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MODELING UNSTRATIFIED BURIALS VIA BAYESIAN ANALYSIS WITH
LOG-NORMAL INTERVAL PRIORS

R S Kidd
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ABSTRACT. Tombs and cairns present a dating challenge when the human remains are unstratified, incomplete and
dispersed. By considering the distribution of time intervals between deaths as a possible a priori condition of multiple
burials of select groups, a Bayesian model is suggested that may constrain the uncertainty date range of the group. The
method may also address the wide uncertainties seen in radiocarbon calibration on a calibration curve plateau. The
mathematical justification for the choice of Log Normal intervals, between death events, is first presented, followed by
worked examples that compare the treatment of groups of 22 dates using Phase then Sequence with interval gaps.
Finally, scenarios of potential Select Groups are examined, to demonstrate the efficacy of this alternative heuristic
model to current model treatments.
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INTRODUCTION

In archaeology the recovery and subsequent dating of multiple human remains can be
problematic when they are unstratified, presenting a modeling challenge for the
radiocarbon (C) statistical analysis programs available, such as OxCal (Bronk Ramsey
1995), BCal (Buck et al. 1999), or CALIB (Stuiver et al. 2018). These programs take as
input the '*C age determinations derived from organic remains and convert to calendar
dates through a process of calibration via the universally agreed current IntCal curves
(Hogg et al. 2013; Reimer et al. 2013). The calibration curve is not linear, and areas of
plateau and inversion add to the modeling challenges.

In this paper OxCal is used to model simulated data in scenarios that are otherwise challenging.
In a Bayesian '*C modeling framework (Buck et al. 1991; Bayliss et al. 2007; Bronk Ramsey
2009), a method is here proposed that allows meaningful results of modeled “C determinations
from unstratified multiple human bones such as may be found in tombs, mausoleums or cairns.
In the statistical literature, where there is a series of events and the intervals between them are of
interest, the intervals under investigation are known as waiting times. Common among the
models used is the Log-Normal distribution, which is described by a median value and a
long tail skew to the right (Limpert et al. 2001). The gap years (waiting time) between
deaths is posited here as being Log-Normal. A Poisson distribution may also be suggested
where the times between events being modeled are random, though the Log-Normal would
appear to be a better fit (Figure 1). There are other candidate distributions, e.g. Gamma,
Exponential. The Log Logistic is also a candidate, however for small populations it can be
emulated by the Log-Normal (Dey and Kundu 2010) and is not considered further in
this paper.

Approximate death dates are estimated from analysis of '*C determinations of skeletal
remains. Such determinations are then calibrated to convert to a calendar date within an
uncertainty range commonly quoted with 95.4% probability. The calibrated date
uncertainty may be further refined by modeling using Bayesian analysis, where additional
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Figure 1 An example frequency count histogram of Gap Years
(waiting times) between deaths, with a best fit Log-Normal (filled)
and a Poisson (dashed) overlay Density curve. The Log-Normal is
generally a better fit to the data.

prior information may be incorporated, such as stratification and event grouping (Buck et al.
1991; Bronk Ramsey 2009).

The most frequently used elements in Bayesian chronological models are Phases and
Sequences. A Phase has a prior that a set of dates have uniform probability of occurring
within some unknown interval a to B. A Sequence model adds information about the
ordering of events within the Phase, this normally means that it is known a priori which
sample follows another, but unless information is provided on the length of the gaps
between events, this does not change the expected distribution of waiting times. In this
method the events in a model can be divided up between boundaries. “The events between
these boundaries are assumed to be uniformly distributed (with Poisson distributed
intervals), but only over a limited time span. A bias is applied, the net effect of this is that
the effective prior for the span of any group of events is now uniform, that is any span is
treated as equally likely” (Bronk Ramsey 2009:3).

Fundamental to the arguments presented in this paper is that no sequential information exists,
so the number of possible orderings of the events may be as great as N! The only event
information that could be ordered would be from the radiocarbon determinations prior to
calibration. By simulating real calendar dates, a comparison of Sequences can be explored
to determine whether an alternative to the Phase model helps inform the uncertainty in
challenging calibration curve areas.

This paper examines the period between death events in a restricted group such as may be
found in a mausoleum, tomb, or burial group and proposes that, in appropriate
circumstances, this gap frequency distribution may provide a useful prior. The term “Select
Group” is coined here to denote a grouping where the individuals have a common
association, not necessarily a blood relationship, kith as well as kin. The term goes beyond
statistical sampling and thinning of data from a general population, to claim, in essence,
that the Select Group is a unique selection of individuals chosen and buried for reasons
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Figure 2 Comparing models of select group deaths on plateau, inversion and linear parts of the radiocarbon
calibration curve. The Single Phase models (histogram positions 3, 6, and 9) perform poorly.

that may be obscure to the modern eye, perhaps familial, dynastic, ritualistic, or selected in
response to pressures on living conditions, etc.

Perhaps unconventionally, the result is introduced early, in Figure 2, as a guide during the
subsequent diverse arguments.

Although the concepts discussed are lightly mathematical, the content of the paper tries to
avoid in-depth mathematics. The aim is to introduce a heuristic tool that may be useful to
archaeologists who are already au fait with Bayesian modeling methods. In modern terms,
a way to picture a Select Group is to consider a single family mausoleum where all or most
of the dates are known, within a wider burial ground.

In order to test a factual source of information, data were gathered from Scottish Monumental
Inscription Records (Mitchell 1969; Mitchell and Mitchell 1969). These cemetery collections
record the calendar year of death AD on the headstone of the interred; some headstones
provide a single name, others many names.

Data that record year of death were gathered and analyzed in order to establish whether the
count of the Gap years, the waiting times, between deaths could be described by a
mathematical distribution within a Select Group (Table 1). The data are compared with
four distributions, i.e. Log-Normal, Poisson, Exponential and Gamma, using the R
statistical program (R Core Team 2018), using the Akaike Information Criterion (AIC)
(Akaike 1973), which statistically identifies the best fit (lowest value AIC) in model
comparisons.
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Table 1 The Akaike Information Criteria (AIC) for the Select Group Monumental
Inscription data. The lowest value (bold) indicates the best fitting distribution. The Log-
Normal is a better fit model than Poisson.

Select Group ref. Log-Normal Poisson Exponential Gamma
SWM25 99.8 106.0 101.7 99.0
SWM7 126.9 258.0 127.7 129.1
WL31 134.67 385.0 139.1 140.4
WL14 96.2 186.6 102.0 103.8
WL113 96.5 116.0 98.0 98.0
WLI120 118.0 190.1 117.9 119.9
WL149 102.5 157.5 106.0 107.8
WLI156 123.2 215.4 122.2 123.9
WL174 127.0 236.0 128.4 130.3

FREQUENCY DISTRIBUTION OF WAITING TIME BETWEEN EVENTS FROM SCOTTISH
CEMETERY MONUMENTAL INSCRIPTION RECORDS

It is required to test a hypothesis that the years between deaths in a Select Group can be
modeled with a mathematical representation of a distribution. The following question is
posed for a set of waiting time events:

Can the pattern of years between deaths be modeled by a particular distribution? The data are
recovered from books on the Scottish Monumental Inscriptions pre 1855 (Mitchell 1969;
Mitchell and Mitchell 1969). In all, nine sets are gathered, of 22 dates from each of nine
pages. The nine sets of 22 consist of well-populated headstones on each page. These are
selected to make up the 22 required from one or two headstones only. This forms the nine
sets of the Select Groups. A Log-Normal distribution is posited as a potential model for a
Select Group. The members are not necessarily blood relatives, but there will be some
association that warrants their inclusion in the group headstone. The essence of a Select
Group is the recognition that it is limited in size, not representative of a random selection
from a larger population, but may be isolated from the general population burials, if
indeed the general population burials are in evidence, which often they are not.

The source of the data is identified by the Monumental Inscription Record abbreviation and
page number, e.g. SWM25, denoting a Group of 22 from South-West Midlothian page 25, or
WL31, denoting a Group of 22 from West Lothian page 31. The Select Groups are saved
as sg.csv comma-separated variable files for importing to the R Statistical program.

Data in calendar years AD are listed in supplementary Appendix 2. The number of times a gap
of a particular length occurs (in years) between two events is calculated. For each Group, the
resulting frequency histogram of number of events for each waiting time interval is tested. Log-
Normal, Poisson, Exponential, and Gamma distributions are compared. Since the data are
“binned” at yearly intervals, gaps of zero are avoided by adding a minor offset of 0.5
between any duplicate dates. This does bias towards a Log-Normal distribution; however,
such occurrences are infrequent and could be practically eliminated by considering
narrower “bin” sizes.

