the transformation (S,)”H.
The Hamiltonian expression (1.8) of Py and the transformation groups G'g,
G’ also play important roles in the forthcoming paper [8].

1.3. Main results

In this paper, if we do not comment especially, “a rational function” means a
single-valued algebraic function defined on a Riemann sphere P, and “an algebraic
function” means a many-valued algebraic function defined on P.

TueoreM 1. Py (a, B, 7, 0) has a rational solution if and only if a = 7 =0
orB=0=0.

THEOREM 2. Assume that 70 + 0.

(1) Py (8, 6.) (6, 6.) € C?) does not have rational solutions.

(2) Py (6,, 6.) ((6,, 8.) € C?) has algebraic solutions if and only if there ex-
ists an integer I such that 6, — 6, —1=2Ior 6, + 6,+ 1 =21

(3) If Py (B, 6.) has algebraic solutions, then the number of algebraic solutions
is one or two. Py (6,, 6.) has two algebraic solutions if and only if there exist two in-
tegers I and J such that 0, — 6, — 1 =2l and 6, + 6, + 1 = 2].

(4) Let

D,={(=5/2,1/2), 1/2, —1/2)}, D_={(—5/2,—1/2), 1/2, 1/2)},
a,=1,a_=1,
A, ={(L—2K—1)/2, £ (L+ 2K+ 1)/2) | K and L are integers such that
K>2 L=—-2,—4, -, — 2K}
UL —2K—1)/2, £ L+ 2K+ 1)/2) | K and L are integers such that
KL—-21L=0,2,,2(—K—1},

where double signs corvespond with eath other. Then, algebraic solutions are classified
as in the table 1. In the types IIl,, IV, the values of N, €;, b; G = 1,- -+, N) depend
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on the values of 0,, 0., and a,.

Type Conditions of (6,, 6..) Forms of algebraic solutions
I:t 000 ¢ 00 $ 1 = 0,(00, 609) € CZ q = ai\/?
I1, 6, 6.,) €D, qg=ay/t+ 6,
1X E;
=ytla, +5 2 1
1 ‘[< T2 A t—b,.>
- 6.F6,F1=21,(,6)cc | [NELN>O
| lez-1{0},6,6)eD, U4, | [5-1or—1
if j # 5/, then b; # b;,
I=3 ¢
11X E;
=Vtla.+5 i)+ 4
IV, (6,, 6.) € 4, 9=Vt (“*- 2 5V b,> -

under the same conditions as in (%)

Table I.  Algebraic solutions of Py, (6,, 6,,).

Remark 1.1. (1) Every algebraic solution is actually calculable from the
algebraic solution of the type I, by means of transformation group G’. (Refer to
Propositions 3.4, 3.10 and 3.11))

(2) When the values of 6, and 6, are restricted to real numbers, algebraic solu-
tions are distributed as in the Figure 1.

As is well known [13, 4.1], when 6, + 6. = 0 ((6,, 6..) € C*), P,y (6,, 6..)
contains all solutions of a Riccati equation:

dq _ 1, &
(19) A= — o=+
By the change of variables: ¢ = (s/2)(d/ds) logu — 6,/2 w# 0), t = — s° /4,
(1.9) is transformed into a Bessel equation:
d’u | 1du :

0, _
dsz +?-d?+<1-?>u—0 (u=i=0)

Let ¢,() (0 € C) denote the one-parameter family of solutions of (1.9).
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6.+6+1=0

Figure 1. The distribution of algebraic solutions of Py, (6, 6..) in the case (6, 6.) € R®.

On the line , type L. On the wavy line Y™V, type I_.
On a line , type I, On a wavy line v, type IIL_.
On a point C, type II,. On a point A, type II_.
On a point @, type IV,. On a point A, type IV_.

9 is a fundamental cell of the Affine Weyl group of the type B,.

THEOREM 3. Let I and J be any integers. If 0,, + 0, = 21 (vesp. 6, — 6, = 2]),
P (B, 6.) has a one-parameter family of solutions of the form
q,() = 2,(6,, t, $,()) (o € C)
(resp. q,() = @,(60, t, ¢,(— 1) (6 €C)).

Heve, 2, and 2 ; are rational functions in three variables with integer coefficients, forms
of which depend on the values of I and J respectively. If 6, + 6, = 2I and 0, — 8, =
2], then Py (0, 0.) has two one-parameter families q,(f) and @ ;(t) which do wot

have common solutions.
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Remark 1.2. (1) Theorem 3 itself does not guarantee that ¢,(#) and g,(t) are
all the solutions which can be expressible by solutions of Riccati equations. But,
as we will show in the next paper [8], it is actually true.

(2) Okamoto [13, 4.1, 4.2, 4.3] obtained the r-function of the solutions
¢,(t) and investigated its properties, relating it to the Toda lattice equation.

In the forthcoming paper [8], by the theory of differential fields, we prove the
theorem that any solution of Py, (6,, 6,) is irreducible except for algebraic solu-
tions of Theorem 2 and one-parameter families of solutions ¢,(f) and §,(#) of
Theorem 3.

2. Proof of Theorem 1

First we note that the equation Py, (a, B, 1, 0) (See (1.2)) is equivalent to
the equation

d’q =47 (dq

2 d
(2.1) 4# qlﬁ E) - 4tqd—‘§ + ¢*(yqg + a) + Btg + ot* (g *0).

Proof of Theorem 1. Let q(f) be a rational solution of Py (a, B, 7, 0). We
suppose that q(f) has a pole at ¢ = oo Putting the Laurent expansion of ¢g(f) at
t = oo into (2.1) and comparing the coefficients of the terms of the highest degree
with respect to f, we obtain the condition @ = ¥ = 0. Similarly, if ¢(#) is holomor-
phic at £ = o, the condition 8 = d = 0 is derived. Conversely Py, (a, 0, 7, 0)
has a general solution ¢ = 22" F/[(F — 1){(a/4 — &)F — (a/4 + ¢)}], where
F=ut'e=v7r2/2, A, ) € (C— {0}) x C (Okamoto [13, Proposition 1.5]).
Then, if A is an integer, ¢ is a rational solution of Py, (e, 0, 7, 0). Py, (0, 8, 0, 0)
also has rational solutions. O

3. Proof of Theorem 2

3.1. Possible rational solutions of P,;(6,, 6.,

From now on, we assume that 70 0, and we consider the canonical equation
Py (6o, 6.0).

Let ¢(#) be an algebraic solution of Py (6,, 6.), ® the Riemann surface of
q(®, T a Riemann sphere P, pr; #— T the canonical projection. By simple cal-
culations, we can check that any algebraic singularities of g(£ on t =5 € C -
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{0} is a pole. Then, ® has branching points only on t=0, © € T. By the
Riemann-Hurwitz's formula, & has one branching point on each point of # = 0 and

= oo, and the two branching points have the same multiplicity. Let # (= 1)
denote this multiplicity. If we put X = P, a Riemann sphere, and ¢,: X— T, x—
t = z", then pr ¢, uniformize R. Hence 2(x) = (¢¢,) (z) is a rational function on
X = P. Conversely if 2(x) is a rational function on X, then ¢ () = (z¢, D (® is a
d-sheeted algebraic function, where d is a divisor of .

ProposITION 3.1. Let q() be an algebraic solution of Py (6, 0.,). Then q(t) is
two-sheeted and is expanded at t = © gs

g =Cx+C,+C i+ - +Cx "+,

where x = +/t, (C,, Cp) = (£ 1, (6, — 6,— 1)/4) or (C,, C) = (£ 1, (6, + 6,
+1)/4). For any integer k=1, C_, = C,C,R, (8, 0., C,, C,) holds, where
R.(X,Y, Z, W) is a polynomial in four variables with complex coefficients.

Proof. Suppose q(f) is an n-sheeted algebraic solution with an expansion at
I = o as

g =Cx” + Cpx” ™ 4 -,

where r = tlm, m € Z, C,, # 0. We substitute this expansion into (2.1) and com-
pare the coefficients. If m < 0, then we cannot cancel the coefficient of . There-
fore, m must be a positive integer. We also find that m = #/2 and C,, =,/1 =
+ 1, + 4. Thus we have
(the right hand side of (2.1))
— (the left hand side of (2.1))
=4 X ( X CCCCHx+4(=06,Ch+6,+DC,z™

dm>p=3m k+l+v+w=p

+4 X { X ¢CCC,—6. = CCC,+ 6, +1C, .z

3m>p>2m  k+i1+v+w=p k+i+v=p
+4 2 { 2 C(CcCCcC,—6, > C.CC,
2m>p  k+l+v+w=p k+l4+v=p
1
+ 0+ 1DCypyy+—5 = (k—2m)(I—kC,Clx’ = 0.
4Am” k+i=p

Comparing the coefficients of "% (1 < d <m), we inductively obtain

C,_, ="+ =C,=0. Next, from the coefficients of z*”, we have 4(4C,C,” —
6.C,°+ 6,+1)C,, =0. Then C,= £ 1 and C,, = £ ¢ imply C,= (6, — 6,
— 1)/4 and C, = (6, + 6, + 1)/4 respectively. Continuing this process succes-
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sively, from the coefficients of " “"* (¢ > 0,1 < d < m), we obtain C_,,_,
Sm=etbm (5 > 1), we find that

=+ = C_spms1 = 0. From the coefficients of x

C_svm = — (C,,/4)C,*(a polynomial of 6,, 8., C,, Cy, ", C_,,
with complex coefficients)

= C,,C,"(a polynomial of 8,, 6., C,, C, with complex coefficients).

By the above arguments, it follows that the expansion of q(f) at £ = o must be
g = 2y, Cux™ = 242, Co WD, where 2 = " Hence the multiplicity 2m
is equal to 2. O

The arguments above and (1.3) in 1.1 lead us to the following result.

ProposITION 3.2. If q(8) is an algebraic solution of Py, (6,, 6..), then y(x) =
q(x®)/x is a rational solution of Py (6,, 6.). Conversely, if y(x) is a rational solution
of Py (6,, 6., then q(t) = yty(/t) is an algebraic solution of Py (6,, 6.,).

By this proposition, what we should do to find all algebraic solutions of
P, (6,, 0,) is to find all rational solutions of P,;(6,, 6.). In Proposition 3.3, we
determine all possible forms of rational solutions of Py;(8,, 6.). From Proposi-
tions 3.1, 3.2, we first obtain the following lemma.

Lemma 3.1. Let y(x) be a rational solution of Py (6,, 60.). Then y(x) is ex-
panded at x = X as
y@) =Dy+D_/x+ - +D_,_,/x"" + -,

where (Dy, D) = (£ 1, (6, — 6, — 1)/4) or (£ ¢, (6, + 6, + 1)/4). For any in-
teger k =1,D_,_, = D,D_, - R,(6,, 0., Dy, D_,) holds, where R, is the same
polynomial as in Proposition 3.1.

By simple calculation, we obtain the next lemma.

Lemma 3.2. (1) If y(x) is a rational solution of Py;(6,, 6.) with a pole at
x = 0, then it is expanded at x = 0 as

y(x) = wa_l+Eo+E1x+ sl

where 0, * 0.
(2) If y(x) is a rational solution of Pyy;(6,, 6.) with a pole at x = b (€ C —
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{0}), then it is expanded at x = b as
y@) = (£1/2@—b "'+ F,+Fx—b + -

The above two lemmas give us the information on the possible forms of
rational solutions of Py;(6,, 6..).

ProposiTioN 3.3, If y(x) is a rational solution of Py;(0,, 0), then it must be-
long to one of the eight types in the table 11, wherea, =1 or — 1, a_ = i or — 1, and
double signs correspond with each other.

Type Conditions of (6,, 6.,) Forms of y(x)’s
I, | .F6,F1=0, (4, 6. €C’ y=a,
30, £6,£1=0,6,+0
=a, +
II, @, 0.) € c? y=a, +0,/x
y=a, + = Z = b
NeEZ N>0
m, | 6.F6,F1=2I, (6, 6.) € C’ g, =1or —1
b, € C — {0} ()
if j # j, then b; # b,
=3¢
0.,
30+ 0,+1=—2I,0,+0 y=a, + =+ Z .
V. 6y, 6.) € C° =5
o e under the same conditlons as in (%)

Table II.  Possible types of rational solutions of Py (6, 6.,).

Proof By Lemma 3.1 and Lemma 3.2, the possible decompositions of y(x)
into partial fractions are classified into the eight types I, -, IV,. For each type,
we can derive the conditions which 6, and 6, should fulfill. Here we show the
case IV, only.

If | b,-| < |x| then we have

& & 1
x—b x1—b/x

3
=2+ b/x+b /2" + ).
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Hence, in the neighborhood of £ = ©0, we obtain an expansion
y@ =a, + 0, /x+ A/ U/x+ (S eb)/x + -},

From Lemma 3.1, it follows that 6, + I/2 = (6, F 6, F 1)/4. Then, we have
30, +6,+1=—2I O

Here we introduce new notations R(6,, 6,) and 7(6, 6,). Let R(6,, 6.)
denote the set of all rational solutions of Py, (6, 0.,). If Py;(6,, 6.) does not have
a rational solution, we consider R(6,, 6.) = ¢. We express an element of
R(6,, 6.) by a form (z, y), where x is the independent variable of Py, (6,, 6..)
and y is a rational solution of Py;(6,, 6.) expressed by the variable x. Next, let
r(6,, 0.) denote the set of all rational solutions of Py (6,, 6.) of the types I,, -,
IV,. r(6,, 6.) is a subset of R(6,, 6,). By Proposition 3.3, we must study eight
types of rational solutions. But the following result decreases our labor.

PROPOSITION 3.4. (1) The mapping

S;: R(6,, 6.) —>R(50, 6) = R(6,, — 6.,),
(x,y)— Six,y) = (u, ¥) = (ix, 1y)

is bijective, where 1 = v — 1.
(2) If (x, y) is a rational solution of the type J,(J =1, -, IV), then S;(x, y)
= (u, Y) is of the type ]+, where double signs correspond with each other.

We omit the proof. By this proposition, we may concentrate on the study of
rational solutions of the types I,,---, IV, in the following.

3.2. Existence and uniqueness

First, we note that P;;(6,, 6.,) is equivalent to the equation
dy _ dy>2 dy 2 ‘
(3.1) xy;;;—x(zr— y%+4( 0.y +6,+1Dy+dxy —4x (y #0).

ProposiTioN 3.5. (1) (Existence and uniqueness of the type I,) If y(x) = 1 or

y(@) = — 1 belongs to 7(6,, 6.), then (6,, 6.) (€ C?) satisfies the condition 6,, —
6, —1=0. Conversely, if 6,— 6,—1=0(b, 0.,) €C”, then 78, 0,) =
{y(x) = £ 1}.

(2) (Existence and uniqueness of the type II,) Ify(x) =1+ 0,/x or y(x) =
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— 1+ 0,./% belongs to 7(6,, 0.), then (8, 6,) = (—5/2,1/2) or 1/2, —1/2).
Conversely, if (0y, 0,) = (—5/2,1/2) o (1/2, —1/2), then r(6, 6.) =
{y) =1+ 6,/x).

Proof. We prove (2) only. The proof of (1) is the same as that of (2). If
P (6,, 6,) has y(@) =1+ 0,/ or y(x) = — 1+ 6,/x as a solution, it fol-
lows from Proposition 3.3 that 36, + 6, +1 = 0 and 6, ¥ 0. On the other hand,
substituting y(x) into (3.1) and comparing the coefficients of 2%, we obtain
46,° = 1. Therefore (8, 6.) = (—5/2,1/2) or (1/2, —1/2). Conversely, if
(6, 0.,) =(—5/2,1/2) or (1/2, —1/2), then we have 36, + 6, +1=0
and 46." = 1. At this time, y(©) = £ 1+ 6, /z satisfy (3.1). Moreover, Lemma
3.1 ensure that 7(6,, 6.) does not contain rational solutions of other types. ]

ProposiTION 3.6 (Existence and uniqueness of the type III, and the type IV,
(1). (1) If Py (6 6..) has a rational solution of the type lI1,, then it most be that
70, 6.) = {yl@) = £ 1+ 1/2) =, ¢,/(x F b)}, where double signs corre-
spond with each other. ‘

(2) If Py (6,, 6.) has a rational solution of the type IV, than it must be that
70y 0.) = {y@) = F 1+ 6. /x+ (1/2) Z)_, ¢, /(x F b))}, where double signs
correspond with each other.

Proof. We prove (2) only. Since the transformation (S)*:R(6,, 6.)—
R, 6.), x,y) — (u, ¥) = (—x, —y) is bijective, if yl@x) =1+ 0./ +
(1/2) 2, & /(x — b)) is a solution of Py (6,, 6.), then Y(w) = — 1+ 0, /u +
(1/2) =, ¢;/(u+ b)) is also a solution of Py,(6,, 6.), and vice versa. Next,
Lemma 3.1 ensure that for a fixed (6,, 6,) a rational solution expressed as y = 1
+D_,/x+D_,/x"+ - ory=—1+D_/x+D_,/x*+ -+ is uniquely
determined. U]

Remark 3.1. From Propositions 3.4, 3.5 and 3.6, we see that R(6,, 6.) has
only the following four possibilities:

(i) R(,, 60.) = ¢.

(ii) R(6,, 6..) = {two rational solutions of the type J,}
J,=1,---,IV).

(iii) R(6,, 6.) = {two rational solutions of the type K_}

(K_=1,---,1V.).

https://doi.org/10.1017/50027763000005298 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005298

52 YOSHIHIRO MURATA

(iv) R(6,, 6.) = {two rational solutions of the type J,}
U {two rational solutions of type K_}
U,y=1, IV, K =1,---,1IV)).

From now on, we study the transformations S,, H and M in order to deter-
mine necessary and sufficient conditions for rational solutions of the types III,,
IV, to exist. The next lemma is prepared for the proofs of Proposition 3.7 and
Proposition 3.9. We omit the proof of it.

LemmA 3.3. Let y(x) = £ 1+ P(x)/ Q(x) be a rational solution of the type
J. U, =1,,--+,IV,). Here P(x) and Q(x) are polynomials with complex co-
efficients. We do not assume that P(x) and Q(x) are coprime.
(1) I Q(0) # 0, then y(x) is of the type I11,.
(2) If Q(0) = 0 and P(0) # 0, then y(x) is of the type I1, or the type IV,.

ProposiTioN 3.7. (1) The mapping
Sy: (6, 6.) — (6, 6.) =r(—6,—1, —6,— 1),
(z, =Sz, =@, VN=(,—1/y
1s bijective.
(2) Let y be a type 1V, rational solution of Py (6,, 0..), where 360, + 6, + 1 =
—2I1J€D),6,+0, and let Sy(x,y) = (x, Y). Then Y is a type 111, rational

solution of Py (8,, 0..) with the condition Y(0) = 0, where 6, — 6, — 1 =2IT €
Z — {0}).

Proof. (1) It is obvious.
(2) Substituting y=* 1+ 6./z+ (1/2) =\, ¢;/(xFb) into Y=—1/y
=F 1+ (xy— 1)y, we obtain Y(z) = F 1 + P(x)/Q(x), where
P(@) = (£ y— Dz, (x ¥ b) € Clal
Q@) = yrIl, (x F b) € Cla]

degP< N,deg@Q@ =N+ 1.

Since Q(0) = 6,, H;i, (¥ b) #0, by Lemma 3.3, Y(x) is of the type III,. Then,
we have 6, — 6, — 1 = 2I, where I € Z — {0} because of Proposition 3.5 (1).
Next, if we assume Y(0) # 0, from S,(x, ¥) = (z, ) and the similar argument
as the above, we obtain that y is of the type III,. This is a contradiction. Then
Y(0) = 0 must hold. 0
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COROLLARY 3.1. We consider a set
D={((L—-2K—1)/2, L+2K+1)/2) eR*|K,LEZ, K+ 0.

If Py (6,, 6.) has a rational solution of the type IV, then (6,, 6..) € D.

Proof. By Proposition 3.7 (2), if (x, y) is a type IV, rational solution of
P (6,, 6.), then Sy(x, y) = (x, V) is a type III, rational solution of Py;(6,, 6.),
and (6,, 6,) satisfies a relation 6, — 6, — 1 = 2I (I € Z — {0}). Hence,

.—6,—1=(—6,-1)—-(—06.-1)—-1=6,—6,—1=2I

On the other hand, we have 36, + 6, +1 = — 2I (I € Z). By the both equali-

ties, we obtain 6, = (— I — 31—2)/2,60,=(— I+ D/2 Putting —I—T—1

= L and I = K(*+ 0), we obtain 6, = (L — 2K —1)/2, 6, = (L + 2K+ 1)/2.
|

Remark 3.2. A point ((L — 2K — 1)/2, (L + 2K + 1)/2) is an intersection
of two lines 6, — 6, — 1 = 2K and 6, + 6, = L in the real plane R®

From the table II of Proposition 3.3, Proposition 3.5 (2) and the Corollary
3.1, we obtain

COROLLARY 3.2. Let 2, = {(8,, 6.) € C*| there exists an integer I such that
£71>20,0,—6,—1=2D.Ifr,, 6..) = ¢, then (6,, 6,.) € 2, U 2 _.

ProrosiTioN 3.8. (1) The mapping

H:r(6,, 6.) —r@, 6,) =r(—6,—2, —6.,
(, ) > Hx,y =&, V) =@, —y
18 bijective.
(2) If (x, y) is a rational solution of the type J, (J, =1, ,IV,), then H(x, y)
= (x, V) is also a rational solution of the type J,.

We omit the proof of this proposition. This proposition implies that the set
7(6,, 6,,) ((6,, 6.) € Z,) are uniquely determined by the set 7(6,, 6.) ((6,, 6.,)
€ ), because 0, — 6, —1=(—=6) —(—=6,—2) —1=—(6,—6,—1).
Therefore, we may investigate the set #(6,, 6,) only in the case (6,, 6,) € 2_.
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ProrosiTioN 3.9. (1) The mapping

M :r, 0. — @, 6. =r6,+1, 6,—1),
(Z,p > Mz, y = (x, V)

_ ( 1 (z/2) (dy/dx) -I-xy — (6, +3/2)y+.r)
Y (2/2) (dy/dz) + 14° — (6. — 1/Dy +z
1s bijective.
(2) If (x, y) is a rational solution of the type J. (J, = 1,, -+, IV,), then M(z, y)

= (x, Y) is a rational solution as in the table II1. Here double signs correspond with
each other, and (6,, 6,) € 25_.

Proof. (1) By Lemma 3.1, any rational solution y(x) of the type J, (J, =
I, -+, IV,) of Py (6, 6.) is developed as

y@ =x1+D /x+ - +D_ /" + -
at x = ©0. Then it follows that
(z/2) (dy/dx) + 2y’ — Ay + = 22 + 0Q1) £ 0,

at x = % whichever A= 6, +3/2 or A= 0, — 1/2. Therefore we can apply
M to any solution in #(6,, 0..). By a similar reason, the inverse transformation
M ™" is applicable to any solution in 7(50, 6..). Therefore M is bijective.

(2) We prove only the case J, = III,. Proofs of the other cases are done in
the same ways. First, by the assumption (6,, 6,,) € 2_ and Proposition 3.5 (1),
we have §, — 6, —1=21< —2 and 6, — 6, — 1= (6. — 1) —(6,+1) — 1
= 2(I — 1) £ — 4. Therefore, from Proposition 3.5, ¥ must be of the type III, or
the type IV,. Next, we substitute y = £ 1 + (1/2) X, ¢;/(x F b)) into

_ 1 @/2)dy/d) +xy* — (6, +3/Qy+x

Y (z/2)(dy/dD) +xy* — 6, — 1/Dy + x
1., 6., — 6,— 2
Y  (z/2)dy/dr) +xy" — 6, —1/2y+x

(3.2)

Here we note that

1 +y+1 P, (x)

=4+ +

” +1+ _1+Q1(x)’
where P =(Fy+ DI, (x Fb) € Clz]
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Q@ =yl (x F b) € Clzl

degP,=N—1,

deg Q, = N.

Type of
y(x)

Conditions of (6,, 0,,) € 2._
Form of y(z)

Conditions of (6,, 6,) € >_
Type of Y(x)

0,—6,—1=0
y==*1

6,—6,—1=—2

(i) If (6, 6.) # (1/2, — 1/2), then
Yis of the type IIL,.

Here Y(0) = 0 if and only if

8y, 6.) = (—1/2, = 3/2).

(i) 1f (6, 6,,) = (1/2, — 1/2), then

Yis of the type II,.

11,

0, 6.) = (1/2, —1/2)
y=+1+(-1/2)/x

(6, 6.) = (3/2,—3/2)
Yis of the type IV,.

101,

0.—6,—1=2I
(I=32¢<0)
y=t1+ 1/, ¢/(xF b)

6,—6,—1=20—-1)
(i) If 6, #+ 1/2 and y(0) # 0, then
Y is of the type III,.

Y(0) = 0 if and only if , = — 3/2.
(ii) If 6, = 1/2 and y(0) # 0, then
Yis of the type IV,.

(iii) If y(0) = 0, then Yis of
the type III, or the type IV,.

IV,

(6, 0.,) = (L —2K—1)/2,
(L+2K+1)/2) €D
K<0
y=z+0,/x(6,+0),
where
z=11+ 1/2) 2 ¢/(xFb)

@, 6,) =(L—-2K-1)/2,
(L+2K+1)/2) €D
K=K-1<0,L=1L

() If 6, # — 1/2 and 2(0) # 0, then
Y is of the type III,.
(i) If 6, = —1/2 or 2(0) = 0, then

Yis of the type IV,.

Table IIIL

Particularly, we have

P,(0) = (Fy0) + DI, (Fb), @0) =y I, (Fb).

(3.3)

Furthermore, we note that
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6., — 6, — 2
(x/2)(dy/dx) +zy° — 6., — 1/2)y + z

_ 0, — 6, — 2 _ P,(x)
2{(1/2)dy/dn) +y* + 1) — (6, — 1/2)y ©&@’

where P@)=(6,—6,— 21, (xF b)* € Cla]
Q,(x) = z{(1/2) (dy/dx) + y* + 1} I, (x F b))*
— (0. —1/2) yII_, (x F b)* € Cla]
deg P, = 2N, deg@,= 2N+ 1.
In particular, we obtain
P,0) = (6, — 6,— I, (Fb)’'=QI— DI, b°+0
Q,(0) = — (0, — 1/2) y(0) I, b,

Since Y==*1+ P,(2)/Q,(x) + P,(x)/Q,(x), it follows from (3.3), (3,4) and
Lemma 3.3 that

(i) When 6, # 1/2 and y(0) * 0, Y is of the type III,.

(i) When 6, = 1/2 and y(0) # 0, Y is of the type IV,.

(iii) When y(0) = 0, Y is either of the type III, or of the type IV,.
In the case (i), (3.2) imply that

1 —(6, +3/2)y(0) 6,+3/2) 1

YO =00 = 0. - 1/2y@ ~ 6. - 1/2) y@ ~ °

if and only if §, = — 3/2. ]
Here we prepare a simple lemma for Proposition 3.10.

LemMa 3.4, Lety=2z+ 0,/x (6, # 0) be a rational solution of the type IV,
of Puy(6y, 6.), where z= £ 1+ (1/2) Z_ ¢,/ F b). If 0, # £ 1/2, then we
have 2(0) = 0.

Proof. The solution y(x) is developed at z =0 as y = 6,./x + 2(0) + O(x).
We substitute this expansion into the equation (3.1). Comparing the coefficients of
2”2 we obtain (46,° — 1)z(0) = 0. Therefore, if 6, % * 1/2, then z(0) = 0
must hold. O
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From Propositions 3.5, ++, 3.9 and Lemma 3.4, we can derive the following
final result about the existence of rational solutions of the type III, and the type
Iv,.

ProposiTion 3.10 (Existence and uniqueness of the type III, and the type
IV, (2)). We set

E,={((L—2K—-1)/2, (L+ 2K+ 1)/2) | K and L are integers
suchthat K> 2, L=—2, —4,---, — 2K}

E ={((L—-2K—-1)/2, (L+ 2K+ 1)/2) | K and L are integers
suchthat K< —2,L=0,2,--+,2(— K— 1)}

E=E,UE_U{(—5/2,1/2),1/2, —1/2)}

2= {0, 6.) € C? | there exists a nonzero integer I
such that 6, — 6, — 1 = 2I}.

(1) If 7(6,, 6.,) contains a rational solution of the type I, then it must be that (6,,
6.) € 2, — E. Conversely, if (6, 6.) € 24 — E, then r(6,, 6..) = {two rational
solutions of the type I11,}.
(2) If 7(6,, 6.) contains a rational solution of the type IV,, then it must be that (6,,
0..) € E, U E_. Conversely, if (6,, 6..) € E. U E_, then 7(6,, 6..) = {two rational
solutions of the type IV, }.

Proof. We prove (1) and (2) simultaneously. Refer to the figure 1 in the Re-
mark 1.1 after Theorem 2. By Propositon 3.5 and Corollary 3.2, we first note that

if #(6,, 6,) contains rational solutions of the type IlI, or the type IV,, then (6,,
6.) € 2,

Step 1. For any integer I, we define a set

I, = {6, 0.) €C*|6, — 6,—1=2D.

By their definitions, 2, UIl, =2, U 2X_, E, U{(—=5/2,1/2)} € 2, E_
U {(1/2, —1/2)} € Z_ hold. Let Py, denote a point (L — 2K — 1)/2, (L +
2K + 1)/2) in C?, where K and L are integers. As we mentioned in the Remark
3.2 after Corollary 3.1, Py, is an intersection of a plane II; and a plane 6, + 6,
= L. When (6,, 6,) = Py, we express #(6,, 6.) by r(Py,).

Step 2. By Proposition 3.5, Proposition 3.9 (2) I, and Proposition 3.6 (1), it
turns out that when (6,, 0..) € I, — {P_, _,, P_, ,}, 7(6,, 6.) = {two rational
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solutions of the type III,, which satisfy y(0) # 0}, and that »(P_,_,) = {two
rational solutions of the type III,, which satisfy y(0) = 0}, »(P_,,) = {two
rational solutions of the type II,}.

Step 3. From now, we prove the following facts (F1), (F2), (F3) by induction.
Here we assume — K = k = 2.
(F1) 7(8,, 6.) = {two rational solutions of the type III,, which satisfy y(0)

0} for any (6,, 6,,) € I_, —{P_,, I L= —2k, —2(k — 1), -+, 2(k — 1)}
(F2) 7(P_,,) = {two rational solutions of the type III,, which satisfy y(0) =

0} forL=—2k, —2(k—1),---, — 2.

(F3) 7(P_,p = {two rational solutions of the type IV,} for L=0,2,"--,2(k — 1).
By proposition 3.9 (1), we note that M(#(8,, 6.)) = 7(8,, 6..), where 6., — 0, —
1=(6,—6,—1) — 2, and that M(r(P_, ) = 7(P_4s1.0)-

(i) Let k = 2. From the results in step 2 and Proposition 3.9 (2) II,, III, (ii),
we see that if L =0 or 2, then »(P_,;) = {two rational solutions of the type
IV,}. By Proposition 3.7 (2), we see that if L = — 4 or — 2, then 7(P_,;) = {two
rational solutions of the type III,, which satisfy y(0) = 0}. Hence, Proposition 3.9
(2) 11, (i) tells us that for any (6, 6,) € I_,—{P_,, |L=—4,—2,0, 2},
7(6,, 6.,) = {two rational solutions of the type III,, which satisfy y(0) * 0}
holds.

(i) We suppose that £k = 2 and that (F1), (F2), (F3) hold for k. By Proposi-
tion 3.9 (2) III, (ii), IV, (ii) and Lemma 3.4, we see that if L = 0,2, - -, 2k, then
7(P_g+p.) = {two rational solutions of the type IV,}. By Proposition 3.7 (2), we
see that if L= —2(k + 1), —2k,--+, — 2, then r(P_4,1 ) = {two rational
solutions of the type III,, which satisfy y(0) = 0}. Therefore, by Proposition 3.9
(2) HI, (i), we find that if (6, 6.) € U_y — {Pogupel L= —2(+ 1),
— 2k, -, 2k}, r(6,, 6.) = {two rational solutions of the type III,, which satisfy
y(0) # 0} holds.

(iii) From (i) and (ii), we obtain the desired results (F1), (F2), (F3) for any
k(= 2).

Step 4. We have proved (1) and (2) of the present proposition in the case that
(6,, 6.) € 22_. By Proposition 3.8, we can also obtain the same result in the case
that (6,, 6,) € 22,. Hence we have finished the proof. O

3.3. Rational solutions of Py;(6,, 6.) and proof of Theorem 2

Using the results in previous subsections, we give a proof of Theorem 2. We
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prove the following proposition first, and then prove Theorem 2.

ProrositioN 3.11. (1) Py, (6,, 6.) does not have algebraic solutions.

(2) Piy(B,, 6.) has rational solutions if and only if there exists an integer I such
that 0,, — 6, — 1 = 21 or 6,, + 6, + 1 = 21, where (6,, 6,,) € C".

(3) If Py (6, 6.) has rational solutions, then the number of rational solutions is
two or four. P, (6, 0.) has four rational solutions if and only if theve exist two inle-
gers I and J such that 60, — 6, —1 =21 and 6, + 6, + 1 = 2].

(4) Rational solutions are classified as in the table IV. Here the sets D, A, and
the numbers o, ave the same ones as in Theorem 2, and double signs correspond with
each other. In the types I, IV,, the values of N, ¢;, b; G =1, -, N) depend on
the values of 0, 0, and o.

Type Conditions of (6,, 6.,) Forms of rational solutions
L 6.F6,F1=1(6,0,)cC y=a, y=—a,
11, (6,, 6.) € D, y=a,t0,/z, y=—a,+0,/z
1Y g
=a, +5 !
y 2 jgl z—b
- 2 1Y g
0, F6,F1=21I,(,%46,) €C y=—a, t 52
111, 2 xth
1€ Z— {0}, (6, 6,) €D, U A,
N, ¢, b, I satisfy
the same conditions (* %)
as in Theorem 2, III, (%)
L P
y=a,t +2,§x—b,~
IV, 6, 6,) € A, _ b. 1Y ¢
y=-a.t oty 2oy

under the same conditions as in (% %)

Table IV. Rational solutions of Pjy;(6,, 6,,).

Proof. (1) If y(x) is a k-sheeted (kK = 1) algebraic solution of Py;(6,, 6.),
then q(f) =Vt y(/f) is an algebraic solution of Py (6,, 6.). Since g(z®)/x =
2 y(Jx*)/x = y(@) is a rational solution by Proposition 3.2, it turns out that
k = 1. Therefore, Py;(6,, 0,) does not have a many-valued algebraic solution.
(2) (3) (4) From Propositions 3.5, 3.6 and 3.10, we obtain the results for rational
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solutions of the type J, (J, = L., -+, IV,). Next, from these results and Proposi-

tion 3.4, we obtain the results for rational solutions of the type J_ (J_=1_, -+,

IV_). By Proposition 3.3, we thus exhausted all rational solutions of P;;;(6,, 6.,).
L]

Remark 3.3. Gromak’s result [5, Theorem 9] corresponds to (2) in this prop-
osition.

Proof of Theorem 2. From Propositions 3.2 and Proposition 3.11, we obtain
the desired results. Here, by the following calculation, we can check that two
rational solutions of the type J, (/ =1I,---, IV) give the same algebraic solution
of Pyy(6,, 6..). For example, we assume J, = IV,, and take

h(@=1+6,/x+ 1/2) X ¢/(x—b)
9@ =—1+6./x+ (1/2) ) ¢, /(x+b).

Since

0, = Viy, (/D = Vi1 + 0, /Vi + (1/2) ), &, /(/E — b))
2,0 =iy, (/D = VEH{— 1+ 0./t + (1/2) = &, /(/T + b))},

if we analytically continue ¢,(#) around ¢t = 0,

() = (= VDU + 0. /(— VD + 1/2) =, e, (=t — b)} = g,(. O

4. Proof of Theorem 3

In this section, we suppose that parameters 6, and 6., of P, (6,, 6,) always
satisfy the condition 6, + 6, = 2I or 6, — 6, = 2], where I and J are any inte-
gers. To clarify the condition which parameters 6, and 6, fulfill, we will often use
notations Py, (0, + 6,= 2D, Py, (6, — 6,=2)) (or Py (6.,+6,+1=2I+1),
P (6, — 6,—1=2]—1)). Let us consider the following four Riccati equations:

R,:dq/dt= Q/D(—q"— 6,q+ D
R_,:dq/dt= Q/D(@*—6.9— D
R, :dg/dt= Q/t(— ¢ +6.q— D
R_ :dq/dt= (1/(g" — 6,9+ D.

R, coincides with the equation (1.9) and is contained in Py (6, + 6, + 1 =1).
R_,, R, and R_, are contained in Py, (6, + 6,+1=—1), P, (0. —6,—1=1)
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and Py (0, — 6, — 1= — 1) respectively. We express the Riccati equation R,
contained in Py, (6, + 60, +1=1) by R, (6, + 6,+ 1 =1). Similarly we use
notations R_,(6,+ 6, +1=—1),R(6.—6,—1=1) and R_(6,— 6,
— 1= —1). If we apply the transformation % to solutions of R,, then we get
solutions of R_,. Conversely, if we apply % to solutions of R_,, then we get solu-
tions of R,. We express this relation by the symbol

(4.1) R, —— R_,.

In the same meanings, we have the following relations:

(4.2)

PropPoSITION 4.1. Transformation 1 . (resp. mﬂ) is applicable to a solution
q® of Py (6, 6..) if and only if (D) is not a solution of R, (vesp. R.,). Here double
signs correspond with each other, and R,,, R, denote R,, R, respectively.

Proof. We prove only the case of I Let ¢(f) be a solution of Py, (6,, 6.). We
can not apply [ to q(#) if and only if q(¢) satisfies the equation
(4.3) dg/dt= (1/D(q" — Ag— D),

where A= — (6, +2) or A= 0,
Suppose g(D satisfies (4.3). Differentiating (4.3) by ¢, we obtain

d’q _ 20— BA+1g" + (=2t + A+ A)g + At

(4.4)
ar’ £

Substituting (4.3) and (4.4) into

d’q _ (,dq\* _, dq

2 aq _ (., 09\ 44 3, g2
rotl=(t5) —ug+a@— 00+ 6+ D= 7,

we obtain

(4.5) 6., —Ag*— (B, +2+ADt=0.

Whichever A may be, (4.5) induces 0, + 6, = — 2, and (4.3) coincides with
R_,(6,+ 6,+ 1= —1). Conversely, if g(#) is a solution of R_,(f, + 6, +1 =
— 1), then ¢(#) satisfies (4.3). O
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We put
I, = {(6,, b.) € c’| 6., + 6,+1==x1}
i, =@, 6) C*6.—6,—1==%1).

Apparently, we have

ILNI,=((=1,1D} 1, nI, = 0,0},
I, NnI,={(-2,0} I_,nil_,={-1,—D}.

In connection with these facts, we have the following proposition.

PROPOSITION 4.2. Py (— 1, 1) contains two Riccati equations Ry, R, and these

equations do not have common solutions. Similar results hold for Py (0, 0) and (R,

R ), Py (—2,0) and (R_,, R), Py(— 1, — 1) and (R_,, R,) respectively.
We omit the proof. By simple calculations, we obtain the following result.

ProposiTioN 4.3. (1) If q(#) is a solution of R,, (6, + 6, +1= £ 1), then
m(g(®) (resp. m™ (q())) is a solution of Ry, (6, —1) + (6,+1) +1==%1)
(resp. R, ((6,+1) +(6,— 1) +1==x1)).

(2) If ¢(D) is a solution of R, (0, — 6, — 1= £ 1), then I(q(®)) (resp. I (q()))
is a solution of R ,,((6,+1) —(6,+1) —1==%1) (resp. R ,,((6,—1) —
6, -1 —1=+1).

Using the above results, we can prove Theorem 3.

Proof of Theorem 3. Let I be any integer, ¢ be the independent variable of
P06, + 6,=2D. Let ¢,() (resp. ¢,(H) (6 € C) be a general solution of
R,(6.,+ 6,=0) (resp. R_,(6.,+ 6, = —2)). By Proposition 4.1, I'(¢,(®)
(6 € C) is a one-parameter family of solutions of Py, (A, + 6,= 2D, where I >0,
0 ,=6,+1,606 . =6,+1. When I=1, l(¢,(#)) and (d/db{I(¢,(H)} are
rational functions of 50, t and ¢,(H) with integer coefficients. By induction, we find
that I'(¢,(®) is a rational function of ,, ¢ and ¢,(f) with integer coefficients. By
similar arguments, we see that P, (6, + 6, = — 2(I + 1)) has a one-parameter
family of solutions (I”)'(¢,(#)), which is a rational function of &, ¢ and
¢,(® with integer coefficients, where I >0, 6, = 6, — I, 6., — I Here let us re-
call the correspondence of R, and R_; by the transformation % (See (4.1)). By this
correspondence, we see that Py, (6, + 6., = 2I) has a one-parameter family of
solutions of the form
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(4.6) q(® = 2,06, t, $,(®),

where 2, is a rational function of three variables with integer coefficients. The
form of 2, depends on the value of I. From (4.2) and the same arguments as in the

above, we find that Py (0, — 6, = — 2J) has a one-parameter family of solution
of the form

(4.7) qt) = 2_,6, t, ¢,(— 1)),

where J is any integer, {, = — ¢t is the independent variable of Py, (6. — 90 =

-2/, Q_, has the same property as 2, in (4.6).

Next, we suppose that (6, 6..) satisfy the conditions 8, + 6, = 21 and 6,, —
90 = — 2], where I, J are nonnegative integers. We use a variable ¢ as the inde-
pendent variable of Py (6,, 6.). Then, Py, (6, 0..) has a one-parameter family of
solutions q(#) of the form (4.6) and a one-parameter family of solutions §(#) of the
form (4.7). Noting Proposition 4.3 and the fact that transformations / and m do
not change the independent variable of Py, (6,, 6.), and that lm = ml, we see that

qg® = 1'(¢,(t; 6, + 6, =0)) = I"(m’ (¢,(t ; 0 + 0 = 0)))
=m’(I"($,(t;0+ 0 =10))),
qt) = m'(g,(t; 0. — 6,=0)) = m'(I"(§,(t;0 —0=0))),
where ¢,(t; 6, + 6, =0), ¢,(t; 6., — 6, = 0) are general solutions of the Ricca-
ti equations R, (6, + 6, = 0), R_, (6., — 6, = 0) respectively (Refer to Figure 2).
By Proposition 4.2, R,(0 +0=0), R_,(0 — 0 = 0) do not have common solu-
tions. Therefore one-parameter families ¢(f) and §(#) can not have common solu-

tions. When I and [ satisfy other conditions, for example, ] < — 1, J = 0, we can
prove in the same way. ]
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0,—6,=2 6.—6,=0

0.+6=—2 6.+6=0

Figure 2. The relation m’l' = I'm’ holds.
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