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Abstract 

Engineering changes are necessary to stay competitive, unavoidable and occur more frequently with 

increased product complexity. Currently, scheduling of engineering changes into production and supply 

chain is a manual process. With new possibilities in the field of artificial intelligence, this publication 

presents the vision of a flexible multi-agent system with four agents and a single shared database. By 

autonomously scheduling changes and predicting KPI impacts of implementation dates, the agent-system 

provides additional capacity and decision-making support to the organisation. 
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1. Introduction 
To remain competitive, to remove quality issues, or due to legislative reasons, continuous changes to a 

product are inevitable. Although companies try to minimise or fully avoid these engineering changes 

(EC), there is an observable increase in frequency and amount due to changed customer behaviour. A 

therefore necessary change to a component of a product can propagate to other components, possibly 

resulting in an avalanche of further changes (Eckert et al., 2004). When implementing ECs into the 

production environment, multiple process partners need to ensure that a variety of changes are 

introduced simultaneously at the assembly line. With increasing complexity of the product, in the 

aeronautical or automotive industry for example, coordinating multiple supply streams becomes 

pivotal to maintain a steady production process output.  

To cope with the increasing complexity, frequency, and volume of EC, automating EC and its 

associated management is seen as an opportunity (Sharp et al., 2021). While research on automated 

problem assessment (Weißer et al., 2021), solution finding (Beroule et al., 2014) and impact 

assessment (Ma et al., 2017) is available, the EC implementation process proves difficult as it remains 

a communication-intensive process. With the increasing size of global production networks, the 

optimal implementation of changes becomes increasingly complex. Besides the problem to define an 

optimal implementation date (Barzizza et al., 2001) and multiple changes being introduced 

simultaneously (Bhuiyan et al., 2006), the workload during peaks leads to prioritisation losses 

(Wänström et al., 2006), failing some changes. However, to prevent malfunction in digitalised 

products for software and hardware compatibility it is necessary to have full match of actual and 

planned bill of materials. Hence, to improve scheduling of changes a digitalisation of the EC process 

while retaining a degree of flexibility for handling variety is necessary. 

With advances in artificial intelligence (AI), this paper provides a concept, key requirements, and 

logic for an automated EC implementation control via a multi-agent system (MAS). Our system 

consists of four agents that build upon a single shared database. The interplay between these agents 

optimises and partly automates the EC process. The remainder of this contribution is structured as 
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follows: chapter 2 provides the theoretical background on EC implementation and insight on related 

publications. Chapter 3 introduces the MAS, whose components are subsequently discussed in 

chapter 4. Chapter 5 concludes with an outlook on future work and research activities.  

2. Theoretical Background 

2.1. Engineering Change and Engineering Change Implementation 

ECs are any change or modification to the function, behaviour, or structure of a technical artefact 

(Hamraz et al., 2013). As such, they can occur at any point in a product's lifecycle. The handling of 

these ECs is further defined as engineering change management, with its goals defined as Less, 

Earlier, More Effective, More Efficient, and Better (Fricke et al., 2000). Depending on the product's 

lifecycle phase, the focus shifts. During early product development, changes are frequent and on short 

notice to enable earlier experience with the modified product. During series production effectiveness 

and efficiency come into focus.  

From a process view, EC handling can be described in six distinct process steps (Jarratt et al., 2005). 

As seen in Figure 1, following the emergence of a change trigger an EC request is raised and resolved 

accordingly through the process steps. Upon approval of a solution, the EC request is transformed into 

an EC notice. Though the process itself is not linear, as there are iteration loops, once a definitive 

solution is decided on, the implementation phase is mostly linear. Multiple process partners are tasked 

with activities such as material planning and homologation. To enable coordination, most companies 

use a form of change coordination board or committee (Huang et al., 2003). As automating other 

process steps is already being researched, (e.g. (Sharp et al., 2021; Arnarsson et al., 2021)), this paper 

focuses on an automated implementation process.  