The Log-Normal model distribution is consistently more appropriate than the Poisson in Select
Groups. The Exponential and Gamma are marginally better in only a few cases. It is therefore
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concluded that the Log-Normal provides a more consistent result overall. Using OxCal
Bayesian Analysis (Bronk Ramsey 2009), and applying an interval between dates as an «
priori constraint, with a Log-Normal Likelihood, can be shown to provide realistic insights
that go beyond the common assertion that “the radiocarbon dated bones were unstratified
thus Bayesian analysis was not possible” (Cook 2000; Schulting et al. 2010).

Figure 1 shows the frequency count of the GapYears between deaths of a typical Select Group,
shorter intervals between deaths are towards the left of the distribution, longer intervals are less
frequent and the distribution tails off or skews to the right. A Log-Normal distribution and a
Poisson distribution are shown for comparison. Note that the age at death is not an element of
the analysis, only the gap (waiting time) between ordered deaths. The data are listed in
Appendix 2 (see supplementary materials).

On this (AIC) evidence it can be proposed that the Intervals (GapYears) are modeled a priori
by an uncertainty described by a Log-Normal distribution for between deaths gaps in a
Select Group.

Modeling Unstratified Dates with Log-Normal Intervals

The Log-Normal distribution is available within the OxCal Bayesian Analysis program and
can be characterized by two parameters, the scale or location parameter and the shape
parameter. For a more in-depth explanation, see Appendix 1 in the supplementary materials.

In the context of Bayesian chronology’s terminology, groups of dated events may be considered
as Sequences or Phases. The Sequence () term is used to define elements or groups that are in a
particular order. A Phase () defines an unordered grouping. The fact that events are related in
some way almost always means that they are part of some group of events that needs to be
treated as a whole. Failure to do this will mean that the events are assumed to be entirely
independent apart for the constraint applied. A model with more than two events that
makes this assumption always results in a wider spread than is realistic (Steier and Rom
2000). OxCal will generate a warning if no groups have been defined and yet constraints
are imposed. The most frequently used assumption is that a group of events is randomly
sampled from a uniform distribution—that is a random scatter of events between a start
boundary and an end boundary (Buck et al. 1992).

In considering an OxCal Bayesian model of a Select Group of individuals, for sequences of
death events over time, with intervals between events, a model that has interval priors
modeled with a Log-Normal Likelihood distribution might provide an alternative realistic
scenario.

In applying the model to an appropriate set of radiocarbon determinations, the Interval
between each is a priori the scale and shape parameters of the Log-Normal Likelihood
distribution. Gap years created by multiple R simulations of random birth years plus
random life expectancy, emulating the Select Groups, elicited factors of “3” and In(2) as
empirical rules of thumb. This would a priori be the LnN(In(3 x mean time between
events) and In(2)), as a first approximation. For example if there are 20 events between
4600 BP and 4300 BP for a mean time of (4600-4300)/20 i.e. a mean value of 15 years
between events, the Interval Likelihood would be LnN(In(3 x 15),In(2)).
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Recalling that in Bayesian analysis:
The Prior times the Likelihood is proportional to the Posterior.

Then, given that a priori intervals exist, the analysis will modify each Likelihood interval
to optimize the posterior intervals and the radiocarbon data. An illustration of Bayesian
modeling using Log-Normal Likelihood Intervals is given in supplementary Appendix 3,
the data are simulated from the real calendar dates of SGWL174 projected
onto a plateau region of the calibration curve. The user supplies the variables b,
(2 by default) n, the number of dates and d, the difference between the max and min
R_Dates.

Having excluded the possibility of a multiple mass co-eval burial, say by performing an OxCal
Combine function or other means, e.g. DSplit (Kintigh 2015) to perform tests (Ward and
Wilson 1978; Wilson and Ward 1981) it then would be an archaeological judgment whether
a group of events constituted a Select Group (e.g. a Tomb or multiple burial site). Using
Interval priors and Log-Normal Likelihoods does not preclude the inclusion of
stratigraphic or other information in the model if such is available.

To illustrate the use of the model (supplementary Appendix 3) the Select Group of 22 dates
from WL174 is employed. These dates range from 1724 AD to 1880 AD, a spread of 156
years. They are then shifted in time, as a group, to a period of the Radiocarbon
Calibration Curve that displays a Plateau. A radiocarbon determination is simulated for
each date, e.g. R_Date(“A1”, 4510, 25).

N.B. The OxCal function R_Simulate() creates a new random radiocarbon simulation
of a calendar date each time it is used. In this paper, in order to repeat the same
simulations for subsequent runs, the Simulated R_Dates are first created outside OxCal,
using the Excel functions R=NORMINV(RAND(),0,1) as the random element of the
simulation e.g. R_Date(BP(calBP(4510))+25xR, 25). Two versions of the same Simulated
dates are used, i.e. Sorted (SORT) and raw Simulated (SIM), in order to compare the
effects on different models.

An example of the effects of Inversion, Plateau, and Linear portions of the calibration curve on
single radiocarbon dates is shown below in Figure 3; for example, a single determination at
4500 + 25 BP on a plateau can acquire a 300-year calibrated uncertainty.

The logic in suggesting that the R_Dates are ordered before creating the Select Group
Sequential model requires justification by the following argument:

If the R_Dates are on a steep Linear part of the calibration curve, then the possibility
of achieving the correct ordering is quite high, as by definition we have a Select Group
with a priori intervals between dates, which aids the dispersion of the R_Dates across the
steep, monotonic, parts of the curve. Anomalous ordering if all the R_Dates are on the
Linearity would show as poor Individual Indices.

Three models are then compared, where the 22 calendar dates (externally simulated R_Dates)
are placed within start and end boundaries. An error term of 25 is applied in each case.
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Figure 3 The effects of Inversion, Plateau, and Linear curve on a single
radiocarbon calibration.

1. A Single Phase model, where only the simulated radiocarbon determinations are known.

2. A single Sequence model (SORT), sorted by simulated R_Date mean, with Log-Normal
Likelihood intervals between each date which, as demonstrated earlier, is a good a priori
scenario for Select Groups.

3. Assingle Sequence model (SIM), simulated from ordered calendar dates but without R_Date
sorting, with Log-Normal Likelihood intervals between each date.

The results of each model are compared in Figure 4.

A kernel density estimate (KDE) plot (Bronk Ramsey 2017), summarizing the 22 posterior
dates in each model is shown for clarity, in lieu of the 22 individual dates.

The analyses shown are set on a calibration curve Plateau, this being the most problematic in
spreading the uncertainties in the calibrated dates, but the results can also be shown to be
effective for Select Groups on Inversions and Linear portions of the curve (Figure 2).

In the above (Figure 4), figures Al through B3, it can be seen that in the case of 22 simulated
dates projected on a Calibration Curve Plateau, only in the models of a Sequence with Log-
Normal intervals does the true span and range of dates approach that of the original calendar
dates simulated from the Monumental Inscription records for SGWLI17 (156 years). Figures
Al, A2, A3, for clarity, show KDE plots (Bronk Ramsey 2017), of the posterior modeled
distribution of all 22 dates as an alternative to showing individual date distributions.
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Figure 4 The above unmarked figures from top down Al, A2, A3, Bl, B2, B3: Al, A2, A3,
compare three simulated models on a Plateau. A1—Group as Sequence (SORT): R_Dates
sorted. A2—Group as Sequence (SIM): R_Dates not sorted. A3—Group as a Phase.
All simulate the same repeatable 22 ordered calendar dates. B1, B2, B3, compare the SPANS
of three simulated models on a Plateau. Al—Group as Sequence (SORT): dates sorted.
A2—Group as Sequence (SIM) not sorted. A3—Group as a Phase. The actual calendar span is
156 years.
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The 22 dates in A1 and Bl of Figure 4 are sorted, or ordered, by the mean of the simulated
R_Date (SORT). In A2 and B2 these same R_Dates are not ordered and contain the initial
simulation randomization (the original calendar dates are ordered) (SIM). The results are
similar except that the A_model Agreement Index in the unordered simulated Log-Normal
case (SIM) is lower (252 vs. 153), since some random Individual Indices have poor
agreement. In the two Sequence models Al and A2, with the same number of parameters
and data, i.e. simulated from the same calendar dates, a Factor can be used to compare
models. Bronk Ramsey (2009:356-357) describes the implementation and explains that the
F_models are “not, strictly speaking Bayes’ Factors but they can be compared between
different models in a similar way.” Millard (2015), summarizes this as: “According to
Bronk Ramsey (2009), the A_model is a transformation of F_model and F_model is an
approximation to a pseudo-Bayes Factor. Bayes Factors can be used to compare models.
F_model compares a given model to a null model with no constraints. So, for all models
incorporating exactly the same set of radiocarbon dates, the null model is exactly the same.
Thus using that F_model = (A_model/100)*sqrt(n) where n is the number of likelihoods,
then for two models A and B, we have that F_modelA/F_modelB = (A_modelA/
A_modelB)*sqrt(n) and this can be used as an approximation to a Bayes Factor between
the two models. Bayes Factors greater than 5 or 10 are generally reckoned to be strong
evidence to prefer one model over another.”

Here, (A_modelA/A_modelB)*sqrt45 is (252/153)*6.7 = Approx. Bayes Factor 24.

From which it may be suggested that, lacking additional stratification or other ordering
information, ordering the R_Dates by their Mean may be preferred. The true order of
calendar dates on a plateau is likely unknowable with N! ie. 22!=1.124e+21 possible
permutations. The important information of span and boundaries range may be recovered,
as well as a realistic portrayal of the KDE plot time dispersion of the burials, though not
necessarily the original calendar order.

In comparing the Spans the Single Phase model KDE Plot of Figure 4, Figure B3 depicts all
dates as having their medians clustered around 5180 BP and a span between 0 and 240 years at
95.4% uncertainty, most likely below 50 years. It does not appear to be a good representation of
the original SG_WL174 span of 156 years. The Sequence (SORT) with Log- Normal
Likelihood intervals between dates provides an a priori constraint on the analysis. In the
MCMC analysis the posterior Intervals are adjusted to accommodate the spread of the
dates. The Span has a 95.4% uncertainty of 100-175 years, which is a reasonable match for
the expected Span of 156 years.

N.B. the Phase model does produce a posterior ordering which can be useful. Employing a
hermeneutic spiral philosophy, where the posterior data from one model is input as a prior
to a subsequent model (Bayliss et al. 2007:4-5; Hodder 1992: Fig.22), a refinement would
be to run a Phase with the Order command, exporting the table view. csv file to Excel and
data sorting by modeled median date column. Importing the rearranged R_Dates as a
Sequence with Log Normal intervals may improve the model. In the SGWL174_PGapSort
example, the A_model index of 252, span 134 (100-175 at 95.4%), then improved to
A_model index of 266, span 155 (111-197 at 95.4%) This is an approximate Bayes’ Factor
of 1.4, and hardly significant, though the span median of 155 is in better agreement with
the original calendar data span of 156.
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Figure 5 A second Select Group, only five dates shown for clarity. Over a Plateau, 22 simulated
calendar dates of SG WL149 with Log-Normal Intervals. Expected span 92 years, range 5092
BP-5000 BP.

Figure 5 of another Select Group, WL149, projected on a plateau, is also shown below. For
clarity only 5 of 22 dates are shown.

In modeling multiple dates over a calibration curve plateau, it may be considered that the order
of the dates in a Sequence in the absence of stratification is less important; each radiocarbon
determination creates a very wide uncertainty in the calibrated date.

However, if it is anticipated that the multiple deaths are not a single event and with the
additional knowledge that the a priori gaps between them can be modeled using a Log-
Normal Likelihood distribution, the outcome of the model can provide renewed insights.
Ordering the dates by the Mean of the radiocarbon determination can be a useful first
approximation, in addition to any stratification or other prior information.

However, if the R_Dates are on a curve Plateau then many permutations can produce the same
or similar wide uncertainties, the calibration curve is not monotonic and we have no way of
identifying the correct order, unless additional information is available, such as stratification or
familial relationships. Therefore, ordering by the R_Date Mean in the absence of such
additional information is proposed. The Likelihood interval uncertainties interleaved with
the R_Dates then present a strong constraint on the posterior dates, the MCMC analysis
finding a solution commensurate with the ensemble of calibrated R_Dates and the defined
Likelihood intervals. The result is a wider Span than found in a simple Sequence without
Intervals, where the dates are minimally spread over the posterior model. (A simple
Sequence model created by placing “//” before the intervals to effectively delete them from
the SIM or SORT models results in an implausibly short span with median about 60 years
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due to omission of the appropriate log-normal intervals. Not illustrated.) In the Select Group
scenario, on a Plateau region of the curve, lacking the correct ordering is less important than
achieving a coherent KDE and span of the dates that takes the Log-Normal Likelihood
intervals into account. The model may be wrong, but not importantly wrong (Bayliss et al.
2007). The Tomb itself is not necessarily being dated, as bones may have been kept
elsewhere for some time prior to the tomb build and subsequent deposition. Even
stratification may be unhelpful if prior storing of bones is a factor.

There is a strong similarity in this model with the OxCal Age Depth model “V-Sequence
Equivalent,” which uses a Gaussian N(10,5) as the interval Likelihood, but the N(u,c)
depth Interval Likelihood is unsuitable and is replaced with a Log-Normal time Interval
Likelihood.

APPLYING LOG-NORMAL LIKELIHOOD INTERVALS TO REAL DATA

Archaeological papers sometimes point out that the lack of stratification in tomb burials makes
the use of Bayesian Analysis challenging, particularly if the radiocarbon determinations
straddled a plateau (Hedges et al. 1980; Cook 2000; Schulting et al. 2010; reappraised in
Walsh et al. 2011). This paper offers a method of improving on that claim. The object here
is not to challenge the original conclusions of such reports, but to offer an alternative
method of interpreting the data in difficult circumstances. Only the originators of the
papers are in a position to judge, as they will have all the relevant information. However, a
detailed simulation has been performed here, using real data from the Monumental
Inscription Records of Select Groups burials, projected onto challenging areas; a Plateau,
an Inversion and a Linear portion of the calibration curve. In each of the three curve areas,
three models are compared: (a) Simulated dates ordered as a Sequence with Log-Normal
intervals, (SORT); (b) Simulated dates (R_Dates unordered) as a Sequence with Log-
Normal intervals, (SIM); (c) Simulated dates as a Single Phase.

Comparisons of the three models ask the following questions, scoring 1 for yes and 0 for no:

A_model >60 (A_model Index meets the minimum agreement index of >60)
A_model largest (In each curve area, the model with the largest A_model Index)

Start defined at 95% (Is the start boundary well defined at 95% probability)

Start defined at 68% (Is the start boundary well defined at 68% probability)

KDE Plot acceptable (The KDE Plot matches the full range of the calendar dates simulated)
End defined at 95% (Is the end boundary well defined at 95% probability)

End defined at 68% (Is the end boundary well defined at 68% probability)

Median Span close (Is the Median Span of dates close to the original calendar dates span)
Span within 68% (Does the Span include the span of original dates at 68% probability)

Plots such as Figure 4 (the Plateau scenario) were consulted in deciding these scores. The terms
“well defined” and “close” call on sensible interpretation by a decision maker, comparing plots
of the simple Phase model with the SORT and SIM models, judging whether or not sufficient
improvement is gained to support adoption of the alternative Select Group model.

The KDE Plot and Median Span items are weighted “2” to reflect their importance in the
model comparisons. The results are shown in Figures 2 and 6. In all cases the Single Phase
model scores worse. The Sorted Sequence (SORT) with Log-Normal intervals scores best.
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Figure 6 Select Group Bayesian model score for each of three regions of the calibration curve, Plateau,
Inversion and Linear. A Single Phase model (histogram positions 3, 6, and 9) scores lower in each case.

The unsorted Sequence (SIM) with Log-Normal Intervals gives acceptable results but is
susceptible to the random variability when simulated. It is also only a check in this exercise.

The method may deviate from a strictly conventional Bayesian analysis. However,
considered as a heuristic alternative model, it has merit with few additional overheads
when using the suggested format in supplementary Appendix 3. In use it is suggested
that a Phase model is first conducted, and then compared with a Sequence with
Log-Normal intervals. Additional effort employing a hermeneutic spiral to re-sort the
R_Dates may prove fruitful.

CONCLUSIONS

By considering that there is a strong case for the a priori intervals between human deaths in a
Select Group, to be Log-Normal in their Likelihood distribution, a Bayesian model can be
posited that analyses this information, such that the « priori constraint, times the
Likelihood, leads to a plausible Posterior scenario. In the absence of stratigraphic
information, such a model can produce a realistic scenario sometimes not seen in a Single
Phase model. It can be particularly useful when the radiocarbon calibration curve is in an
area of plateau or inversion.

An archaeological recognition of the Select Group would be required, such as a multi burial
tomb, mausoleum or burial group. The possibility of a single mass death event would need to
be discounted (in which case a Single Phase model might be more appropriate). R_Dates on a
plateau can be almost indistinguishable, hence obtaining a correct order in the Sequence can be
challenging. However, the archaeological question is often about the Start and End boundaries
and the Span between. These R_Dates have been shown to be less susceptible to alternative
orderings within a Sequence on a Plateau and ordering by the Mean of the Radiocarbon
Determination is suggested as a first approximation. Any stratigraphic or other a priori
constraints available would also be applied.
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“All models are wrong, some models are useful” (Box 1979).

The three sample models are suggested in supplementary Appendix 3. The user provides the
data for the variables “b” i.e. “2,” “n” the number of dates and “d,” the max and min R_Dates.
Intervals LnN(In(a),In(b)) are then simply placed between each (sorted) R_Date and calculated
automatically.
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