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1. Introduction

Suppose that A = [ank], (n,k = 0,1,2, •••), is an infinite matrix with complex
entries. A transforms a complex sequence a = {an} to a complex sequence
{bn} = b = Aa where

00

(1) bn = 1, <xnkak n = 0 , 1 , 2 , -

assuming that the series in (1) converges. Each sequence a = {an} is uniquely
associated with a power series

(2) /(z) = £ anz\
n = 0

In this way the matrix A transforms a power series into a power series. Specifically,
the power series (2) is mapped to the power series

(3) g(z) = I bnz»

where the bn's are given by (1). We are only interested in matrices having the
property that each power series analytic in A = {z: | z | < 1} maps to a power
series analytic in A.

Our concern is motivated by the general question: What matrices map a
function / univalent in A to another function g univalent in A? We shall consider
three specific, well-known matrices and study to what extent properties of unival-
ence o f / a r e carried over to g. These matrices are:

1 The research of the second author was partially supported by a National Science Founda-
tion Grant and a State University of New York Faculty Fellowship.
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(4)

F. W. Hartmann and T. H. MacGregor [2]

= [«„*];

(5)

(6)

I 0,

T(r) = [a,,J,

an0 = 0, n = 1 ,2 , -

if fc^«, n = 1,2,—

if k>n,n = 1,2, •••

0 < r < 1,

if fcgn

if fc > n

0 < r < 1,

if n > fc

if fc > n.

The (C, 1) matrix shall be called the Cesaro transformation [6, page 175]; E(r) the
Euler-Knopp transformation [6, page 176] and T(r) the Taylor transformation
[1]. Equation (1) becomes

(7)

(8)

and

(9)

b. = X ak (n = 1,2,-), b0 = 0

(n = 0,1,2,-)

bn= I (l-rY+1(k)rk-ak (n = 0,1,2,-
k = n \ " /

• )

for the matrices (4), (5) and (6), respectively. One can show that each of these
matrices maps a function analytic in A to a function analytic in A. This fact is a
simple consequence of Hadamard's formula for the radius of convergence of a
power series.

Each of the transformations, (C, 1), E(r), T(r), preserves various properties of
univalence. Specifically, if/is univalent in A and/(A) is convex then the Cesaro
transform g also maps A one-to-one onto a convex domain. If/maps A one-to-one
onto a domain that is starlike with respect to the origin, then the Cesaro transform
of/is univalent in A. We also give a number of examples of functions / univalent
in A so that g is univalent in A and finally an example of a univalent function whose
Cesaro transform is not univalent.

Similar results are obtained for the Euler-Knopp transform. We find that if/
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[3] Transformation of univalent series 421

is univalent and starlike in A then so is the transform g. We also show that if g
is suitably normalized then it satisfies a number of distortion theorems and
coefficient inequalities for univalent functions. Our study of E(r) concludes with
an example of a univalent function whose E(r) transform is not univalent.

On a positive note, however, we show that if/is univalent, its Taylor transform
g is always univalent and moreover g satisfies many of the coefficient inequalities
known to hold for the suitably normalized univalent functions.

2. The Cesaro transformation

In this section we consider what properties of univalence are preserved in the
transformation from the functions (2) to the functions (3) where bn is given by
(7). We begin by observing a simple relation between/and g. Namely,

g\z) = inbnz"-l= £ \iak\z
n = l n = l U = l )

, n - l

r 7 ^
U 0 J (n l I V — Z Z

Therefore,

(10) g'(z) = Y ^ %$-, (z * 0), (ff'(0)

or, equivalently, given that g(0) = 0,

THEOREM 1. / / / is analytic in A and maps A one-to-one onto a convex
domain, then the Cesaro transform g offis also analytic, univalent and convex
in A.

PROOF. A function / analytic in A and satisfying/'(0) ^ 0 is univalent and
convex if and only if

(12) R

Such functions are known to be starlike of order \ as proved in [7] and [11];
that is,

(13)

Now, let / be analytic, univalent and convex in A and let g be the Cesaro
transform of/. Then / and g are related through equation (10) from which we
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find that

g'(z) • /(z) • 1 - z

Since/satisfies equation (13) and w = z(l — z)maps A (one-to-one) onto
— \ we conclude from (14) that

H?iS ) + l ) > w = o f o r | z | < i -
As g'(0) = / '(0) ¥" 0 this proves that g maps A one-to-one onto a convex domain.

Our argument shows more than the assertion of Theorem 1; namely, i f / i s
starlike of order \ then g is univalent and convex. More generally, if/ is starlike
of order a. then g is convex of order a — %; that is, the inequality

(15) Re j-^gp-j > a for

implies that

(16) R

with p = a - £. It is known that the condition (16) with p ^ - \ (and g'(0) # 0)
implies that g is univalent in A [12]. Thus, if/ is starlike of order zero (or, equiva-
lently, / i s univalent in A and/(A) is starlike with respect to the origin) then g, the
Cesaro transform of/, is univalent in A. We now state this result and give an
alternative proof of it.

THEOREM 2. Iff is analytic in A,/(0) = 0, and if f maps A one-to-one onto a
starlike domain, then the Cesaro transformation offis also univalent in A.

PROOF. Let g be the Cesaro transformation of/. Then, equation (10) holds
and since w = 1 /(I — z) maps (one-to-one) onto Re w > \ this shows that

(17) R<

In particular, this implies that

(18) R

Equation (18) is the definition that g be close-to-convex in A, since/is univalent
and starlike and /(0) = 0. Each close-to-convex function is univalent in A as
proved by Kaplan in [3].

Theorem 2 provides us with numerous examples of univalent functions
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whose Cesaro transformation is also univalent since starlike univalent functions
can be easily constructed through the condition Re {z/'(z)//(z)} > 0. For example,
/(z) = z/(l - z)" is univalent and starlike in A if 0 ̂  a ^ 2 and the Cesaro
transformations are

g(z) = J - { ( l - z ) - " - l } .

Other examples are given by the following assertion which is generally known and
which we need to use in our discussion of the Euler-Knopp transformation.

LEMMA 1. Suppose that kk are real numbers and ek are complex numbers
for k = 1,2, ••-,« so that

n

/ k ^ 0 , Z lk<>2 and \ek\^ 1.
k = l

Then

n c1 - ̂
is univalent and starlike in A.

We also consider the examples

(19) / ( z )=
(1 - z)2

which shall later be of importance in obtaining a counter-example with regard to
the Euler-Knopp transformation. The function in equation (19) is univalent in
A if and only if a satisfies the inequality

(20) |fl-i|^i-

This fact is generally known but we indicate a simple proof of it here. That (20)
is necessary for the univalence of/follows from the fact that/'(z) vanishes at
z = 1 /(2a - 1) and this number is in A if (20) is not satisfied. Since the derivative
of a univalent function cannot vanish, this proves the necessity of (20). Con-
versely, suppose that (20) holds. If b # 0 then the function F(z) = bz/(I - z)2 is
univalent and starlike in A, and

o n */'(z) _ 1 1 + (1 - 2a)z
( J ~F(z )~-T 1 -z •

The function w = [1 + (1 — 2a)z]/(l — z) maps A onto some half-plane and by
the hypothesis (20) that half-plane does not contain the origin. Thus, for some
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complex number b the right hand side of equation (21) satisfies Re w > 0 for z
in A. This shows that Re {zf'(z)/F(z)} > 0 in A. Thus,/is close-to-convex and,
hence, univalent in A.

Let/be defined by equation (19) and let inequality (20) hold so that/is univalent
in A. If g is the Cesaro transformation of/, then from equation (11) and some
integration we find that

z
(22) g(z) = - (1 - z)2

Thus g has the same form as / where a has been replaced by b = ^(a + 1).
Inequality (20) is equivalent to | b — f | ̂  \ and so, in particular, | b — \ | g \.
Therefore, g is also univalent in A.

Although the Cesaro transformation of a convex, univalent mapping is also
convex it is not the case that the Cesaro transformation preserves starlike mappings.
We give a simple example to show this. Namely, the function/(z) = z/(l — z)2 is
univalent and starlike in A and, according to equation (22) with a = 0, the Cesaro
transformation of this function is

(23) g(z) = j ^ r ^ -

From (23) we find that

g{z) 1 - iz 1 - z

If z # 1 and | z | = 1 then Re 2z/(l - z) = - 1. Thus, as w = (1 - z)/(l - \z)
vanishes at z = 1, there are numbers z sufficiently close to 1 so that | z | = 1 and
Re {zg'{z)jg{z)} is as near to — 1 as we like. Accordingly, there are points in A so
that Re {zg'{z)lg{z)} < 0 and, therefore, g is not starlike (although univalent)
in A.

Our final result about the Cesaro transformation is an example of a univalent
function whose transformation is not univalent. We need recall that if/is analytic
in A, /(0) = 0, / '(0) ? 0 and

(25) Re(e-i^J>0for Iz <l

where a is real (| a | < nj2), then/is univalent in A [see 10]. These conditions are
satisfied by the function

(26) /(z) = z exp { - a Log (1 + z)}

where a = 2e~"*cos a. In particular, note that (26) implies that
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Our example is the function (26) for any choice of a (a # 0). This kind of function
has served as a counter-example for some earlier questions [see 4 and 5].

THEOREM 3. There is a function f that is analytic and univalent in A so
that/(0) = 0 and the Cesdro transformation of f is not univalent in A.

PROOF. Let / be given by (26) where a = 2e~'°'cos a, a | < n/2, a ¥= 0 and
let g be the Cesaro transformation of/. Then, by (11) we may write

(27) 9iz) = [
We shall show that g is not univalent by studying its local behavior at z = 1 and
z = — 1 for points in A.

The derivative of g is analytic for | z | :g 1 except at the points z = 1 and
i = — 1 and at z = 1 it has a simple pole. We may write g'(z) = A /(I — z) + /i(z)
for some constant A and some function h analytic on some neighborhood of the
segment [0,1]. By integrating along the line segment from 0 to z for each z in
this neighborhood we conclude that g(z) = — A Log (1 — z) + k(z), where z
is not on the real axis from 1 to oo and k is analytic at z = 1. The image of the
segment [0,1) under the mapping vv = — A Log (1 — z) is a ray. Thus, the
image of this segment under g is an analytic curve C asymptotic to some ray.

Next we study g at z = — 1. If the integral in (27) is rewritten through two
integrations by parts we conclude that

a(Z)

( - a + l ) ( l - z ) -a + l ( - a + l ) ( - a + 2)( l - z)2

(28) . _ _ _ _ J , 1 r 'OJJVT!! 2
 dw

( - f l + l ) ( - a + 2 ) ( - a + l) ( - a + 2) Jo (1 - vv)3

The last term in this equation may be written

(29) Q(z) = f (1 + wya+2P(w)dw
Jo

where P is analytic for | z :g 1 excspt at z = 1. Suppose that

(30) (1 + z)-"+2 = I C,,z" for I z | < 1
n=0

so that Cn — I I. If b is any complex number other than a non-positive

integer then nln"/[b(b+ \) (b+ !)••• {b + n)] -» T(ft) as n -> oo, and thus
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\Cn/n
a~3\^\r(a - 2 ) I"1 as n -» oo.

Since | n a " 3 | = n
Re<f l~3) = n

2 c <" 2 * - 3 and a ? 0, | a | <n/2, we conclude that

= 0(n~fi) for some /? > 1. Thus, the power series in (30) converges absolutely
z I ̂  1, and thereby the function w = (l + z) " + 2 extends continuously for

\Cn

for
| z | ̂  1. Equation (29) then implies that Q is continuous for | z | ^ 1 except at
z = 1, and so, in particular, Q is continuous at z = — 1 with respect to points in
A. Therefore, by combining various terms we may rewrite equation (28) into the
form

(31) g(z) = (l+z)-a+1R(z) + S(z)

where R and S are continuous at z = — 1 and R(— 1) ¥= 0.
The image of the interval (—1,0) under the mapping w = Log (1 + z) is the

interval ( -oo ,0 ) . By the mapping £ = ( - a + l)w = - e~2>"w the interval
( - oo,0) transforms into a ray emanating from £ = 0 which lies in the right-half
plane Re £ > 0 and is not the positive real axis, because | a | < n/2 and a ̂  0.
That ray is mapped onto a spiral from s = 0 and spiralling to s = oo under the
function s = ec. This shows that s = (1 + z)~a + 1 maps the interval (— 1,0) onto
such a spiral. Because of equation (31) we conclude that g maps (— 1,0) Onto a

curve C that is asymptotic to a spiral beginning at some finite point and spiralling
to co.

The properties of trie curves C and C imply that they must intersect (in fact,
infinitely often). That is, there is a complex number w such that w = g(z,) and
w = g(z2) where z ^ ^ , 1) and z 2 e ( - 1,0). Therefore, g is not univalent in A.

It is interesting to note that if we let/(z) = z exp {- a Log (1 - z)} where
a = 2e~"zcos a ( |a | < njl) then condition (25) holds and s o / i s univalent in A.
For this spiral-like function we find that its Cesaro transformation is univalent
in A.

3. The Euler-Knopp transformation

We now study questions of the preservation of properties of univalence for
the transformation of power series given by the Euler-Knopp matrix (5). This
transforms the power series (2) into (3) where equation (8) relates the coefficients
of the two series.

As with the Cesaro transformation we find a formula for g in terms of/, as
follows.

g(z)= lbnz"= £ ( £ (n.)r\l - r)-^"
n=0 n=0 U = 0 \K.' I

00 / OC

= I 2
k=0 {n=k
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i

l - ( l - r ) z ]* + 1

Therefore, we conclude that

(32)

The interchange in summation used at the beginning of this computation is
justified by Weierstrass' double-series theorem.

Let S denote the family of normalized univalent functions; that is, feS if/
is analytic and univalent in A and if/(0) = 0 and/'(O) = 1. Since bx = rat when
/(0) = 0, the Euler-Knopp transform of a function in S satisfies g'(0) = r and
for convenience, we therefore consider the functions h(z) = g{z)jr. The set of all
functions h obtained this way by varying/in S shall be denoted U. The parameter
r is now allowed to varying in the interval [0,1] and we note that if r = 1 then
h = /andifr = 0 we mean that h{z) = z/(l — z)2 since lim,_>0 h(z) — z/(l — z)2.
In our next theorem we show that some of the classical inequalities for functions
in S hold for the larger family U. The results for S are found in reference [8] and
also in [2].

THEOREM 4. IfheU and h(z) = z + Y£=2cnz
n, then

(33)

(34)

(35)

(36)

Furthermore, if h is associated with f and

f(z) = z + I anz\ then

\h(z)

h'(z)

zh'(z)

Hz)

C2-C3

1 < z
1 - ( 1 -

< 1 +

- ( 1 -

< 1 +

- 1 -

VII

z|)2

z

z|)3

z

z\

(37)

implies that

(38)

\ak\^k for k = 2 ,3 , • • •,n

ck I ^ k for k = 2,3, •••, n.

PROOF. Inequality (33) holds for a function / in S [8, see page 217], and,
therefore, by (32)
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\h(z)\ = l |1 r '

rz
1 - (1 - r)z

r l - ( l - r ) z U

r z
1 l - ( l - r ) z

r 1 — ( I — r|z|

This proves inequality (33).

To deduce (34) we additionally take advantage of the fact that (34) holds
for a function/in S [8; see page 216]. Equation (32) implies that

,, . r / rz \ 1 - r I rz \
9 KZ) " [1 - (1 - r)zyJ \1 - (1 - r)z) [1 - (1 - r)zY J\\-(\-r)z)[1 - (1 - r)z]

and, therefore,

1
r

. - o - * | . ( l

+

-

1

1

rz
- ( 1 -

rz

- d -

r)z

r)z )

1 - r
rz

1 - (1 - r)z

1 +

rz
1 - (1 - r)z I

r\ z |

r\z\ \
i _ ( ] _ r ) | z | |

r z
1 - r

/ r[zj \
\ I - (1 - r)\ z I /

Since /i'(z) = (1 /r) g'(z) this proves (34).
Inequality (35) likewise results from the fact it holds for functions in S [8; see

page 224], as follows. Equation (32) implies that
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zg'(z)
|

- r)z

and, thus,

g(z)

1 1 + rz
1 - (1 - r)z

1 - (1 - r)z +
1 -

1 - (1 - r)z |
1 - (1 - r)z

Since the function y = (x + a) /(x - a) decreases for x > a we conclude that

l - ( l - r ) | z | + r |z . ( l - r ) | z |

1 - (1 - r) | z | 1 - (1 - r) I z | - r| z |

l + ( l + r ) | z |

1 - (1 - r)

The function of r last written is decreasing on [0,1] and, therefore,

This proves (35) since

1 - l z l

zh'(z) zg'{z)
h(z) g(z) "

In order to prove (36) we take advantage of the inequalities j a\ — a31 g 1
and | a2 | ^ 2, valid for the function f(z) = z + atz

2 + a3z
3 + ••• belonging to

S [8; see page 213]. Namely, equation (8) with n = 2 and 3 shows that
c2 = 2(1 - r) + ra2 and c3 = 3(1 - r)2 + 3r(l - r)a2 + r2a3 and hence

c\ - c3 = (1 - r)2 + r(l - r)a2 + r\a\ - a3).

Therefore, | c\ - c3 \ ̂  (1 - r)2 + 2r(l - r) + r2 = 1.

Inequality (38) also follows from (8), given (37), as follows. If k g n then

The last equality is a consequence of differentiating the identity at x — 1:

[(1 - r) + rx]* = 2

This proves (38) as ck = (1 jr) bk.
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We add the remark that if (37) holds for all k then so does (38). This is the
case, for example, i f / i s close-to-convex [9] or i f / h a s real coefficiencts ak [8,
page 220]. Also, since the Bieberbach conjecture (that is, equation (37)) holds
for A; = 2, 3, 4, 5 and 6 so does equation (38). Also, any estimate of the form
| an ^ A • n (n = 2,3, •••) for the coefficients of a function in 5 implies the same
estimate | cn [ ̂  A • n on the coefficients of functions in U. For example, Little-
wood's classical result | an | < en [8, page 218] implies that | cn | < en.

We now give a general condition under which the Euler-Knopp transfor-
mation of a univalent function is univalent, namely, when/is a starlike mapping.
Our proof depends upon Lemma 1 and the following result. This result is generally
known and is a consequence of a similar assertion for functions with a positive
real part in A as given by the Herglotz formula. We introduce the notation St to
denote the collection of all starlike mappings in S. Thus, /eS* if / is analytic and
univalent in A,/(0) = 0,/ ' (0) = 1 and/(A) is starlike with respect to the origin.

LEMMA 2. If feSt and p is given (0 < p < 1), then f can be uniformly
approximated in z\^p by functions of the form

F(z) = , where \ek\ = 1, kk S: 0
n

mi-skzf*
and

THEOREM 5. IffeSt and g is the Euler-Knopp transformation off, then
h = g Ire St.

PROOF. IffeSt then/can be approximated by functions F given by Lemma 2.
The Euler-Knopp transformation g off is thereby approximated by the functions
G that are the Euler-Knopp transformations of the functions F. If we show that
each such G is starlike, then Re zG'(z)/G(z) > 0 in A and, as a consequence,
Re zg'{z) /g(z) S: 0 or, equivalently, Re zh'iz) \h{z) 2; 0. This implies that
Re zh'(z)jh(z) > 0 in A as the equality Re zh'(z)/h(z) = 0 at some z in A implies,
by the minimum principle for harmonic functions, that Re zh'(z)/h(z) = 0 at all
z in A contrary to the fact that Re zh'(z)jh(z) = 1 at z = 0. This shows that we
need only show that Re zg '(z) jg{z) > 0 in A where g is the Euler-Knopp trans-
formation of the function

z "
f(z) = , where eJ = 1, Ak 2; 0 and 2 Xk = 2.

" k=ln (\ — F 7\kk

\ \ BkZ)

When / has this form equation (32) implies that
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rz
9(z) = —

II (1 - 8%zf*
t = i

where 5k = 1 — r + ekr. Since | Sk | ^ 1 we see that h = g /r has the form of Lemma
1 and thus he St.

Although the Euler-Knopp transformation maps a starlike, univalent function
onto another one it does not preserve convex mappings. This can be seen in various
ways. For example, since the normalized Euler-Knopp transformation h(z) -> k(z)
= z/(l — z)2 as r -* 0 we find that the expression zh"(z)\h'(z) + 1 is approximated
by zk"(z)/k'(z) + 1 uniformly in | z | ^ p as r-» 0. Now, the condition

(39) R

is necessary and sufficient for h to be univalent and convex in | z | < p (given that
h'(0) ¥= 0). Thus, it is clear that if k is not univalent and convex in | z j < p neither
is h for r sufficiently close to 0. The radius of convexity of k is 2 — y/3 and, thus,
independent of r, we can at best assert that each function h is univalent and
convex for | z | < 2 — ^ 3 (independent of whether / is convex in A).

