ON THE REPRESENTATION OF FUNCTIONS AS
FOURIER TRANSFORMS

P. G. ROONEY

IffeL,(—», »),1<p <2, then f has a Fourier-Plancherel transform
FE€L,(—w, ») where p~1 + g1 = 1. Also if |x|""2/9f(x) € L, (—», =),
¢ > 2, then f has a Fourier-Plancherel transform F € L, (— o, «). These
results can be found in (2, Theorems 74 and 79). In neither case, however,
does the collection of transforms cover L, except when p = ¢ = 2, and in
neither case, with the same exception, has the collection of transforms been
characterized.

Further, if f€ L, (—®, ), 1 < p <2, then its transform F has the
property |x|*"2” F(x) € L, (— o, o) (see 2, Theorem 80) but, except when
p = 2, the collection of transforms does not cover the set of functions with
this property, and again, except when p = 2, the collection of transforms
has not been characterized.

Our object here is to find such characterizations, and this is done for the
various cases in Theorems 1, 2, and 3 below. This characterization is given
in terms of an operator

_ (k)™ e 1 _
%k.t{F] = (2?){ f_m(x-—-zk/t) 1 F(x)dx, k= 1, 2, .

It transpires that this operator is an inversion operator for the Fourier trans-
form, and its inversion theory will be the subject of another paper.

THEOREM 1. A mnecessary and sufficient condition that a function F €
L,(—®,®),q>2, be the Fourier transform of a function in L, (— o, o),
with p~' 4 g1 = 1, is that there exist a constant M such that

"I drpae <, E=12,....

Proof of necessity. Suppose F is the Fourier transform of f € L, (— ®, «).
Now an easy calculation shows that for 2 =1,2,...,

i - . —2m) (=) e /R, y<0,t>0,

(2#1 G e = @)y R, y>0,t <0,
0 , yt > 0.

Hence, since for each ¢ 0 and each £k =1,2,..., (x — <k/t)~*+D ¢

L, (— o, »), we have from (2, Theorem 75) that
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(—ik/D (=

1
Se dFl = (2#)* . (x—ik/t)kﬂ F(x)dx
k0w [ T fay, t>0
(®/1ED™®)T ) e y[ f(9)dy, t <0.

—

Thus, using Hélder’s inequality, we have for ¢ > 0

© 1/p © 1/q
et < e [ o) [ Ty
© 1/p
e [Teora)”
and consequently,

© kk+1 © ®
St amra < B [Teo a [Tyt pay
kk+1

-5 e [ e = [ Cioray

A similar calculation for ¢ < 0 shows that

[ earva < [ o),
and hence ) h
S edmva < [ ioray =
Proof of sufficiency. For s > 0 let

g(s) = —@n [ Lo P,

and

e = @0t [ e,

and denote by Ly, the Widder-Post inversion operator for the Laplace trans-
formation; that is

Lylg) = (= 1) (k/0)"*" g®(k/1) /R, E=1,2,....
Now if s >8>0, and 2=1,2,..., then
[(xkis)=*HD F(x)| < (x% 4 63)~* V2 F(x)| € L (— =, =),

since from Hélder’s inequality

7 @+ oy p ) e

o 1/p ) "’ 1/q
<{ f (x® + 8%) PEHD %y { f |F(x)|dx({ < o.
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Hence by (1, Corollary 39.2), g.(s) has derivatives of all ordersin ) < s < =,
and these derivatives can be calculated by differentiating under the integral
sign. Thus for ¢ > 0,

LR poo
Luder) = 88— | e Fds = S dF)

and
_ (’Lk/t)k+1 © 1 3
Lk,t[g—] - (277)! f_m (x _I_ ik/t)k-i—l F(x)dx - %k.—t[F],
so that
J: L. [g+]["dt = fo ISe JFIPdE < M, k=1,2,...,
and

fo |Lx, [g-11"dt = fo [T F)dt < M, E=1,2,....

Further g.(s) =0 as s = . For from Hélder’s inequality we have

® » @ 1/q
lgx(9)| < @m)™ {f_ (x2+s2)"’”’dx} {f_ IF(x)l“dx} = 0(s%.

Hence by (3, Chapter 7, Theorem 15a) there are functions fy and f_ in
L,(0, «) such that

g0 = [ e na, $>0,

and

g (s) = J:oe_”f_(t)dt, s> 0.
Let

_ @, >0,
f@) = {f:r(—t), t <O0.

Then clearly f € L, (— «, ) and hence by (2, Theorem 74) f has a Fourier
transform F* € L, (—», «»). We now show F = F* a.e.
Let

* —1 . © 1
g+(s) = —(2m) 'Lf_m o'c—:?s F*(x)dx, s> 0,

and

2s) = @m)ti f Tl pr(w)dn, s> 0.

o X+ s
Then since for each s > 0, (x —4s)™1 € L, (—», »), and

- 4 J @m)tie”, y<0,s>0,
@m)7H(P) f_m(—x "¢ T —@ntie”, y>0,5<0,
{ 0, sy >0,
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we have from (2, Theorem 75) for s > 0,
¥ N o N f ®_1
2+(s) @em) %4 T F*(x)dx

[ iom = [[emn = 60,

and

) = @m)t f_ ’ xj—lr—i—s P (x)dx

0 @
= f_ e f(y)dy = fo e f-(y)dy = g-(s).
Consequently, for s > 0
* 1
f_m PP (F(x) — F*(x))dx =0

and

fz —— (F(x) = F*(x))ds = 0.

Letting ¢(x) = F(x) — F*(x), the last two equations yield

R |
f_m x5 ¢(x)dx = 0, s # 0.

Then denoting the even and odd parts of ¢ by ¢, and ¢, respectively, we
have for s # 0

* 1 s 1
L I gu()ds = —f_m (i

But the function on the left of this equation is an odd function of s while
the function on the right is even. Hence each is zero, so that for sj# 0

f Z s de(x)dx = — EEJ: PRI ¢.(x)dx = 0,

and

(=<} [e-} 1
S ewn - -1 [T S awia o
Thus for each s > 0,

D S S N f°°1 _
J;x+sx b (xt)dx = 2 i (x)dx = 0,

and

J; xFs bo(xt)dx = 2f ¢o(x)dx =0,

and hence by the uniqueness theorem for the Stieltjes transformation (3,
chapter 8, Theorem 5a) ¢, and ