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A NOTE ON THE LEARNING-THEORETIC
CHARACTERIZATIONS OF RANDOMNESS AND
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Abstract. Recently. a connection has been established between two branches of computability
theory, namely between algorithmic randomness and algorithmic learning theory. Learning-
theoretical characterizations of several notions of randomness were discovered. We study such
characterizations based on the asymptotic density of positive answers. In particular, this note
provides a new learning-theoretic definition of weak 2-randomness, solving the problem posed
by (Zaffora Blando, Rev. Symb. Log. 2019). The note also highlights the close connection
between these characterizations and the problem of convergence on random sequences.

§1. Introduction. The notion of randomness is at the very core of fundamental
ideas of philosophy and science. As such it comes with its own package of puzzles and
enigmas. For example, suppose you are faced with some experimental data and you
want to learn about the underlying phenomenon—is it deterministic (say, we observe
the infinite sequence of zeros 0,0, ...) or is it random (e.g., the outcomes of a fair and
unbiased coin tossing)? Does it even make any sense to say that an individual object
(i.e., an infinite sequence of bits) is random?

Computability theory gives us some tools to deal with this problem. For example,
we could say that the sequence is random if we cannot predict it well enough using
any effective procedure or we could argue that the random sequences are exactly
those that are incompressible. Algorithmic randomness theory studies various answers
formulated exactly from that point of view. It is now one of the most active and
fruitful branches of modern computability theory, drawing attention of researchers
from mathematical logic, as well as from the foundations of probability theory. The
cornerstone of this theory is the notion of randomness proposed in 1966 by Martin-
Lof [15]. Roughly speaking, a sequence is random in the Martin-Lof sense if it does
not have any effectively rare property, i.e., property of measure zero that could be
tested in a sufficiently effective way. Here, the effectiveness is explicated by means
of computability. Since then, many other notions of randomness were introduced
and studied, constituting an infinite hierarchy of concepts. Furthermore, it was soon
observed that the same notions of randomness may be characterized using independent
paradigms such as compressibility and betting strategies.

As we have already noted, computability theory provides some perspective on what
is an effective procedure and what is not. As it happens, the notion of effectiveness
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is relevant to other areas of philosophical and scientific investigations. Consider the
problem of learning. Can we apply the perspective of computability here as well? Gold
[11] and Putnam [21] thought so. Again, let us see an example. We task a student (often
called an agent or a learner) with a learning problem such as: are all dogs green? We
supply the student with data and examples, in this case, examples of dogs. Such data
may be represented mathematically, e.g., by an infinite binary sequences (one means a
green dog, zero means a different color). Each time a new example is given, the student
makes a guess—yes or no. One of the answers is the correct one, the one we want to
hear. We could expect the student to stop making mistakes at some point. Is there a
computable method which, if followed, leads to such outcome? Now, the dogs are easy
(say yes as long as you see only green dogs) but of course, it is not hard to come up
with more difficult tasks. This framework—called algorithmic learning theory—may
serve as a model for various scenarios, e.g., binary classification problems or a choice
of a true physical theory. Sometimes, it may be impossible to stop making mistakes at
all. In such case, a liberal teacher may come up with weaker criteria of success (such
as giving the correct answer infinitely many times).

Another task that fits well in the learning-theoretic framework is that of detection
of rare properties, i.e., deciding whether a given binary sequence belongs to some
set of measure zero. This is basically something we would expect of randomness,
namely, that a set of random outcomes does not have any rare properties that could be
recognized in an effective way. This connection between algorithmic randomness and
algorithmic learning was explored by Osherson and Weinstein [18]. They provided new
characterizations of the classes of weakly 1-random and weakly 2-random sequences,
both of which are readily interpretable in terms of learning and recognition. In a more
recent work, Zaffora Blando [27] described slightly more involved characterizations of
Martin-Lo6f randomness and Schnorr randomness.

All these definitions may be interpreted in the following manner—a sequence is
algorithmically random if and only if no computable agent recognizes the sequence
as possessing some rare property. The difference between these characterizations boils
down to what criterion of success is assumed. For example, a sequence x is weakly
I-random if and only if there is no computable agent which gives the negative answer
infinitely many times with probability one, yet they give the negative answer only finitely
many times on prefixes of x.

This note consists of two parts. In the first, I investigate some criteria of success
based on the asymptotic density of affirmative answers, answering the question asked
by Zaffora Blando [27]. On the way, I show novel criteria corresponding to the notions
of weak 1-randomness and weak 2-randomness.

In the second part. I argue that learning-theoretic characterizations of randomness
may be reinterpreted in terms the effectivization of probabilistic theorems (and vice
versa). Suppose we have defined a notion of randomness with respect to some
computable measure u, which will be called the class of u-random sequences. Such
class is of u-measure one. Now, let u be a computable probability measure on infinite
sequences. In modern probability theory, many results are stated in the following form

o ¢lw)}) = 1.

where ¢ is some formula—often stating a pointwise convergence. The above is usually
stated as “¢(w) for u-almost every w.” In computable measure theory, we seek for
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effective versions of such theorems, that is we want to know if
¢(w) for every p-random w.

Roughly speaking, the difference between non-effective and effective theorems is
somewhat similar to the difference between sentences “all cats but one is black”
and “Fluffy is the only non-black cat.” You may try to formulate effective theorems
for various different notions of randomness. Due to historical reasons, much of the
attention was given to Martin-L6f randomness. We already know effective versions of
many textbook results, e.g., the law of iterated logarithm [26], Doob’s martingale
convergence theorem [24] or even Birkhoff’s ergodic theorem [3, 9, 25]. In some
cases the standard proofs are already constructive and the effectivization follows
after simple modifications but it is not always the case. Moreover, negative results
also exist. For instance, in the context of Solomonoff induction [22, 23], Lattimore
and Hutter [14] discovered that no universal mixture (of lower semicomputable
semimeasures) converges on all Martin-Lof random sequences. This result motivated
Milovanov [16] to find a new universal induction method which does converge on all
Martin-Lof random sequences. Moreover, mathematicians also gave some attention
to effectivization with respect to Schnorr randomness (e.g., [10, 19]).

It is actually a folklore result that there exists a computable sequence of functions
converging almost surely which fails to converge on some Martin-Lof random
sequence. We can interpret this fact in the learning-theoretic framework. At the same
time, we can straightforwardly translate the results formulated in the learning-theoretic
context into statements about convergence on random sequences. My attention here
will focus on the convergence in Cesaro averages.

§2. Preliminaries. Before moving to the main results, we introduce some notational
conventions and provide some preliminary definitions. The set of all finite words over
the binary alphabet {0, 1} is denoted by 2<N, while the set of all one-sided infinite
sequences is denoted by 2. By convention, bits are indexed from 0. Given a word or
a sequence x, we let x; denote the (i + 1)-th bit and. given i < j. we let x] denote a
subword x;x;41 ... x; of x consisting of all the digits of x from x; to x;. The empty set
is denoted by [J. Given a word w, |w| stands for its length. We write x < y to say that
x is a prefix of y. We use #(4) to denote the cardinality of a set A.

2.1. Effective reals. Computably enumerable is abbreviated as c.e. A real r >0
is called computable (lower semicomputable) if the left cut of r, ie, {g€Q:
g <r}, is computable (c.e.). A function f :2<¥ — R is called computable (lower
semicomputable) if its values are uniformly computable (lower semicomputable) in
2<N_ A real is upper semicomputable if its negation is lower semicomputable. In a
similar manner, we can define Ag reals as those for which the left cut is a A(Z) set.

These reals have a natural characterization in terms of densities. We say that a
sequence x has the density r if

We say that the density of x is undefined if such limit does not exist.
As it happens, Ag reals are exactly the densities of computable sequences.
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THEOREM 2.1 [12]. A real is A if and only if is the density of a computable sequence.

We can go further and define computablity of functions from infinite sequences into
reals. A function f : 2N — R is computable if there is a Turing functional ® which
given oracle x computes the left cut of f(x).

2.2. Probability measures. We are dealing with the binary stochastic process X =
Xo, X1, .... Symbol X is introduced to compress notation. For instance, given some
formula ¢ and a measure u we will often write u(¢(X)) instead of u({x € 2% : ¢(x)}).
X obeys similar notational conventions as sequences, e.g., X j’ denotes random variables
X;, X;41..... X; and so on. A special attention is given to the uniform measure /4 on
the Cantor space of infinite binary sequences. This measure corresponds to A({x €
A x(‘)”‘fl =¢}) = 2719 for all nonempty ¢ € 2<N. Given a word ¢ € 2<V we define

the cylinder set [o] as the set {x € 21V : x(‘)‘”*1 = ¢ }. Similarly, if V is a set of words,
then [ V] = Ugyep[o]. Unless it is stated otherwise, i« denotes an arbitrary computable
probability measure, i.e., a probability measure such that there exists a computable
function f : 2N x N — Q with | f (a.n) — u([o])| < 27".

A measure u is called continuous if u({x}) >0 for no x € 2. The reader is
encouraged to consult [5] for an introduction to modern measure-theoretic probability
theory.

2.3. Learnable sequences. From the learning-theoretic perspective, A sequences
from the arithmetical hierarchy are of a special interest. These sequences are sometimes
called learnable—this name is justified by the following theorems.

THEOREM 2.2 [11], [21]. A sequence x € 2V is AY iff there exists a total computable
g : N2 — {0, 1} such that for all i € N we have

lim g(i.t) = x;.
—00

We can interpret function g as a learner which makes guesses about the true value
of x;. A sequence is learnable if as some point, the answers stabilize on a correct one.
However, we might also give a slightly different learning-theoretic characterization. In
the second scenario, which will be explained in detail in Section 2.5, the learner reads
fragments of a sequence and tries to find out whether the sequence has some property.

PROPOSITION 2.3 (FOLKLORE?). For every x € 2N which is AS, there exists a computable
Sunction f 2 2<N — {0, 1} such that x is the only sequence for which #{i : f(x}) = 1} is
infinite.

Proof. Let x € 2V be Ag. By Theorem 2.2 there exists a computable function
g : N2 — {0, 1} such that for all i € N we have lim, ., g(i.t) =1 iff x; =1 and
lim,_, o g(i, ) = 0 iff x; = 0. We define f by induction. We also define an auxiliary
function u. Let f(0) = 0 and u() = 0. Suppose that for some ¢ we have already
defined f (o) and u(c) and we want to define f(gb) (with b € {0.1}). Consider a
sequence w = g(0, |a|)g (1, |a]) ... g(|o]|. |o). Let k be the length of the longest prefix of
w which is also a prefix of b. If k > u(o), let f (ob) = 1. Otherwise, we let f (gb) = 0.
Finally, set u(gh) = max({k, u(a)}). It remains to observe that for each n, there exists
m such that g(a,b) = x, for all a < n and b > m. Moreover, there is no y # x such
that this happens. Hence, f answers 1 on infinitely many prefixes of x and on only
finitely many prefixes of every other sequence. O

s
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2.4. Martin-Lof randomness. Several equivalent definitions of Martin-Lof
randomness—referred to as 1-randomness here—are now known. We start with
the definition by tests. A reader interested in learning more about the algorithmic
randomness theory is referred to [8].

DEerFINITION 2.4. A collection Uy, Uy, ... of sets of sequences is uniformly c.e. if and
only if there is a collection Vy, V7, ... € 2<N such that U; = [V;] for every i € N and
Vo, V1, ... are uniformly c.e.

DEFINITION 2.5 (Martin-Lof u-test). A uniformly c.e. sequence Uy, Uy, ... of sets of
sequences is called a Martin-Lof u-test if there exists a computable /* such that
lim, .o f(n) =0and u(U,) < f(n) for every n € N.

DEFINITION 2.6 (Martin-Lof u-randomness). A sequence x € 2V is called 1-random
with respect to u (or 1-u-random) if there is no Martin-Lof u-test Uy, Uy, ... such that
X € mieN Un .

When dealing with sequences random with respect to some arbitrary computable
measure u&, we will usually refer to these simply as 1-random sequences.
The following is a folklore result.

PROPOSITION 2.7 (FOLKLORE). There exists a Ag A-random sequence.

As in case of arithmetic hierarchy, we can define a hierarchy of complexities of
classes. A set C C 2N is called a 22 class if there exists a computable relation R such

that for all x € 2N we have x € C if and only if 3, Vi ... ElinR(xél,xéz, s xé”) for an
odd n and 3i\Viy ... Vi, R(x;'. X ... xé") for even n. Now, it is possible to give the
definition of weak n-randomness.

DEFINITION 2.8 (WEAK #-RANDOMNESS). A sequence is called weakly n-u-random if it
is contained in every X0 class of u-measure one.

As in the case of 1-randomness, if we are dealing with an arbitrary computable
measure x4 we omit 4 when referring to weak n-u-randomness.

2.5. Learning and randomness. A learning-theoretic characterization of two
notions of weak n-randomness was discovered by Osherson and Weinstein. The
function f in the following statements formalizes the notion of a computable agent—
also called a learner—who tries to learn from the prefixes of the sequence whether the
sequence possess some rare property or not. The agent is reading bits of a sequence
and gives a positive or a negative answer after reading each bit. A positive answer
is interpreted as a sign of belief that the given sequence manifest a certain pattern
or property we want to detect. The procedure is constrained by the requirement of
computability.

It is assumed that a purely random sequence should not have any non-trivial rare
properties that could be detected by such learner. It is now a question of the choice
of a criterion of success for such an agent. One idea is to ask for only finitely many
negative answers. By Theorem 2.9 this criterion may be used to define the class of
weakly 1-random sequences.

THEOREM 2.9 (Osherson-Weinstein [18]). A sequence x is weakly 1-random if and only
if there is no computable function f : 2<N — {0.1} such that

#{i 1 f(x5) =0} < o0
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and
u@#i 1 f(Xg) =0} < o00) =0.
A weaker criterion—by Theorem 2.10 corresponding to weak 2-randomness—is
given by the requirement of infinitely many positive answers.

THEOREM 2.10 (Osherson-Weinstein [18]). A4 sequence x is weakly 2-random if and only
if there is no computable function f : 2<N — {0, 1} such that

#{i: f(x}) =1} =00
and
w#{i : (X)) =1} = 00) = 0.
Finally, a recent theorem by Zaffora Blando [27] gives a learning-theoretic
characterization of Martin-Lof randomness.

THEOREM 2.11 (Zaffora Blando [27]). A sequence x is 1-random if and only if there is
no computable function f : 2<N — {0, 1} such that

#{i: f(x}) =1} =00
and for alln € N
Wi f(X) =1} > m) <27,

§3. Density of answers. The learning-theoretic characterizations of Martin-Lof
randomness and Schnorr randomness were obtained by Zaffora Blando [27] by taking
a notion of success present in the Osherson—Weinstein characterization of weak
2-randomness (infinitely many positive answers) and tweaking the measure-theoretic
condition in the definition. Naturally, one may wonder, whether similar goal could
be obtained by tweaking the success notion instead. To this end, Zaffora Blando [27]
asked about notions of randomness arising when we enrich the learning-theoretic
approach with conditions imposed on the density of positive answers. In particular,
she formulated the following problem.

PRrOBLEM 3.12. Consider a class LD of all sequences x € 2V such that there is no
computable function g satisfying both of the following:
n— o0 n+1

" X
”<li>m 21—0;2(&21):0.

n+1

=1

and

Does LD correspond to any known notion of algorithmic randomness?

Such notion of success has a natural interpretation, namely, that we allow the learner
to make mistakes but if we look at the average answer, it approaches one. In other words,
as time passes, the frequency of negative answers becomes negligible.

An immediate corollary of Theorems 2.9 and 2.10 is that LD is located between weak
2-randomness and weak 1-randomness. We are going to strengthen this by proving that
LD is, in fact, equal to weak 2-randomness.
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THEOREM 3.13. A sequence x is weakly 2-random if and only if there is no computable
Sfunction g : 2<N — {0, 1} such that

fim 2080 _
n—oo n—+ 1

and

n—oo  n+1

,u(lim M:l):u

Proof. (<) We prove this implication by contraposition. Suppose that x is not
weakly 2-random. By Theorem 2.10, there is a computable function f : 2<N — {0, 1}
such that

and
w#{i s £(X]) = 1} = o) = 0.

We will construct a computable function g : 2<N — {0, 1}. Let g(0J) = 1. Suppose that
for some w we have already defined g(v) for allv < w but g () is yet not defined on any
7—a proper extension of w. Let k& be the number of times f* gives the positive answer
on some prefix of w, i.e.,

k=#{v:v=wAf(v) =1}

For all = € 2/, where i < k we let g(wt) = 1. This completes the construction of the
computable function g. Now. observe that for every y € 2N

L g (X

=1,
n—oo n+1 ’

if and only if there are infinitely many n such that f (y) = 1. In fact. if there are exactly
k indexes n such that f(y{) = 1. then

S
n—00 n+1 k+1

Finally, we may also conclude that

,u(lim Ml)&

n— o0 n+1
(=) This implication follows immediately from Theorem 2.10. O

Now, for completeness we observe that the similar characterization—based on the
density of positive answers—may be given for weak 1-randomness.

THEOREM 3.14. A sequence x € 2V is weakly 1-random if and only if there is no
computable function g : 2<N — {0, 1} such that

=1.
n— o0 n+1
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and

ﬂ<1im M:()):L

n— 00 n—+1

Proof. (=) Fix x € 2. Suppose that there is a computable function g : 2<N —

{0, 1} such that
" X/
U ( lim ZIL"(O) — ()> =1

n—00 n+1

and

Consider f : 2<N — {0, 1} such that for every w € 2<N we let f(w) = 1 if and only if

lwl-1 (i
Z":O‘T‘g(“o) > 1/2. Observe that if the ratio of the positive answers given by g converges

to 0 on some sequence, then f gives the negative answer on infinitely many prefixes.
This happens with probability 1. On the other hand. we have #{i : f(x}) = 0} < cc.
Consequently, x is not weakly I-random.

(<) Suppose that x is not weakly 1-random. By Theorem 2.9, there exists a
computable function f : 2<N — {0, 1} such that

#{i: f(x}) =0} <0
and
u#{i s f(Xg) =0} =o00) = .

Letk =#{i: f (x(’)) = 0}. We construct a computable function g. Let g(0J) = 0 and
suppose that for some w € 2<V we have already defined g (v) for all proper prefixes v
of w and we want to define g (w). Let m = #{i < |w| : f(w}) = 0}. Welet g(w) = 1 if
and only if m < k. Otherwise, set g(w) = 0.

Observe that for every sequence y if there are no more than k indexes i such that
S (»i) = 0then g(yy) = 1 for all indexes j. This is true for y = x.

On the other hand, g(X{) = 0 for all but finitely many indexes j when #{i : f (X{)
0} = oo. This happens almost surely.

< Ol

As it happens, the values placed as the limits in the last theorem (i.e., one and zero
may be substituted for arbitrary Ag reals. Note that this result does not seem to have a
straightforward learning-theoretic interpretation and is given as a technical curiosity.

THEOREM 3.15. Let a and b be A9 reals (with a # b). A sequence x € 2V is weakly
1-random if and only if there is no computable function g : 2<N — {0, 1} such that

" x!
lim —Zl:og( 0) =a
n—o0 n -+ 1

and

,u(nlim LiogX5) —b) = 1.

—00 n+1
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Proof. Fix two Ag reals @ and b (with @ # b). By Theorem 2.1 there exist computable
x,y € 2V such that a is the density of x and b is the density of y. Let f be a computable
function witnessing that a sequence w is not weakly 1-random (in the sense of Theorem
2.9). Letk = #{i : f(x}) = 0}. We construct a computable function g. Let g(CJ) = x,
and suppose that for some w € 2<N we have already defined g (v) for all proper prefixes
v of w and we want to define g(w). Let m = #{i < |w|: f(w}) = 0}. Check if m < k.
If so. let g(w) = x,,|. Otherwise, set g(w) = y|y|.

Observe that for every sequence w if there are no more than k indexes i such that
/(@) = 0then the density of g(w()g(w}) ... equals the density of x. i.e.. it is equal to a.
This happens if o = x. Otherwise, this density equals 5. This happens with probability
one. The implication in the other direction is analogous to the one in the proof of
Theorem 3.14. O

§4. Convergence on random sequences. Combining Propositions 2.3 and 2.7 gives
the following folklore result as a corollary.

PROPOSITION 4.16 (FOLKLORE). There exists a 1-A-random sequence x and a computable
function 2 2<N — {0, 1} such that x is the only sequence for which #{i : f(x}) = 1} is
infinite.

In other words, there are random sequences which are uniquely recognizable by a
computable agent, in a certain relaxed sense.

With that in mind, we turn our attention to the problem of convergence on random
sequences mentioned in the introduction. We are interested in doing statistical inference
based on a finite but increasing amount of data, i.e., we want to study functions which
take prefixes of increasing length and output estimates of some parameter (e.g., the
entropy rate). This may involve such tasks as hypothesis testing or inductive learning
in the form of estimation of the conditional probabilities.

Think of a computable function g which converges to some random variable Y
almost surely and on every random sequence, i.e., for every random sequence x we
have

lim g(x{) = Y(x).

n—oo
Take the function f from Proposition 4.16 and consider a function / defined by 4 (w) =
f(w) + g(w) forall w € 2<N. It follows that / converges to Y almost surely but it fails
to converge to Y on some A-random sequence. On the other hand, if Y is computable,
then it is a folklore observation that the convergence of g to Y on every weakly 2-
random sequence follows from the convergence with probability one. Indeed, we have:

PROPOSITION 4.17 (FOLKLORE). Let g : 2<N — R2% be a computable function such that
u-almost surely

lim g(XJ) =Y.

n— 00

If Y is a computable random variable, then this happens on every weakly 2-random
sequence X.

Proof. This is a simple consequence of the fact that avoiding a computable limit
with an error bounded from below by a rational is a Hg property. To be precise, for
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every i € N the following is a Hg class:
{x €2V :VnIm > njg(x") - Y(x)| > 27}

By the assumption this is a class of measure zero and so, no weakly 2-random belongs
to it. O

Now, suppose we have two computable functions 4y, /4 : 2<N — Q=0 such that
almost surely lim,,_, o 41 (X{) = lim,_, o h2(X]'). Such a pair corresponds to an infinite
family of computable learning functions f, f5. ... defined by

V(i €N)fu(zg) =1 < |In(z)) — ha(zp)| > 27"

where z € 2N is arbitrary. What can be immediately observed, each such function gives
only finitely many positive answers on a weakly 2-random sequence (by Theorem 2.10).
Furthermore, Theorem 2.11 may be reinterpreted in the following form.

THEOREM 4.18. A sequence x € 2N is 1-random if and only if for every m € N and any
pair of computable functions hy. hy : 2<N — R2° satisfying for alln € N

u(#{i e N: |h1(X(§) - hz(Xé))\ >2">n) <2,
we have

lim Ay (x() = lim hy(x()).
n—o0 n— o0
Proof. For the first implication, simply observe that given m € N the sequence
U,. U,, ... defined by

U, ={ze2V:#{i e N:|h(z}) - ha(z}))| >2™} > n}
is a u-test. If a sequence x is such that it is not true that

lim Ay (x]) = lim hy(x()
n—o00 n—o0
then for sufficiently large m we have x € (1, Uy. so x is not 1-random.
The second implication follows directly from Theorem 2.11. If y is not 1-random
then there is a learning function f* which witnesses this. Now, setting /;(¢) = f(¢) and
hy() = 0 for all ¢ € 2<N gives what is needed. O

In a way, these two interpretative frameworks, i.c., the detection of rare properties and
convergence of estimators, are closely connected. On the one hand, take an appropriate
learning function and add it to an estimator. That procedure will render it bad on
some random sequences. On the other hand, take a pair of estimators, monitor their
difference and you will get a learning function. In such case, the asymptotic behavior
of the learning function imitates that of the estimators.

So far, we have considered pointwise convergence of the estimators. This a relatively
strong property. Indeed. many inductive schemes do not satisfy pointwise convergence
and are optimal only in terms of some weaker criterion of success. Specifically,
mathematicians and statisticians studied, with great attention, the convergence in
Cesaro averages. Given a function f : 2<N — {0,1} we say that f converges to Y
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on x in Cesaro averages if

lim Z?:() f(x(l))

n— o0 n—+1

= Y(x).

Such form of convergence is very natural and well studied in summability theory (cf.
[20]). There are plenty of natural examples of infinite sequences of reals which do
not converge pointwise, but converge in Cesaro averages. In statistics, this may be
pictured by the following scenario. We want to estimate a property of the underlying
process (such as the entropy rate). As new data comes, we make a new estimation.
It is often assumed that more data means a better estimate but it is not always
the case. Suppose that an unlikely (but of a positive measure) outcome causes a
large error in the estimation. This will happen rarely (as the event in question is of
small probability) but nevertheless, it will happen infinitely often. In many cases, such
problem may be alleviated by simply averaging all the estimates made so far and using
the average as a new estimator. For instance, consider a problem of forward conditional
measure estimation for stationary ergodic processes. It was shown by Bailey [2] that
the pointwise estimators do not exist in this case but there are known estimators which
converge almost surely in Cesaro averages.

Unsurprisingly, there are computable estimators which converge in Cesaro averages
to some random variable u-almost surely but fail to do so on some random point. This
prompts a question—under what conditions is convergence (pointwise or in Cesaro
averages) on all I-random sequences guaranteed? In particular, we might be interested
in conditions stated in purely probabilistic terms. A partial answer to this is given
by the effective version of Breiman’s ergodic theorem. We state it in a specialized
form below but, firstly, an additional comment is required. For a binary alphabet, a
measure u is stationary if #(X; = 1) is constant for all i. By the Kolmogorov extension
theorem (cf. [5]). a stationary measure on the space of sequences from 2 may be
uniquely extended to a measure on the space of two-sided infinite sequences (elements
of 2%). Similarly, the canonical process Xy, X. ... is uniquely extended to the process

L X, Xo, XL

THEOREM 4.19. Let g : 2<N — R* be a computable function with lim, 008 (X)) existing
almost surely and E, (sup; |g(X{)|) < oc. Then for every A-random sequence o € 2",

k

Z ) < E,( hmsupg( )
k-

lim sup
k— o0

and

k
. 1 ‘
limind 77 2 &(@h) = Ei(limnf ¢ (X))

Proof. The result follows from the effective Birkhoff’s ergodic theorem [3, 9, 25]
using the proof of Breiman [6]. For details see, e.g., [7]. O

Note that the uniform measure 4 in Theorem 4.19 may be substituted by an arbitrary
stationary ergodic computable measure. To keep the presentation simple, we choose
not to introduce this class of measures in detail here. The curious reader is referred
to [5].
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While learning-theoretic definitions of [18] and later of [27] correspond to the
problem of pointwise convergence, the density based characterizations of the type
discussed in this work are easily interpreted in terms of convergence in Cesaro
averages. To this end, we show yet another learning-theoretic characterization of weak
2-randomness. Here, we consider learning functions with the asymptotic frequency of
positive answers equal to zero, almost surely. The theorem states that if the average of
initial answers does not converge to zero on some sequence then this sequence is not
weakly 2-random.

THEOREM 4.20. The sequence x € 2% is weakly 2-random if and only if there is no
computable function f such that

lim sup M >0,

n—o00 n+1

while

ﬂ(nm M:O)zl.

n—oo n+1

Proof. (<) Suppose that x € 2V is not weakly 2-random. Let g be a function
witnessing this in the sense of Theorem 2.10.

Fix a rational number é > 0. We are now constructing the function f by induction on
the length of words. Let (0J) = 0. Suppose that we have already defined f (o) for some
word ¢ and we want to define f(60) and f(a1). Letu(o) = #{v:v g Ag(v) = 1}.
If u(o) = u(a(‘)”‘fz), we let (60) = f(o1) = 0. Otherwise, compute the least n such
that

|o|-1

! Zf(aé)+n > 4.
i=0

lo| +n

Let f(ow) = 1 for every w € 2/ with i < n. It remains to observe, that if g says 1 on
only finitely many prefixes then so does f. Consequently, the average of answers given
by f on the prefixes of such sequence converges to 0. On the other hand, if g says 1 on
infinitely many prefixes then the average of answers given by f is larger than J infinitely
many times (and so, it does not converge to 0). The rest follows from the properties

of g.
(=) Let f be a computable function such that
n i
hm sup M > ()
n—o0 n+1
and

n—oo n+l

ﬂ<1im M:O)zl.