We next present a proof that the Euler-Knopp transformation of a function
in S is not always univalent. It depends upon the following assertions.

LEMMA 3. The set {w:w = zf'(z)jf(z), | z | < l , feS} consists of all
complex numbers except w = 0.

LEMMA 4. The set {w: w = xf'(x)/f(x), 0 ^ x < 1, / e S } consists of all

complex numbers except w = 0.

These results are quite expected and probably are easy consequences of the
more delicate information regarding the exact region of variability of zf'(z)/f(z)
with z fixed and / varying over S. Our argument is quite direct and affords an
explicit construction of a function/in S so that h $S.

To prove Lemma 3 we consider the functions (19) where (20) holds so that
/ e S. From (19) we find that

f(z) (1 — az) (1 — z)'

We further restrict our consideration so that j a — % | = \, and letting a — \
+ \e{{* and z = pe'e (0 g p < 1) we may write (40) into the form

(d\\ w = z ^ =
K } / (z ) (« + »)«

where u = 1 - pe'fl and v = 1 - pei{e+4>\ If we let £ = 1 /w then (41) implies that
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By varying </>, 6 and p we find that u and v independently vary over the disk
D = {z:\z — l | < l } . Thus, the numbers 1 /v vary over the half-plane Re z > \.
If each point 1 jv in this half-plane is multiplied by the points u in D with the same
argument fi a half-plane results perpendicular to the direction /?. A similar half-
plane results if this half-plane is translated by 1. Because of the factor u in (42) we
conclude that if u varies in D with a direction /? and v freely varies in D, then the
numbers £ form an open half-plane through £ = 0 perpendicular to the direction
2/?. Since we can then vary /? in the interval | P | < n /2 we find that the union of
these half-planes covers the whole complex plane except £ = 0. The same can be
said of the numbers w = 1 /£ and this proves Lemma 3.

Lemma 4 is a consequence of Lemma 3 and the fact that i f / e S and g(z)
= (1 /e)/(ez) then g e S for each complex number s, | e | = 1. The relation between

/ and g is equivalent t o / ( z ) = (I Id) g(5z) where 3 = 1/e and so zf'(z)/f(z)
= 3zg'(8z)jg(3z). Thus, any number z/ ' (z)/ /(z) where / e S and zeA is also
obtained in the form xg'(x)/g(x) where g eS and 0 ^ x < 1 simply by choosing 3
so that <5z = | z | = x.

THEOREM 6. T/rere is a function f in S so that the Euler-Knopp trans-
formation g offis not univalent in A for some values ofr. In other words, [/ + S.

PROOF. Since the derivative of a univalent function does not vanish, we
obtain our conclusion by showing that there is a function / in S and a number r
(0 < r < 1) so that g'(z) = 0 at some z (| z | < 1). Because of equation (32) the
condition g'(z) = 0 is equivalent to

l - ( l - r ) z

If we let w = rz / [ l — (1 — r)z], then (43) may be written in the form

w / ' ( w ) (1 ~" r ) w

(44) f{w) r + (1 - r)w'

If y is any real number and — 1 < y < 0 then by Lemma 4 there is a function
/ in S and a real number x so that 0 < x < 1 and xf'(x)/f(x) = y. The function

- r)x

is continuous in r on £0, l j , given x so that 0 < x < I. Thus, as M(0) = - 1 and
K(1) = 0 there is a number r0 so that w(r0) = y and 0 < /•„ < 1. With this choice of
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/ and with r = r0 we see that equation (44) holds with w = x. Therefore, the
Euler-Knopp transformation of / i s not univalent in A if r = r0.

REMARKS. 1. Our proof of Theorem 6 is quite constructive because of the
explicit functions used to prove Lemma 3. We thereby can exhibit functions
/(z) = (z — eaz2)/(l — sz)2 where | a — \ | = \ and s | = 1 which have Euler-
Knopp transformations which are not univalent in A for various values of r.

2. If one relaxes the condition that feS to f is univalent and analytic in A,
then there is a simple example of the fact that there is an / univalent in A whose
Euler-Knopp transform g is not univalent. Let/(z) = r j{r + [1 — r\z), 0 < r < 1.
Then/is univalent in A but f^S and

1 rz \ _
l-(l-r)z) ~ '

which is clearly not univalent.
3. We have chosen to discuss the two specific matrices given by (6) and (7)

because they exhibit the interesting results concerning univalence that we have
presented here. There are other matrices which may also be worth considering in
this way.