Change Trigger

EC request raised

Identification of 

possible 

solution(s)

Implementation of 

solution

Review of 

particular change

End

Approval of 

solution

Impact 

assessment of 

solution(s)

 
Figure 1. The generic EC process as defined by Jarratt et. al (2005),  

with the focus area highlighted 

EC implementation is a complex process, with different stakeholders involved, each with their own 

objective. With case studies from the automotive industry, Potdar and Jonnalagedda (2018), as well as 

Shivankar et al. (2015) provide insights and process flow charts with detailed activities described. 

Both contributions can be summarised as a change coordinator distributing an approved change to 

various departments within the plant and waiting for their feedback. Upon approval, a material planner 

organises the logistics for changed parts into production. A generic process for EC implementation 

however is difficult to define, due to a high degree of customisation triggered by the EC itself. 

Additionally, EC implementation has been an overlooked research field in the past (Hamraz et al., 

2013). Hence, only a few sources describe standardised processes, as well as tools and methods for 

this step. Thus, in a first step, the MAS should support two specific functions within an EC process, 

the material planner and the change coordinator. 

The objectives of the agents developed for this task can be derived from theory in combination with 

the case studies described. Two main research paths were discovered within EC implementation 

research, namely implementation date optimisation and process optimisation (Radisic-Aberger, 2021). 

On the one hand, some researchers focused on calculating the optimal change effectivity date defining 

when and how to implement the EC. Focusing on theoretical exploration, Barzizza et al. (2001) and 

Wänström et al. (2006) for instance built on previous work by Diprima (1982) and calculated the 

optimal dates for an EC to reduce rework and obsolescence cost respectively. On the other hand, 

research addressed by Bhuiyan et al. (2006) as well as Ouertani (2008) among others, simulated 

efficiency gains through parallelisation of tasks and batching of multiple ECs into one change 
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occurrence. However, EC implementation remains a manual task. For integrating both theoretical 

research streams into a potential solution, an MAS is proposed, providing the benefit of automatic EC 

scheduling, optimising the effectivity date while being adaptable to EC variance. 

2.2. Applied Methodologies and Related Work 

This contribution is built on two methodologies namely the design science research methodology 

(Hevner et al., 2004) for the development of artifacts as well as the Gaia methodology (Wooldridge et 

al., 2000) for detailling of the MAS.  

The first methdology is used to define the overarching procedure and develop potential future 

information systems (IS), which are going to be embedded in the industry. The environment according 

to Figure 2 has been described in chapter 2.1., the EC implementation process.  

The second methodology is used for conceptualisation and development of the MAS. As the 

methodology demands the requirements on the agents first, these are initially developed by usage of 

the design science research methodology. The role model and function model is further described in 

chapter 3. 

IS Research
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Figure 2. Design science research methodology according to Hevner (2004) 

As a proposition for the objectives of the agents the following business needs (BN) are given, 

according to the tasks described by Potdar and Jonnalagedda (2018) in combination with the 

theoretical research streams:  

BN1: Define a cross-company optimal EC effectivity date on part level 

BN2: Provide a prediction whether the part will be introduced accordingly, depending on data 

from other stakeholders 

BN3: Provide an EC schedule, according to the outcome of BN1 and BN2 

BN4: Provide the organisation with feedback 

BN1 is a combination of the two theoretical research streams: defining an optimal date for 

implementation and usage of EC batching to reduce complexity. With the digitalisation of the process, 

an additional benefit can be raised, as through advanced AI applications, the introduction date of ECs 

can partly be predicted. This results in BN2, targeted at the industry observations (cf. chapter 2.1) and 

incorporating data from multiple sources. BN3 is the potential for automating the scheduling of 

changes, enabling better usage of resources compared to the manual process today. Finally, to remain 

in control of the process, feedback to the organisation is necessary, resulting in BN4.  

After identifying the BN, design science research methodology proposes the establishment of a 

knowledge base. For this, we performed a systematic literature search (Radisic-Aberger, 2021), and 

allocated discovered literature in the framework developed by Hamraz et al. (2013), with an additional 

layer of AI usage. Hence, the foundations of the knowledge base are formed by literature on EC and 

EC management, with supportive literature on MAS. Through the literature search, five related works 

have been identified, each providing an MAS for solving a distinct EC problem.  

From a chronological perspective, the first identified agent-based EC management approach by Moon 

and Wang (2009), models consumers, producers, and suppliers. By simulating the EC process on a 

macroscopic level, they were able to show the positive impact of an effective EC process on market 

shares. To support engineers with the challenging task of finding the optimal configuration after an EC 
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trigger, Beroule et al. (2014) developed consensus-seeking agents. They were able to provide potential 

new configurations based on requirements, functions, and manufacturing, built around robust and 

flexible components. Automatic mapping of product data was identified by Bender et al. (2015) as a 

potential of improving the EC process. Thus, they designed a concept for an MAS for mapping 

geometrical and logistical data, discussed different architectures and arrangements of active and 

passive agents, and proposed developing a running prototype. Similar to the objective of Beroule et al. 

(2014), Camarillo et al. (2017) used case-based reasoning agents to identify potential solutions based 

on past data. Their system was orientated towards problem solution finding and in comparison to 

human engineers their prototype achieved 80 % solution accuracy. Finally, Ma et al. (2017) used an 

MAS to better predict change propagation. Comparing it to the change prediction model, their system 

performed better when calculating propagation paths with multiple changes occurring on multiple 

parts at once. These five contributions show that MAS can be used to model the complex EC process, 

as well as to support those involved with EC. However, an MAS in support of EC implementation has 

not been identified in the literature. 

3. Multi-Agent System Approach 
As introduced, the EC implementation process involves multiple stakeholders and departments across 

a company, loosely collaborating through the actions of a change coordinator. Representing loose 

collaboration between autonomous entities becomes possible through MAS (Kehl et al., 2015; Ma et 

al., 2017). Hence, we propose to model and handle the EC implementation process via an MAS. As 

introduced, we employ the Gaia methodology (Wooldridge et al., 2000), to detail the design of the 

agents. As a initial step, we describe the roles and interactions model of the MAS, as shown in 

Figure 3. Accordingly, neither the roles nor the interactions model describe the actual function, but 

rather a general description of responsibilites of the agents, which are then further expanded on as the 

MAS is developed. The roles and general architecutre of the four agents are afterwards discussed in 

detail in chapter 4. 

EC process data

EC configuration EC schedule

Process Flow
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Requestes a 

calculation

Requests a prediction for 

a calculated date

Provides 

feedback

Negotiator Agent

Registers a 
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Predictor Agent

Supervisor Agent

Logistical data

Design data
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Figure 3.  Schematic overview of the role model of the proposed multi-agent system for EC 

implementation 

We envision four agent roles, each responsible for one of the BN in chapter 2.2, and a data source that 

all agents can access. According to the definition of Russell and Norvig (2016, p. 36ff.) an agent is an 

autonomous entity, that perceives its environment through sensors, upon which it can act through 

actuators. Depending on the task, the agent's structure varies. As such, the MAS employs goal-based, 

utility-based as well as model-based reflex agents (Russell and Norvig, 2016, p. 50ff.). Each agent 

solves its given task with regard to optimising the performance fulfilling their objective, with their 

orchestrated procedure defining the MAS. For each agent, a task environment is necessary, defined by 
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performance measure, environment, actuator, and sensor (PEAS) (Russell and Norvig, 2016, p. 40), 

provided in Table 1. 

Within the generic EC process, the proposed MAS starts after the finished approval process and is 

only tasked with the EC implementation process. The resulting EC configuration document is taken 

by the 'Negotiator Agent' as the input for its process, starting an optimise-predict-schedule (OPS) 

sequence.  

According to the definition of Russell and Norvig (2016, p. 36ff.) an agent is an autonomous entity, 

that perceives its environment through sensors, upon which it can act through actuators. Depending on 

the task, the agent's structure varies. As such, the MAS employs goal-based, utility-based as well as 

model-based reflex agents (Russell and Norvig, 2016, p. 50ff.). Each agent solves its given task with 

regard to optimising the performance fulfilling their objective, with their orchestrated procedure 

defining the MAS. For each agent, a task environment is necessary, defined by performance measure, 

environment, actuator, and sensor (PEAS) (Russell and Norvig, 2016, p. 40), provided in Table 1. 

This agent takes over the coordinating tasks, usually performed by the human change coordinator, 

with the goal to schedule an EC. From the EC configuration, an 'Optimiser Agent' is triggered, 

replacing the material planner in the process of Potdar and Jonnalagedda (2018), calculating the 

optimal change effectivity date based on not only EC process data but logistical, design, and 

commercial data es well. Having identified a global optimum, the date is provided to the 'Negotiator'. 

Upon receiving this data, the 'Negotiator' requests a prediction from a 'Predictor Agent', how 

implementing on this effectivity date, in combination with the EC notice and configuration will 

impact key performance indicators (KPI), e.g. scheduling accuracy. Based on the reply from the 

'Predictor', the 'Negotiator' decides whether it is satisfied with this potential outcome and confidence 

interval, or whether it retriggers the calculations, demanding to search for a different, this time local, 

optimum. In case the effectivity date is satisfactory, the EC notice is scheduled for production and 

assembly, upon which a 'Supervisor Agent' watches over the EC schedule and informs the human in 

the loop and retriggers the 'Negotiator' in case any deviations or reitariton in the process are 

registered. Once the EC is implemented, the 'Supervisor' adds the EC notice to the historical EC 

process database.  

Each agent has its own objective and performance measure. Accordingly, the actuators and sensors 

for each agent differ, reacting to its environment. Chapter 4 discusses these agents and their logic in 

detail.   

Table 1. Performance, environment, actuators, and sensors overview 

Agent Performance Measure Environment Actuators Sensors 

Negotiator Scheduling Accuracy EC Data Calculation request, 

prediction request,  

comparison 

algorithm, EC 

scheduling, request 

manual override 

EC configuration, 

calculation, 

prediction, 

implementation 

information, 

scheduling check 

Optimiser Implementation cost 

and time 

Current 

commercial, design, 

logistical, EC Data 

Classifier algorithm, 

calculation algorithm 

EC configuration, 

calculation requests, 

supply chain data, 

product data, 

production schedule 

Predictor Prediction quality Past & current 

logistical, design, 

EC Data 

Prediction algorithm Prediction requests, 

EC configuration, EC 

process data, EC 

timing data 

Supervisor Manual intervention EC schedule Scheduling check 

request, feedback 

distribution 

EC schedule data, 

prediction data, EC 

process data, EC 

timing data  
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4. Framework and Service Model of the Agents 

4.1. Negotiator Agent 

The central agent of the MAS, the 'Negotiator', coordinates tasks and providing an EC schedule, 

fulfilling BN3. Designed as a learning goal-based agent, the logic follows the flowchart in Figure 4. 

The decisions depicted do not occur in a sequential matter, but rather simultaneously and represent 

sensors, that enable him to perceive the environment, and act upon it depending on the acutal state.  

Upon initialisation, the agent is in an idle state, waiting for a new EC to become available. Once 

received, the 'Negotiator' requests to calculate optima for EC effectivity date in regards to time and 

cost. Additionally, a prediction on KPI impact is requested for the EC case. When available, the 

'Negotiator' checks whether every optimum has a prediction. If the conditions are met, the agent 

compares the predicted KPI and the identified date against a rule set. If the resulting comparison 

returns a result within the acceptability limits of the agent, the EC is scheduled into the production 

network. In case the result is deemed unsatisfactory, the 'Negotiator' retriggers the 'Optimiser' by 

requesting to search for the next best local optimum, restarting the OPS sequence. 

Unless a request to control the schedule is received from the 'Supervisor', the agent remains in an idle 

state until receiving the EC implemented confirmation, resulting in its termination. However, if a 

deviation is recorded, the 'Negotiator' requests a new prediction to reassess the situation, and 

dependent on the outcome the schedule is confirmed or a new initial optimum calculation required, 

effectively restarting the OPS sequence. Finally, a limit should be set on how many loops can be re-

run, and in case the global optimum never occurs, a manual override or decision is requested. 

Main points to take into consideration when developing this agent are check frequency, data storage 

concepts, and the ruleset. While the first and second are limited by computational resources, the 

ruleset is unique according to a company's requirements. Also, the scheduling accuracy is suggested as 

the performance measure (Table 1), as this metric enables the 'Negotiator' to autonomously improve 

and adapt the rule set over time, increasing the accuracy and efficiency of future EC schedules. At the 

core of improvement of the agent we envision a reinforcment learning algorithm, as these posses the 

ability to enhance the rule-set without provision of a detailed one to start with. Initially, this agents 

task are still to be supervised by a human, until enough data and experience is gathered. Thus, though 

envisoned as an autonomous scheduling agent in its fully developed system, in its initial state it acts as 

a recommender. 
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Figure 4. Logic architecture of the 'Negotiator Agent' 
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4.2. Optimiser Agent 

The second agent to be introduced is the 'Optimiser Agent' (Figure 5), a model-based reflex agent. It 

represents the theoretical research streams of EC implementation research and the material planner's 

task. Accordingly, it addresses BN1 to define a cross-company optimal implementation date. Once 

initialised, the agent scans through ECs with an open calculation request. Its objective is to search for 

date optima regarding cost and time. However, before calculating the optima, the change needs to be 

classified according to its configuration. Afterward, depending on the classification an optimum is 

calculated. For calculation, a cost function comprised of all costs identified with a certain change type 

is necessary. For instance, a change due to homologation changes (e.g. resale ban) will have other 

costs involved than a change due to quality problems (e.g. warranty). Once a global optimum and 

classification are identified, the information is provided to the 'Negotiator', and the agent returns to an 

idle state. If an additional calculation request is received, the 'Optimiser' looks for the second-best, or 

in repeated cases the next best, effectivity date, and returns the information. Upon notice that the EC is 

scheduled, the 'Optimiser' is terminated, as in case of a full rescheduling of the EC, for the increase of 

cost and time savings, a full classification-optimisation loop is suggested 

On classifying EC, Diprima (1982) and Barzizza et al. (2001) each identified three types of changes 

based on the EC trigger (e.g. immediate and convenient, or rework and scrap). For the classifier we 

suggest re-evaluating these types, as with more granularity, a better result is possibly achieved. Hence, 

for improvement of the MAS, additional classifications need to be defined. Furthermore, logistical 

data, whether parts are delivered in bulk or just-in-sequence, enable different implementation 

strategies, effectivley increasing the number of change types. Additionally, an investigation of whether 

rule-based or machine learning (ML) classification proves better is suggested.  

For the core of the 'Optimiser' agent, a suitable algorithm is required. This algorithm needs possibilites 

to test different parameter sets as an actuator. For instance, a change of call-offs, acceptance of 

obsolescence costs, changing of the amount of goods delivered are possible acutators for the agent to 

find different optima. To model this search, a clear allocation of product and process specific costs is 

required. E.g. the above discussed warranty costs are product specific, as the total costs are only 

dependent on the amount of products built, and not on the change process itself. Furthermore, we 

suggest developing the actuators as encoded parameters of a genetic algorithm, in combination with a 

Tabu search to enable the agent to escape previously calculated optima.  

Another source of complexity to keep in mind in defining the optimal date are sub-assemblies. For 

instance, if a quality issue is addressed by changing both the carrier part and the attached part and 

variants of the attached part exist, achieving zero obsolescence costs is only achieved if all parts have 

their stock reduced. Contrary, if steered wrongly, production is halted in the worst case due to a 

mismatch of carrier and attached part. 

Start

Initialise

Wait

Classify EC

Calculate global 

optimum

Additional calculation 

request received?

n

y

Calculate local 

optimum

Initial calculation 

request received?y

n

Endy

EC scheduled?

n

 
Figure 5. Logic architecture of the 'Optimiser Agent' 
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4.3. Predictor Agent 

The 'Predictor' addresses BN2, prediction of EC implementation effects. Therefore, the agent provides 

the 'Negotiator' with a confidence interval on implementation accuracy and an impact assessment. Its 

control flow (Figure 6) is rather simple, as upon initialisation the agent is tasked with predicting KPI 

for all given dates and current EC information. Once the prediction for these KPIs is calculated, the 

result is returned to be matched against the ruleset of the 'Negotiator'. As an ML-based model, the 

'Predictor' is a learning agent, constantly improving its predictions with data from past changes. 

From a data perspective, this agent has the highest amount of data consumption. For the prediction 

algorithm at its core, a supervised ML model is suggested. For this agent to unfold its full potential, 

data from past changes is necessary as input. To our knowledge, no publication in the past has 

discussed what data is required for predicting KPI in an EC environment. Additionally, KPI such as 

'scheduling accuracy', 'rescheduling amount', 'time to implementation', and others are not defined for 

the EC process control. Once defined, research is required on what data is best used for predicting 

these KPIs, and which ML algorithm to use.  

Predict for 

available dates 

and current 

information

InitialiseStart EndWait

Prediction request 

identfied?

y

n
 

Figure 6. Logic architecture of the 'Predictor Agent' 

4.4. Supervisor Agent 

The last agent is shown in Figure 7, representing a suggestion for BN4 and thus providing feedback. 

The 'Supervisor' is a separate entity, with the objective to monitor the EC schedule and inform a 

human operator and the 'Negotiator' in case any deviations are identified. Separating its objective from 

the 'Negotiator' enables the strict fulfilment of the respective objectives without interference. Its 

sensory input includes current and past data of the EC configuration and EC process, giving it the 

possibility to report the EC implemented notification. Initially, a basic rule set on which deviations are 

deemed grave enough to necessitate a scheduling check or even a cancellation of the EC should be 

provided. As it stands, the main difficulty lies in predicting the outcome of a milestone, dependent on 

the time passed. 

It is the only agent that is reliant on a human-machine interface and its performance measure is the 

number of manual interventions of ECs. The cases with manual intervention can then be used for the 

agent to learn and improve the deviation ruleset via a reinforcement learning algorithm.  
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Figure 7. Logic architecture of the 'Supervisor Agent' 
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5. Conclusion and Outlook 
We have presented the concept for a potential MAS, designed for automatic EC implementation 

scheduling. From analysing literature and associated industries, four BN for effective EC scheduling 

have been defined. These four BN were addressed by introducing four distinct agents. Subsequently, 

every agent's logic, architecture, and objective were discussed.  

As a limitation to the optimisation and automation capabilites of the proposed MAS the focus on the 

implementation step of the EC process and predefined rules are identified. Due to the late point in the 

process upon which it becomes active, its optimisation capabilites are within a narrow timeframe. 

Additionally, within production systems unforseen situations can happen at any time. These result in 

emergency EC or highly complicated contractual obligations, not represented in data. These changes 

require fast and flexible decision making and shortcuts within the system, for which the MAS is not 

designed. Another limitation are responsibilities and accountabilities which need to be decided on a 

case by case base for the organisation. Especially for legal or safety critical changes, the human should 

always have the last call.  

Once the base MAS is established, further agents could be designed, replicating other tasks. For 

instance, the 'Negotiator' could also trigger a homologation-specific agent, which is then tasked to 

check whether any legal testing is necessary. Another issue identified is the product and process 

approval, as without prior confirmation from the customer, parts should not be sent by the supplier. An 

agent could thus check whether the change is simple enough to be done without approval checks or 

even automatically check the documentation provided. 

As a research outlook for the MAS, the components of the agents require refinement and investigation. 

For a starting and testing point, we suggest the tasks of the 'Negotiator' to be performed by human 

associates and building the other agents first. Research on every actuator is still needed. For instance, 

the optimising agent needs development regarding classification, as a ruleset-based approach provides 

limited flexibility to variety. On the goal of prediction, further research regarding learning algorithms 

and data engineering is needed. As within other research, we suggest investigating which algorithms 

are suited best for different EC cases and establishing standard datasets for testing. Once a reasonably 

fit model is trained, it is going to be deployed in a real-world environment to support the human 

coordinator. In future research, we will test and further develop the logic for each of these agents and 

deploy the MAS in an industry environment to confirm the applicability through a case study. 
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