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Self 2-distance Graphs

Ali Azimi and Mohammad Farrokhi Derakhshandeh Ghouchan

Abstract. All ûnite simple self 2-distance graphs with no square, diamond, or triangles with a com-
mon vertex as subgraph are determined. Utilizing these results, it is shown that there is no cubic
self 2-distance graph.

1 Introduction

Let (X , ρ) be a metric space and let D be a set of positive real numbers. _e distance
graph G(X ,D) of X with respect to a distance set D is the graph whose vertex set is
X and two distinct vertices x and y are adjacent if ρ(x , y) ∈ D.

_e well-known unit distance graph G(R2 , {1}) is the ûrst instance of a distance
graph, arising from a question of E. Nelson about its chromatic number in 1950 (see
[10, Chapter 3]). It is shown by Moser and Moser [7] and Hadwiger, Debrunner, and
Klee [4] that the chromatic number of this graph is between 4 and 7. Unit distance
graphs are also investigated on any of the sets Rn , Qn , and Zn as well (see [10] for
a detailed history). _e other well-studied sort of distance graphs are the distance
graphs G(Z,D) introduced by Eggleton, Erdös, and Skiltons in [3], where D is a set
of positive integers. Clearly, every graph Γ with associated distance function d deûnes
a metric space (Γ, d). Hence, we can deûne the distance graphs of the graph Γ with
respect to a set of positive integer distances. For example, the n-th power of a graph
Γ is deûned simply as the distance graph G(Γ, {1, . . . , n}). We refer the interested
reader to the survey articles [2, 5, 6] for further details concerning these three kinds
of distance graphs, respectively.

_e n-th distance graph (or n-distance graph) of a graph Γ is deûned simply as
Dn(Γ) ∶= G(V(Γ), {n}). _e study of n-th distance graphs was initiated by Simić [9]
while solving the graph equationDn(Γ) ≅ L(Γ), where L(Γ) denotes the line graph of
Γ. Regarding the same problem, we have classiûed all graphs whose 2-distance graphs
are path or cycle in [1].
A graph is said to be a self n-distance graph if it is isomorphic to its n-distance

graph. _e aim of this paper is to investigate self 2-distance graphs under some con-
ditions. More precisely, we will show that self 2-distance graphs with no squares or
disjoint triangles are precisely odd cycles of order ≥ 5 along with three small graphs
(see _eorems 3.7 and 4.7). Also, we show that a self 2-distance graph with no dia-
mond is either an odd cycle of order ≥ 5, or one of the given ûve small graphs (see
_eorem 5.1). One note that our knowledge about n-distance graphs can be used
to answer/pose some problems in groups through their Cayley graphs. Indeed, we
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can observe that the n-th distance graph of a Cayley graph Cay(G , S) of G equals
Cay(G , S′n ∖ S′n−1), and hence it is itself a Cayley graph. Here, S is an inverse closed
subset of the group G without identity, S′ ∶= S ∪ {1} and S′m = {1} ∪ S ∪ S2 ∪ ⋅ ⋅ ⋅ ∪ Sm

for all m ≥ 0. Any isomorphism between Cay(G , S) and Cay(G , S′n ∖ S′n−1) gives
the constraint ∣Sn ∣ < n∣S∣n−1 on S, a problem which is the subject of recent research
especially when n is small, say n = 2. On the other hand, such an isomorphism brings
us the question whether S′n ∖ S′n−1 and S are conjugates via an automorphism of G,
which is a central problem in the theory of Cayley graphs. In case S′n ∖ S′n−1 = Sθ for
some automorphism θ ∈ Aut(G), we obviously haveCay(G , S′n∖S′n−1) ≅ Cay(G , S);
that is, Cay(G , S) is a self n-distance graph.

_roughout this paper, we use the following notation. _e maximum degree of
vertices of a graph Γ is denoted by ∆(Γ), and NΓ(v) is the set of all neighborhoods
of the vertex v in Γ. Also, ∇(Γ) denotes the number of triangles in a graph Γ. _e
complement of a graph Γ is denoted by Γc . All graphs in this papers are connected
ûnite simple graphs with nomultiple edges. Recall that a diamond is the edge product
D = C3∣C3, where the edge product, Γ1 ∣ Γ2, of two edge-transitive graphs Γ1 and Γ2 is
obtained by identiûcation of an edge from Γ1 and Γ2.

2 Preliminary Results

We begin with a simple query about the existence of self 2-distance graphs. Clearly,
every odd cycle of length at least 5 is a self 2-distance graph. As we shall see later, odd
cycles are exceptional examples in the class of all self 2-distance graphs. We note that
the class of self 2-distance graphs is broad as Propositions 2.2 and 2.3 provide ample
of them. _e following simple key lemma plays an important role in our study.

Lemma 2.1 Let Γ be a graph. _en diam(Γ) ≤ 2 if and only if D2(Γ) = Γc .

Proposition 2.2 Every self-complementary graph with diameter two is a self 2-dis-
tance graph.

Proposition 2.3 Every graph is an induced subgraph of a self 2-distance graph.

Proof Let Γ be an arbitrary graph. Consider two disjoint copies Γ1 and Γ2 of Γ and
two disjoint copies Γ3 and Γ4 of Γc , and let v be a new vertex. _en the graph Γ′ with
vertex set

V(Γ1) ∪ V(Γ2) ∪ V(Γ3) ∪ V(Γ4) ∪ {v}
and edge set

E(Γ1) ∪ E(Γ2) ∪ E(Γ3) ∪ E(Γ4) ∪ E ,
where

E = {{v , v1}, {v , v2}, {v1 , v3}, {v2 , v4}, {v3 , v4} ∶ v i ∈ V(Γi), i = 1, 2, 3, 4}

is a self 2-distance graph containing Γ as an induced subgraph (see Figure 2.1).

Lemma 2.4 If Γ is a self 2-distance graph that is not an odd cycle, then Γ has a triangle.
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Figure 2.1

Proof Since ∆(Γ) > 2, we can choose a vertex v of degree ≥ 3. If NΓ(v) contains an
edge, then Γ has a triangle. _us, we can assume that NΓ(v) has no edges. But then
NΓ(v)c is a subgraph of D2(Γ) ≅ Γ, which implies that Γ has a triangle, as required.

_e following lemma will be used in the next section.

Lemma 2.5 Let Γ be a graph with no squares as subgraph. _en

∣E(L(Γ))∣ = ∣E(D2(Γ))∣ + 3∇(Γ).

Proof We count the number of edges in the line graph of Γ. First observe that there
is a one-to-one correspondence between the edges of L(Γ) and the paths of length two
in Γ, among which 3∇(Γ) edges of L(Γ) corresponds to paths of length two arising
from triangles of Γ. All other edges of L(Γ) correspond to induced paths of length
two in Γ, each of which determine a unique edge of D2(Γ), as required.

3 Graphs with no Square as Subgraph

_roughout this section, we assume that Γ ≅ D2(Γ) is a graph with no square as
subgraph. Further, we assume that Γ is not an odd cycle. A simple observation shows
that every triangle in D2(Γ) comes from an induced claw, an induced hexagon, or an
induced edge product C5∣C3. Moreover, every hexagon in Γ is induced or it induces
a graph isomorphic to C5∣C3. To achieve the structure of Γ, ûrst we show that Γ is
subcubic. _en, by using induction, we show that Γ is essentially a tree; that is, it
does not contain cycles longer than 3. Next, by a counting argument, we show that Γ
has exactly three pendants, thus reducing the problem to four cases that we analyze.
Recall that a pendant is a vertex of degree one. _e following lemma will be used in
the sequel.

Lemma 3.1 ∆(Γ) = 3.

Proof Since neither Γ nor D2(Γ) has a square and NΓ(v)c is a subgraph of D2(Γ)
for all v ∈ V(Γ), it follows that ∆(Γ) ≤ 3. Now the fact that Γ is neither a cycle nor a
path implies that ∆(Γ) ≥ 3, so that ∆(Γ) = 3.

Lemma 3.2 If Γ has a C5∣C3 subgraph, then Γ is isomorphic to C5∣C3.
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Proof Suppose on the contrary that Γ ≇ C5∣C3 and S ⊂ V(Γ) induces a subgraph of
Γ isomorphic to C5∣C3 (see Figure 3.1). _en there exists a vertex v ∈ V(Γ) adjacent
to some vertex of S. Clearly, v is not adjacent to the temples for ∆(Γ) = 3.
First suppose that v is adjacent to the forehead. If v is adjacent to any of the jaws,

then we get a square, which is a contradiction. _us, NS(v) = {a} or {a, d}, which
imply that {v , b, d , f } is a square in D2(Γ), which is again a contradiction. _erefore,
v is not adjacent to the forehead. Next assume that v is adjacent to the chin. Clearly,
v is not adjacent to both c and d, say c, for otherwise we have a square {c, d , e , v}.
But then {a, f , e , v} ⊆ ND2(Γ)(c), that is, ∆(D2(Γ)) > 3, which is a contradiction.
Finally, assume that v is adjacent to any of the jaws. _en v is adjacent to exactly one
of the jaws, say c, for otherwise {v , c, d , e} is a square. Since D2(S ∪ {v}) ≇ S ∪ {v},
there exists yet another vertex u ∈ V(Γ) ∖ S ∪{v} adjacent to some vertex of S ∪{v}.
If u is adjacent to v, then ND2(Γ)(c) contains {a, e , f , u} as u cannot be adjacent to
c by a degree argument, which is a contradiction. _us, u is not adjacent to v and
by the same arguments as before, u is adjacent to one of the jaws. Since u and c are
not adjacent, u and e must be adjacent, which implies that {b, f , u, v} ⊆ ND2(Γ)(d),
a contradiction. _e proof is complete.

a
forehead

ble� temple

cle� jaw
d
chin

e right jaw

f right temple

Figure 3.1

Lemma 3.3 If Γ has a pentagon, then Γ is isomorphic to C5∣C3.

Proof Since Γ ≇ C5, there must exists a vertex v ∈ V(Γ) ∖ S adjacent to some vertex
u of S, where S is a pentagon in Γ. Clearly, S is an induced subgraph of Γ. Let a, b be
the two vertices adjacent to u in S and c, d be the two other vertices. Since Γ has no
square, it follows that v is not adjacent to c, d. Now it is easy to see that the subgraph
induced by S ∪{v} in Γ or D2(Γ) has a subgraph isomorphic to C5∣C3 according as v
is adjacent to a, b or none. Hence, by Lemma 3.2, Γ ≅ C5∣C3, as required.

Lemma 3.4 If Γ has a hexagon, then Γ is isomorphic to C5∣C3.

Proof If Γ has a C5∣C3 subgraph, then we are done. _us, we can assume that Γ has
no subgraphs isomorphic to C5∣C3. Let S ⊂ V(Γ) denote a hexagon {a, b, c, d , e , f }
in Γ. Clearly, S is an induced subgraph of Γ. Since D2(S) ≇ S, we have a vertex
u ∈ V(Γ) ∖ S adjacent to some vertex a of S. Clearly, u is adjacent to exactly one of b
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and f , say b, for otherwise either {b, d , f , u} is a square in D2(Γ), or {b, a, f , u} is a
square in Γ, both of which are impossible. Again, the fact that Γ has no square implies
that u is not adjacent to c, d , e , f . Moreover, u is the unique vertex adjacent to both
a, b. Now we have three cases:

Case 1. If Γ has a subgraph S′ as drawn in Figure 3.2(c), then S′ is an induced sub-
graph, and a simple veriûcation shows that S′ is a connected component of Γ, which
implies that Γ = S′. Indeed, if a new vertex v is adjacent to a vertex of S′, say u′,
then {v , v′ , d′ , f ′} ⊆ ND2(Γ)(b′), which contradicts Lemma 3.1. But then D2(Γ) ≇ Γ,
which is a contradiction.