For example, the Cesaro matrix transforms / into g so that (11) holds. This
may be expressed in the form

(45) *§>-,<„
where p(z) = 1 /(I — z). As the proof of Theorem 2 shows, if simply Re p(z) > 0
then g is univalent in A for each function / univalent and starlike in A (and /(0)
= 0). Thereby, each function p with a positive real part produces a transformation
from/to g which already maps certain univalent functions into univalent functions.
Such a function p is uniquely given by a matrix expressed in terms of the coef-
ficients of the power series for p. Examples of such "generalized Cesaro matrices"
are obtained from the functions w = (1 + z)/(l — z), w = [(1 + z)/(l — z)]a

(0 ^ a ^ 1),

w = , or w
1 — z"

= (rb)"(0 < a =
4. We indicate here what happens if the Euler-Knopp matrix is "shifted."

Namely, suppose that 0 < r < 1 and define the matrix A = (<xnk) by

a - 1 (fc: I h 1 - ̂ i f ^ «
(46) a « * - i \fc 1 /

K } I 0, if k > n.
This transforms the power series (4) into (5) where
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b" = ^ (fel !)r*d-»")""V

From this we can show that

proceeding as in the derivation of equation (33). Since 0 < r < 1 and | z | < 1 imply
that w = rz/(l — (1 — r)z) belongs to A, it is then clear that if/is univalent in A
then so is its ("shifted") Euler-Knopp transformation g.

4. The Taylor Transformation

THEOREM 7. / / / (z ) = T,^=oakz
k is analytic and univalent in A then g(z)

= X̂ °=o&nz"> the Taylor transformation of f where the bn's are given by (9), is
univalent in A.

PROOF. g(z) = £ bnz" = 2 ( I (1 - rf+1(k\rk-'ak )z"
n = 0 n = 0 \k=n \ " / .'

= (1 - r) • 2 a4 I 2 (1 - r)V-"z'1

= (1 - r) 2 ak{r + (1 - r)z]*

The interchange in summation of the series involved is permissible since for
| z | < 1, | r + (1 — r)z | < 1 (0 < r < 1). Hence, the hypothesis on / implies the
result.

One should note that feS does not imply geS, since g is not properly
normalized. However, one can obtain the various coefficient inequalities of section
2 for g, by using the techniques of Theorem 4.

References

[1] V. F. Cowling, 'Summability and Analytic Continuation', Proc. Amer. Math. Soc. 1 (1950),
536-542.

[2] W. K. Hayman, Multivalent Functions, (Cambridge University Press, Cambridge, 1958).
[3] W. Kaplan, 'Close to convex schlicht functions', Michigan Math. J. 1(1952), 169-185.
[4] J. Krzyz and Z. Lewandowski, 'On the integral of univalent functions', Bull. Acad. Polon.

Sci. Sir. Sci. Math. Astronom. Phys. 11 (1963), 447-448.
[5] T. H. MacGregor, 'Certain integrals of univalent and convex functions', Math. Zeitschr.

103 (1968), 48-54.

https://doi.org/10.1017/S1446788700029098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029098


[17] Transformation of univalent series 435

[6] I. J. Maddox, Elements of Functional Analysis, (Cambridge University Press, Cambridge,
1970.)

[7] A. Marx, 'Untersuchungen iiber schlichte AbbiJdungen', Math. Ann. 107 (1932), 40-67.
[8] Z. Nehari, Conformal Mapping, (McGraw-Hill, New York, 1952).
[9] M. O. Reade, 'On close-to-convex univalent functions', Michigan Math. J. 3(1955), 59-62.
[10] L. Spacek, 'Contribution a la thdorie des fonctions univalentes', Casopis Pest. Mat. 62

(1932), 12-19.
[11] E. Strohhacker, 'Beitrage zur Theorie der schlichten Funktionen', Math. Zeitschr. 37(1933),

356-380.
[12] T. Umezawa, 'On the theory of univalent functions', Tohoku Math. J. 7 (1955), 212-228.

Villanova University
U. S. A.

and

State University of New York at Albany
U. S. A.

https://doi.org/10.1017/S1446788700029098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029098