Fix 6 > 0 be a rational such that

Z?:of(xé) > 5
n+1
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for infinitely many n. We define a computable function g as follows. For each w € 2<N
let g(w) = 1 if and only if

n+1
By Theorem 2.10, x is not weakly 2-random. O

> 0.

Furthermore, a stronger version of Proposition 4.16 follows from the previous
considerations.

PROPOSITION 4.21. There exists a A-random sequence x and a function f : 2<N — {0, 1}
such that
n i
lim sup —Zi:o S (%)

>0
n— oo n+1

and for all y # x
#{i: f(n) =1} < oc.

As a consequence, even if an estimator converges to some value in the pointwise
fashion almost surely, it may happen that it fails to converge in Cesaro averages on
some random point. This is true even under the assumption that the expected value of
the estimator is bounded. If the estimator gives finitely many nonzero answers almost
surely, then the expected value of the limit of answers is zero. In particular, we have the
following.

COROLLARY 4.22. There exists a computable function g :2<N — R* such that
limy—ocg (XJ') exists almost surely and E;(sup; |g(X])|) < co and for some random
sequence x

lim sup ; Zg(xé‘) >E; (lim supg(Xé‘)) )
k=1

i—o0 k— 00

§5. One additional remark and a question. Let me end this note with a brief remark
about universal inductive schemes. In the introduction, I gave the following motivation
for algorithmic randomness. We perform some experiment and we want to know
whether a sequence of observations comes from a random process. To this end, we
take a computable probability measure, say, produced by a Turing machine with index
k. Then we fix a notion of algorithmic randomness and finally, we start saying some
nontrivial things about properties that a nice sequence of random outcomes should
have. But to be honest, it requires a great deal of knowledge to guess that we should be
looking at outputs of k-th Turing machine and not of 17-th machine or at some other
possible measure. More often than not, we do not have that kind of knowledge. And
from a certain philosophical point of view, it may matter not if something is random
as per given probability measure—rather we may want to simply know if it is random
at all. If so, then perhaps our true goal is not a notion of randomness with respect to
a fixed measure but something more general—randomness with respect to a class of
measures. This may be done to some extend as shown by [4]). One way to specialize
this into a formal question is as follows.

PROBLEM 5.23. Is there a natural class C of measures with a non-trivial learning-theoretic
definition of randomness with respect to C? For instance, is there a class of measures C
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such that a sequence x € 2N is 1-random with respect to some measure from C if and only
if there is no computable f : 2<N — {0, 1} such that

#{i: f(x)=1} =00
and for every measure u from C and every n € N
u@i: f(Xg) =1} > n) <27

The difference between this and learning-theoretic version of Martin-Lo6f random-
ness lies in the measure-theoretic condition, namely, here we ask about recognizing
properties that are rare not only from a perspective of one measure but universally, for
every measure in the class C. I conjecture that such learning-theoretic characterization is
possible for the class of computable stationary ergodic measures. My guess is motivated
by the known existence of inductive schemes for this class.

Inductive schemes which presuppose only minimal knowledge about the underlying
probability measure, are the holy grails of learning theory, statistics, philosophy of
science, etc. For example, various nonparametric schemes for empirical inference that
are universal in the class of stationary ergodic processes are known, e.g., Ornstein
showed the existence of a universal backward estimator of conditional probability [17]
and Algoet studied universal procedures for sequential decisions [1]. In general, these
schemes achieve optimal performance almost surely on any measure satisfying some
general properties (hence. they are called universal).

Universality (e.g., with respect to some class of computable measures) is a strong
property. One could wonder if it is strong enough to guarantee convergence on all
relevant random sequences. Learning functions from Propositions 4.16 and 4.21
manifest their unusual behavior on exactly 1-random sequence. The uniform measure
A is continuous, hence we can disturb the convergence on a single sequence without
worrying about the behavior on the set of full measure. This is true for every continuous
measure 4—anything that happens on a singleton only happens with u-probability
zero. Finally, recall the following theorem.

THEOREM 5.24 (Kautz [13]). If u is a computable measure and for some x € 2N we have
u({x}) > 0 then x is computable.

Consequently, the behavior of the estimator on a unique A-random point is irrelevant
to the probabilistic properties of the estimator such as universality. In other words,
universality with respect to some class of computable measures does not guarantee
convergence on every 1-random sequence.
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