Case 2. If Γ has a subgraph S′ as drawn in Figure 3.2(b), then since S′ is induced and
D2(S′) ≇ S′, Γ has a vertexw′ adjacent to some vertex of S′. Ifw′ is adjacent to any of
the vertices a′ , b′ , c′ , d′ , u′ , v′, then we get a vertex of degree ≥ 4 in Γ or D2(Γ), which
is impossible. _us, w′ is adjacent to e′ or f ′ and by the previous argument it follows
that w′ is adjacent to both e′ and f ′, which is impossible by Case 1.

Case 3. Γ has no subgraphs isomorphic to that of Figure 3.2(b). _en u is the only
vertex of Γ adjacent to S (see Figure 3.2(a)). Since D2(S∪{u}) ≇ S∪{u}, there exists
a vertex v ∈ V(Γ) ∖ S ∪ {u} adjacent to u. But then D2(S ∪ {u, v}) is an induced
subgraph ofD2(Γ) ≅ Γ isomorphic to the graph in Figure 3.2(d), fromwhich it follows
that degD2(D2(Γ))(u) ≥ 4, a contradiction.

a
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e f

u

a′

b′c′

d′

e′ f ′

u′v′

a′

b′c′

d′

e′ f ′

u′v′

w′

(a) (b) (c)

a

cu

f

b v

e

d

(d)

Figure 3.2

Lemma 3.5 If Γ is not isomorphic to C5∣C3, then Γ has no cycles of length exceeding 3.

Proof By Lemmas 3.3 and 3.4 and the hypothesis, Γ has no cycles of lengths 4, 5, and
6. We proceed by induction to show that Γ has no cycles of length 4 or more. Suppose
Γ has no cycles of lengths 4, 5, . . . , n for some n ≥ 6. If Γ has an (n + 1)-cycle C, then
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C is an induced subgraph of Γ. If n + 1 is even, then clearly D2(Γ) has two (n + 1)/2-
cycles, which is a contradiction. _us, n + 1 is odd. Since Γ is not an odd cycle, there
exists a vertex v ∈ V(Γ) adjacent to some vertex a ∈ V(C). Let NC(a) = {b, c}. If v is
adjacent to some vertex in C ∖{a, b, c}, then we obtain a cycle of length l (4 ≤ l ≤ n),
which is a contradiction. If v is not adjacent to b, c, then Γ ≅ D2(Γ) has a subgraph
isomorphic to D2(C ∪ {v}) that is an ∣C∣-cycle with two adjacent vertices having a
common neighbor. Hence, we can assume that v is adjacent to either b or c, say b.
Since Γ has no square, v is not adjacent to c. Let NC(b) = {a, d}. _en c, v , d is a
path of length two in D2(Γ). On the other hand, since D2(C) is a subgraph of D2(Γ),
there is a path of length at most n/2 from c to d disjoint from {c, v , d}. Hence, D2(Γ)
has a cycle of length l such that 4 ≤ l ≤ n/2 + 2 ≤ n, which is a contradiction. _e
proof is complete.

Lemma 3.6 Triangles in Γ have disjoint vertices.

Proof If two triangles of Γ have a vertex in common, then they must have an edge
in common by Lemma 3.1. But then Γ has a square, which is a contradiction.

Now we are ready to prove the main result of this section. To this end, we use the
notion of distance between two subgraphs of a graph as the length of the shortest path
connecting a vertex of the ûrst subgraph to a vertex of the second subgraph. Also, we
call a vertex pseudo-pendant if either it is a pendant or it is adjacent to a pendant.

_eorem 3.7 Let Γ be a self 2-distance graph with no square. _en either Γ is an odd
cycle, or it is it is isomorphic to one of the following graphs.

(a)

(b)

(c)

Figure 3.3

Proof Suppose Γ is neither an odd cycle nor the edge product C5∣C3. Let Γ′ be the
graph obtained from Γ by contracting all triangles into single vertices. By Lemmas 3.5
and 3.6, Γ′ is a tree. Let n i be the number of vertices of degree i in Γ for i = 1, 2, 3.
Clearly, ∣V(Γ′)∣ = ∣V(Γ)∣ − 2∇(Γ) and ∣E(Γ′)∣ = ∣E(Γ)∣ − 3∇(Γ). Since Γ′ is a tree,
we have ∣E(Γ′)∣ = ∣V(Γ′)∣ − 1, which implies that ∇(Γ) = ∣E(Γ)∣ − ∣V(Γ)∣ + 1. On the
other hand, by Lemma 2.5, 3∇(Γ) = ∣E(L(Γ))∣ − ∣E(D2(Γ))∣ = ∣E(L(Γ))∣ − ∣E(Γ)∣.
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Now we have
∣V(Γ)∣ = n1 + n2 + n3 ,

∣E(Γ)∣ = 1
2 ∑

v∈V(Γ)
degΓ(v) =

n1 + 2n2 + 3n3

2
,

∣E(L(Γ))∣ = ∑
v∈V(Γ)

(degΓ(v)
2
) = n2 + 3n3 ,

from which it follows that n1 = 3.
If Γ has no triangles, then Γ is a tree with a bipartition V(Γ) = U ∪ V , so that

D2(Γ) is disconnected with connected components U and V , a contradiction. Hence
Γ has some triangles. A triangle in Γ is said to be i-tailed if it contains i cubic ver-
tices. Clearly, Γ has no 3-tailed triangle, for otherwise D2(Γ) must have a hexagon,
contradicting Lemma 3.4. We distinguish two cases:
Case 1. Γ has no 1-tailed triangle. _en, as there are just three pendants, Γ has only
one induced claw along with only one 2-tailed triangle as drawn in Figure 3.4, where
a, b, d ≥ 1, c ≥ 0. If a, b ≤ 2 then D2(Γ) has a 1-tailed triangle, which is impossible.
_us, we have either a ≥ 3 or b ≥ 3. Clearly, c /= 1 for otherwise degD2(Γ)(u) = 4,
which is impossible. A simple veriûcation shows that dΓ(triangle, claw) = c and

dD2(Γ)(triangle, claw) =
⎧⎪⎪⎨⎪⎪⎩

c+4
2 , c is even,
c−3
2 , c is odd.

Since Γ ≅ D2(Γ), this implies that c = 4. If either a, b ≥ 2 or d ≥ 3, then we have two
claws in D2(Γ) centered at u, o or u, v, respectively, which is impossible. Hence d = 1
or 2, and we can assume that a = 1. If d = 2 then the claw of D2(Γ) has no pendants,
a contradiction. _us d = 1 and from D2(Γ) ≅ Γ it follows that b = 3 or 4. _erefore,
Γ is isomorphic to one of the (self 2-distance) graphs in Figures 3.3(b) and (c).

o
u v

a

b

c d

Figure 3.4

Case 2. Γ has a 1-tailed triangle. Such a triangle arises from an induced claw two of
its non-central vertices are pseudo-pendants in Γ. Since Γ has exactly three pendants,
it can be drawn in the plane (see Figure 3.5) with one further triangle △ having an
edge in the dotted areas, where ∣A∣, ∣B∣ ≥ 0, and ∣C∣ ≥ 1 denote the number of vertices
in the corresponding dotted areas. We note that every triangle in D2(Γ) arises from
an induced claw in Γ and that the mentioned pseudo-pendants are actually pendants,
since they correspond to vertices adjacent to v′ in D2(Γ). We have three subcases:
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u′ u
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v v′
w

A B
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Figure 3.5

(i) ∣A∣ = 0. Clearly, ∣C∣ = 1 for otherwise degD2(Γ)(o) ≥ 4, which is impossible.
_en the graph Γ can be drawn as in Figure 3.6. Note that ∣X∣ ≥ 3, for otherwise
X has a vertex of degree ≥ 4 in D2(Γ), which is impossible. _is implies that two
triangles in D2(Γ) are at distance at least ûve and so we must have ∣Y ∣ ≥ 4. But then
we obtain three induced claws in D2(Γ) as drawn in Figure 3.6 with dashes, which is
a contradiction.

o

X Y

Figure 3.6

(ii) ∣B∣ = 0. As in case (i), we have ∣C∣ = 1. _en ∣X∣ ≥ 2, for otherwise ∣X∣ = 1,
and consequently two induced claws are connected with two triangles with distance
zero while it is not true in D2(Γ). Also, if ∣X∣ = 2 (resp. ∣Y ∣ = 1 or 2), then X (resp.
Y) has a vertex of degree 4 in D2(Γ), which is impossible. _us, ∣X∣, ∣Y ∣ ≥ 3. But then
we obtain three induced claws in D2(Γ) as drawn in Figure 3.7 with dashes, which is
a contradiction.

o

X Y

Figure 3.7

(iii) ∣A∣, ∣B∣ ≥ 1. Indeed, ∣A∣, ∣B∣ ≥ 2, for otherwise either u or v (in Figure 3.5) has
degree ≥ 4 in D2(Γ). Clearly,△ is not at distance one from {u, u′ , v , v′} for otherwise
u, u′, v or v′ has degree 4 in D2(Γ). If ∣C∣ ≥ 3, then {u, v ,w} induces a 3-tailed
triangle in D2(Γ) ≅ Γ, which is impossible. Since degD2(Γ)(o) ≤ 3, it follows that △
has no edges with both endpoints in area C, that is,△ is located in area A or B. If△
is disjoint from {u, u′ , v , v′}, then D2(Γ) has three induced claws centered at v′ and
the two vertices adjacent to △, which is a contradiction. _us T contains one of the
vertices u, u′, v or v′. If z denotes the vertex adjacent to △ closer to o, then either
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degD2(Γ)(o) = 4 (when ∣C∣ = 2 and△ contains u or v), or D2(Γ) has a claw with no
pendants centered at z, which is a contradiction. _e proof is complete.

4 Graphs Without Intersecting Triangles

_roughout this section, we assume that Γ ≅ D2(Γ) is a graph without intersecting
triangles. We further assume that Γ is not an odd cycle. As in Section 3, we proceed
by analyzing the existence of special subgraphs in Γ. Indeed, ûrst we show that Γ
is subcubic and that Γ has no small cycles other than triangles, which reduces the
problem to that of graphs with no squares. _en apply _eorem 3.7. _e following
lemma is crucial in the proof of our results.

Lemma 4.1 We have ∆(Γ) = 3.

Proof Let v be a vertex of Γ. Clearly, NΓ(v) is a union of isolated vertices and at
most one edge. Now since NΓ(v)c is a subgraph of D2(Γ), we must have ∣NΓ(v)∣ ≤ 3,
as required.

Lemma 4.2 If Γ has a C5∣C3 subgraph, then Γ is isomorphic to C5∣C3.

Proof Suppose on the contrary that Γ is not isomorphic to C5∣C3 and consider a
subgraph S of Γ isomorphic to C5∣C3 as drawn in Figure 3.1. We proceed in two steps.

Case 1. _e jaws are non-adjacent. Hence there is a vertex in Γ ∖ S adjacent to some
vertex of S. First suppose that the chin d is adjacent to some new vertex g. If g is
not adjacent to jaws c and e, then we have two triangles {a, c, e} and {c, e , g} with a
common edge in D2(Γ) contradicting the assumption. Hence g is adjacent to exactly
one of the jaws, say c. But then we have two triangles {a, c, e} and {b, e , g} in D2(Γ)
with a common vertex, which is another contradiction. _erefore NΓ(d) = {c, e}.
Next assume that a jaw, say c, is adjacent to a new vertex g. By Lemma 4.1, b, d , f ∉
NΓ(g). If g is adjacent to a or e, then we have two triangles {b, d , g} and {d , f , g}
with a common edge inD2(Γ), a contradiction. HenceNS(g) = {c} and the subgraph
induced by {a, b, c, d , e , f } in D2(Γ) is isomorphic to C5∣C3 with g adjacent to its
chin, which is impossible by the previous discussion. Clearly, the temples are not
adjacent to any vertex of Γ ∖ S by the degree argument. Hence the forehead a must
be adjacent to a new vertex g so that the subgraph induced by {a, b, c, d , e , f } in
D2(Γ) is isomorphic to C5∣C3 with g adjacent to its jaws, which contradicts the above
arguments.

Case 2. _e jaws are adjacent. Since the subgraph induced by S is not a self 2-distance
graph, one of the foreheads or chin, say a, must be adjacent to a new vertex g. _enwe
have two triangles {c, d , e} and {c, e , g} with a common edge in D2(D2(Γ)), which
is a contradiction.

Lemma 4.3 _e graph Γ does not have any hexagons.

Proof Suppose on the contrary that Γ has a hexagon S as in Figure 4.1 with vertices
a, b, c, d , e , f . Since there is no subgraph isomorphic to C5∣C3 in Γ, the only possible
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chords of S are {a, d}, {b, e}, or {c, f }. Since S is not a self 2-distance graph, we can
assume that a is adjacent to a new vertex g. Clearly, g is adjacent to exactly one of b
or f , say b, for otherwise either Γ or D2(Γ) has two triangles with a common edge.
Now, by using Lemmas 4.1 and 4.2,V(S)∪{g} induces a subgraph inD2(Γ) as drawn
with dashes in Figure 4.1. Hence the degree of g in D2(D2(Γ)) is at least 4, which is
a contradiction.

ab

c

d e

f

g

Figure 4.1

Lemma 4.4 _e graph Γ does not have any pentagons.

Proof Suppose on the contrary that Γ has a pentagon S with vertices a, b, c, d , e. We
consider two cases:
Case 1. S does not have any chord. Since Γ is not an odd cycle, we can assume that a
is adjacent to a new vertex f . By Lemma 4.2, f is not adjacent to b and e, from which
it follows that D2(Γ) has a subgraph isomorphic to C5∣C3, a contradiction.
Case 2. S has a chord. Clearly, S has a unique chord, say {b, e}. Since S is not a self
2-distance graph, it has a vertex adjacent to a new vertex f . First suppose that a and
f are adjacent. Since D2(Γ) does not have a subgraph isomorphic to C5∣C3, either
c, d ∈ NΓ( f ) or c, d ∉ NΓ( f ). In both cases V(S) ∪ { f } induces a hexagon in D2(Γ),
contradicting Lemma 4.3 (see Figure 4.2(a)). _erefore, f is adjacent to c or d, say
c. By Lemmas 4.1 and 4.2, NS( f ) = {c}. If there is a vertex g adjacent to d, then
again NS(g) = {d}. Now, by using Lemma 4.2, it follows that V(S) ∪ { f , g} induces
a subgraph in D2(Γ) as drawn with dashes in Figure 4.2(b). Hence, a is adjacent
to b, e , f , g in D2(D2(Γ)) contradicting Lemma 4.1. _erefore, d is not adjacent to
vertices other than c and e. _is implies that the vertex f is adjacent to another vertex
g as in Figure 4.2(c). Again, by using Lemma 4.2, V(S) ∪ { f , g} induces a subgraph
in D2(Γ) as drawn with dashes in Figure 4.2(c). Hence, a is adjacent to b, e , f , g in
D2(D2(Γ)), which contradicts Lemma 3.1. _e proof is complete.

Lemma 4.5 _e graph Γ does not have any heptagons.

Proof Suppose on the contrary that Γ has a heptagon Swith vertices a, b, c, d , e , f , g.
By Lemmas 4.3 and 4.4, S is an induced subgraph. Since Γ is not an odd cycle, there
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Figure 4.2

exists a new vertex h adjacent to some vertex of S. A simple veriûcation shows that h is
adjacent to two consecutive vertices of S in Γ orD2(Γ). Hence, we can assume that h is
adjacent to vertices d and e of S in Γ. By Lemmas 4.3 and 4.4, one gets NS(h) = {d , e}.
For the same reasons, the subgraph of D2(Γ) induced by V(S) ∪ {h} is as drawn in
Figure 4.3 with dashed lines. But then D2(D2(Γ)) has two triangles {a, e , h} and
{a, d , h} with a common edge, which is a contradiction.

a
b

c

d e

f

g

h

Figure 4.3

Lemma 4.6 _e graph Γ does not have any octagons.

Proof Suppose on the contrary that Γ has an octagon S with a, b, c, d , e , f , g , h as
its vertices. By Lemmas 4.3–4.5, S is an induced subgraph of Γ. Since Γ is not an even
cycle, there exists a new vertex i adjacent to some vertex of S. Clearly, i is adjacent
to two consecutive vertices of S for otherwise we have a pentagon in D2(Γ), contra-
dicting Lemma 4.4. Hence, we can assume that i is adjacent to vertices d and e of
S. Now, by using Lemmas 4.1 and 4.4, it follows that the subgraph of D2(Γ) induced
by V(S) ∪ {i} is as drawn in Figure 4.4 with dashed lines. But then i is adjacent to
vertices a, d , e , h in D2(D2(Γ)) contradicting Lemma 4.1. _e proof is complete.
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Figure 4.4

_eorem 4.7 Let Γ be a self 2-distance graph without intersecting triangles. _en
either Γ is an odd cycle or it is isomorphic to one of the graphs in Figure 3.3.

Proof A simple veriûcation shows that squares in D2(Γ) arise from hexagons or
octagons. Hence, by Lemmas 4.3 and 4.6, Γ has no squares, and the result follows by
_eorem 3.7.

Corollary 4.8 _ere are no cubic self 2-distance graphs.

Proof By _eorem 4.7, there must exist two intersecting triangles. Since the graph
is cubic, these triangles must have an edge in common, say {u, v}. Now the fact that
Γ is not the complete graph on four vertices implies that Γ has an induced subgraph
as in Figure 4.5. _en degD2(Γ)(u) = 2, which is a contradiction.

u

v

Figure 4.5

5 Graphs with no Diamond as Subgraph

In this section, we go further into the study of self 2-distance graphs with a forbid-
den subgraph, which relies on our earlier results. Indeed, we shall classify all self
2-distance graphs with no diamond as subgraphs. Recall that a diamond is the edge
product of two triangles, namely C3∣C3. A diamond with vertices a, b of degree 3 and
vertices c, d of degree two is denoted by D(a, b; c, d). To achieve our goal, ûrst we
show that the graphs under investigation are subquartic with a vertex of degree 4, and
then analyze the second neighborhood of such a vertex of degree 4.
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_eorem 5.1 Let Γ be a self 2-distance graph with no diamond as subgraph. _en Γ
is either an odd cycle, or it is isomorphic to one of the graphs in Figure 3.3 or Figure 5.1.

(a) (b)

Figure 5.1

Proof Suppose on the contrary that Γ is none of the graphs in the theorem. First we
observe that ∆(Γ) ≤ 4. Indeed, if v ∈ V(Γ) is an arbitrary vertex, then by assumption
the subgraph induced by NΓ(v) is a union of disjoint edges and isolated vertices. If
∣NΓ(v)∣ ≥ 5, then we can choose ûve vertices a, b, c, d , e ∈ NΓ(v) such that there
are no edges among a, b, c, d , e unless possibly {a, b} or {c, d}. Since NΓ(v)c is a
subgraph of D2(Γ), it follows that D2(Γ) has the diamond D(a, e; c, d), which is a
contradiction. _us, ∣NΓ(v)∣ ≤ 4. If ∆(Γ) ≤ 3, then all triangles in Γ are disjoint so
that Γ is either an odd cycle or it is isomorphic to one of the graphs in Figure 3.3 by
_eorem 4.7, which contradicts our assumption. Hence we assume that ∆(Γ) = 4.
Clearly, the subgraph induced by the neighbors of every vertex of Γ of degree 4 is a
union of two disjoint edges. In what follows, we choose a ûxed vertex v ∈ V(Γ) of
degree 4. _en NΓ(v) is a union of two disjoint edges, say {a, b} and {c, d}, and that
NΓ(a) ∩ NΓ(b) = NΓ(c) ∩ NΓ(d) = {v}. Let X = {a, b}, Y = {c, d}, and MΓ(v)
be the set of all vertices of Γ ∖ {v} adjacent to an element of X and an element of Y .
Suppose further that ∣MΓ(v)∣ is maximum among all vertices of degree 4. We proceed
in some steps:
Claim 1 If e , f ∈ MΓ(v) are distinct, then NNΓ(v)(e) /= NNΓ(v)( f ). If it is not the case,
(NΓ(v) ∪ {e , f }) ∖ NNΓ(v)(e) has a diamond in D2(Γ), which is a contradiction.
Claim 2 If e , f ∈ MΓ(v) are distinct, then NΓ(e),NΓ( f ) ⊆ NΓ(v). If it is not true, we
can assume that e is adjacent to a vertex g other than v , a, b, c, d. First assume that
NNΓ(v)(e) ∩ NNΓ(v)( f ) = ∅, say NNΓ(v)(e) = {a, c} and NNΓ(v)( f ) = {b, d}.

Suppose g /= f . If g is adjacent to both a, c, then we have the diamondD(e , g; a, c)
in Γ, which is a contradiction. Also, in the case where g is adjacent to none of a, c,
we have the diamondD(a, c; f , g) in D2(Γ), a contradiction. Hence g is adjacent to
exactly one of a or c, say a. First assume that g and d are adjacent. As degΓ(d) = 4, the
vertices f and g are adjacent too. Clearly, e and f are not adjacent; otherwise, we have
the diamondD(e , g; a, f ) in Γ. _en the subgraph S induced by {v , a, b, c, d , e , f , g}
is isomorphic to the graph in Figure 5.1(a), which implies that there exists another
vertex h adjacent to some vertex of S. Since ∅ /= NS(h) ⊆ {b, c, e , f }, one can
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verify that NS(h) = {b, f }, {c, e}, or {b, c, e , f }. In all three cases, D2(S′) is iso-
morphic to the graph in Figure 5.1(b) in which S′ is the subgraph of Γ induced by
{v , a, b, c, d , e , f , g , h}. Since all vertices in D2(S′) have degree 4, we must have
V(Γ) = V(S′) so that Γ ≅ D2(Γ) = D2(S′), which contradicts our assumption.
Hence, g is not adjacent to d, from which it follows that g and f are also non-
adjacent, for otherwise we get the diamond D(b, g; c, d) in D2(Γ). Now, replacing
Γ, v , a, b, c, d , e , f , g by D2(Γ), b, c, g , d , e , a, v , f , respectively, we observe that g and
f are adjacent, which is impossible both in cases where d and g are adjacent and cases
where they are non-adjacent.

_erefore, g = f , so we conclude that e and f are not adjacent to any vertex other
than v , a, b, c, d , e , f . Since the subgraph induced by {v , a, b, c, d , e , f } is not a self
2-distance graph, one of the vertices a, b, c, d, say a, is adjacent to a vertex h diòerent
from v , a, b, c, d , e , f . But then degΓ(a) = 4, which implies that e and h are adja-
cent, a contradiction. _us, NNΓ(v)(e) ∩ NNΓ(v)( f ) /= ∅. Assume, by Claim 1, that
a, c ∈ NΓ(e) and a, d ∈ NΓ( f ). _en degΓ(a) = 4, which implies that e and f are
adjacent. If g /= f , then degΓ(e) = 4 so that c and g are adjacent too. Now, replac-
ing Γ, v , a, b, c, d , e , f , g by D2(Γ), b, e , d , f , c, v , a, g, respectively, we observe that
NNΓ(v)(e)∩NNΓ(v)( f ) = ∅, which is impossible, as mentioned before. Hence, g = f ,
andwe conclude that e and f are not adjacent to any vertex other than v , a, b, c, d , e , f .
Accordingly, c and d are not adjacent to any vertex other than v , a, b, c, d , e , f , for
otherwise c or d, say c, is adjacent to a new vertex h diòerent from v , a, b, c, d , e , f .
_en degΓ(c) = 4, which implies that e and h are adjacent, a contradiction. Since the
subgraph induced by {v , a, b, c, d , e , f } is not a self 2-distance graph, b is adjacent
to a vertex h diòerent from v , a, b, c, d , e , f . Now, replacing Γ, v , a, b, c, d , e , f , h by
D2(Γ), b, e , d , f , c, v , a, h, we get NNΓ(v)(e) ∩ NNΓ(v)( f ) = ∅, which contradicts the
above discussions. _is completes the proof of Claim 2.

One can easily see that ∣MΓ(v)∣ ≤ 4. In the sequel, we discuss the size of MΓ(v).

Case 1. ∣MΓ(v)∣ = 4. Utilizing Claim 1, we can assume that NΓ(a) ∩ NΓ(c) = {v , e},
NΓ(b) ∩ NΓ(d) = {v , f }, NΓ(b) ∩ NΓ(c) = {v , g}, and NΓ(a) ∩ NΓ(d) = {v , h} for
some distinct vertices e , f , g , h diòerent from v , a, b, c, d. As degΓ(a) = degΓ(b) =
degΓ(c) = degΓ(d) = 4, the subgraph induced by {e , f , g , h} is the square {e , g , f , h}.
_en g , h ∈ NΓ(e) ∩ NΓ( f ) ∖ NΓ(v), contradicting Claim 2.

Case 2. ∣MΓ(v)∣ = 3. Using Claim 1, we can assume that NΓ(a) ∩ NΓ(c) = {v , e},
NΓ(b) ∩ NΓ(d) = {v , f }, and NΓ(b) ∩ NΓ(c) = {v , g} for some distinct vertices
e , f , g diòerent from v , a, b, c, d. Since degΓ(b) = degΓ(c) = 4, g is adjacent to e and
f . _en g ∈ NΓ(e) ∩ NΓ( f ) ∖ NΓ(v), which contradicts Claim 2.

Case 3. ∣MΓ(v)∣ = 2. _en MΓ(v) = {e , f } for some vertices e and f . First assume
that NNΓ(v)(e) ∩ NNΓ(v)( f ) = ∅, say NNΓ(v)(e) = {a, c} and NNΓ(v)( f ) = {b, d}.
From Claim 2 and the fact that the subgraph of Γ induced by {v , a, b, c, d , e , f } is not
self 2-distance, it follows that there exists a new vertex g adjacent to a, b, c, or d, say
a. _en degΓ(a) = 4, which implies that g and e are adjacent, contradicting Claim 2.
_us NNΓ(v)(e) ∩ NNΓ(v)( f ) /= ∅, say NNΓ(v)(e) = {a, c} and NNΓ(v)( f ) = {a, d}.
_en degΓ(a) = 4 so that e and f are adjacent contradicting Claim 2.
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Case 4. ∣MΓ(v)∣ = 1. Suppose that MΓ(v) = {e} and NNΓ(v)(e) = {a, c}. First we
observe that neither a nor c is adjacent to a vertex other than v , a, b, c, d , e, for oth-
erwise we can assume that a is adjacent to a new vertex f , from which it follows that
e and f are adjacent as degΓ(a) = 4. But then a, v ∈ MD2(Γ)(b) contradicting the
choice of v as D2(Γ) ≅ Γ. Now we discuss on the neighbors of b and d.

If two vertices f and g other than v , a, b, c, d , e are adjacent to b or d, say b, then
degD2(Γ)(a) = 4 and b, v ∈ MD2(Γ)(a), which is again a contradiction. Hence, we
can assume that neither b nor d is adjacent to two vertices other than v , a, b, c, d , e.
Next assume that b and d are adjacent to vertices f and g other than v , a, b, c, d , e,
respectively. If f and g are adjacent, then a, v ∈ MD2(Γ)(b), contradicting the choice
of v. Hence assume that f and g are not adjacent and consequently b and d are not
adjacent to g and f in D2(Γ), respectively. Also, a and g are not adjacent in D2(Γ),
for otherwise ND2(Γ)(a) = {c, d , f , g} and consequently d and f must be adjacent in
D2(Γ), which is impossible. Now it is easy to see that D2(D2(Γ)) has the diamond
D(a, b; g , v), which is a contradiction. Hence, we can assume that at most one of b
and d is adjacent to a new vertex. Suppose b is such an element adjacent to a vertex
f other than v , a, b, c, d , e. We show that e and f are not adjacent in D2(Γ). If it
is not the case, there must exists a vertex g diòerent from v , a, b, c, d adjacent to e
and f in Γ. But then ND2(Γ)(a) = {c, d , f , g} so that d is adjacent to f in D2(Γ) as
c and g are adjacent in D2(Γ), giving rise to the diamond D(d , f ; a, e) in D2(Γ), a
contradiction. Now either we have the diamondD(c, f ; d , e) in D2(D2(Γ)) when c
and f are not adjacent in D2(Γ), or e , f ∈ MD2(D2(Γ))(v) when c and f are adjacent
in D2(Γ), which is a contradiction.

_erefore neither b nor d is adjacent to a vertex other than v , a, b, c, d , e. _en
the second neighborhood of v is consist of e only. Since the subgraph induced by
{v , a, b, c, d , e} is not a self 2-distance graph, the vertex e must be adjacent to some
vertices other than v , a, b, c, d. If e is adjacent to two vertices f and g diòerent
from v , a, b, c, d, then D2(Γ) has the diamondD(a, c; f , g), which is a contradiction.
Hence NΓ(e) = {a, c, f } for some vertex f . As degD2(Γ)(e) ≤ 4 and the subgraph of
Γ induced by {v , a, b, c, d , e , f } is not self 2-distance, there must exists another vertex
g such that NΓ( f ) = {e , g}. _en ND2(Γ)(e) = {b, d , v , g} so that v and g must be
adjacent in D2(Γ), which is impossible as dΓ(v , g) = 4.

Case 5. MΓ(v) = ∅. First suppose that three vertices among a, b, c, d are adjacent
to new vertices, say a, b, c, are adjacent to distinct vertices e , f , g diòerent from v, a,
b, c, d, respectively. If g is adjacent to e or f , say e, then ND2(Γ)(a) = {c, d , f , g}
and hence c and f must be adjacent in D2(Γ); that is, c and f are connected in Γ
via a path of length 2. Clearly, f and g are not adjacent for otherwise we have the
diamondD(d , g; a, b) in D2(Γ), a contradiction. Hence, there exists a vertex h other
than v , a, b, c, d , e , f , g, which is adjacent to both c and f . _en NΓ(c) = {v , d , g , h}
so that g and h must be adjacent. But then f and g are adjacent in D2(Γ), which
results in the diamondD(a, f ; c, g) in D2(Γ), a contradiction. _us, we deduce that
there is no edges from (NΓ(a) ∪ NΓ(b)) ∖ {v , a, b} to (NΓ(c) ∪ NΓ(d)) ∖ {v , c, d},
fromwhichwe obtain the diamondD(a, b; v , g) inD2(D2(Γ)), a contradiction. Next
assume that exactly two vertices among a, b, c, d are adjacent to vertices other than
v , a, b, c, d. We have two cases up to symmetry:
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(i) a and b are adjacent to two distinct other vertices e and f , respectively. If e or
f , say e, is adjacent to a vertex g in the third neighborhood of v, then ND2(Γ)(a) =
{c, d , f , g} where {c, d , f } induces an independent set in D2(Γ), a contradiction.
On the other hand, if a or b, say a, is adjacent to another vertex g, then ND2(Γ)(b) =
{c, d , e , g}with {c, d , e} an independent set inD2(Γ), which is again a contradiction.

(ii) a and c are adjacent to two distinct other vertices e and f , respectively. If e
and f are adjacent, then e , f ∈ MD2(D2(Γ))(v), which contradicts the choice of v as
D2(D2(Γ)) ≅ Γ. Hence we can assume that there is no edges from NΓ(a) ∖ {v , b}
to NΓ(c) ∖ {v , d}. If a or c, say a, is adjacent to another vertex g, then e and g are
also adjacent and hence ND2(Γ)(b) = {c, d , e , g} with {c, d , e} an independent set
in D2(Γ), which is a contradiction. _us, NΓ(a) = {v , b, e} and NΓ(c) = {v , d , f }.
Since the subgraph induced by {v , a, b, c, d , e , f } is not a self 2-distance graph, we
can assume that e is adjacent to another vertex g. Since c, a, d , f , v and e , b, d , a, g
are induced paths in D2(Γ) we observe that ND2(D2(Γ))(d) ⊇ {c, e , g , v}. On the
other hand, degD2(D2(Γ))(d) ≤ 4 and g is any neighbor of e other than a. So, we must
have NΓ(e) = {a, g} and ND2(D2(Γ))(d) = {c, e , g , v}. In particular, the subgraph
induced by {c, e , g , v} in D2(D2(Γ)) is a union of two disjoint edges. As c and e are
adjacent in D2(D2(Γ)), v and g must be adjacent in D2(D2(Γ)) too, which is pos-
sible only if f and g are adjacent in D2(Γ). _is implies f and g are non-adjacent
in Γ, and we obtain the diamond D(d , g; c, v) in D2(D2(Γ)), which is a contradic-
tion. Finally, assume that only one of the vertices a, b, c, d is adjacent to a vertex other
than v , a, b, c, d, say a is adjacent to a new vertex e. If a is adjacent to another ver-
tex f , then, as before, ND2(Γ)(b) = {c, d , e , f } with {c, d , e} an independent set in
D2(Γ), which is a contradiction. Hence, NΓ(a) = {v , b, e} so that e is adjacent to a
vertex f diòerent from v , a, b, c, d, from which we obtain the diamondD(c, d; e , f )
in D2(D2(Γ)), which is a contradiction. _e proof is complete.

6 Open Problems

We devote the last section of this paper to some open problems arising in our study
of self 2-distance graphs. Two triangles with a common vertex but no common edges
is called a butter�y.

Conjecture 1 _enumber of ûnite non-cyclic self 2-distance graphs with no subgraphs
isomorphic to a butter�y is ûnite.

Conjecture 2 _e number of ûnite non-cyclic self 2-distance graphs with no induced
subgraphs isomorphic to a square, a diamond, a complete graph with four vertices, or a
butter�y is ûnite.

A graph Γ with v vertices is strongly regular of degree k if there are integers λ and
µ such that every two adjacent vertices have λ common neighbors and every two
non-adjacent vertices have µ common neighbors. _e numbers v , k, λ, µ are the pa-
rameters of the corresponding graph.
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_eorem 6.1 Every strongly regular self 2-distance graph is a self-complimentary
graph and has parameters (4t + 1, 2t, t − 1, t), where the number of vertices is a sum
of two squares.

Proof _e result follows from [8] and the fact that every strongly regular graph has
diameter at most two.

We have shown, in Corollary 4.8, that there is no self 2-distance cubic graph. In-
deed, we believe that a more general case also holds for regular graphs with odd de-
grees, while the same result does not hold for regular graphs of even degrees by the
above theorem.

Conjecture 3 _ere are no regular self 2-distance graphs of odd degree.

We note that if the above conjecture is true then for any ûnite group G and any
inverse closed subset S of G ∖ {1} of odd size, the sets S2 ∖ (S ∪ {1}) and S belong to
diòerent orbits of the poset of subsets of G under the action of automorphism group
of G.

Acknowledgment _e authors wish to thank the referee for many helpful sugges-
tions and corrections that improved the paper substantially.
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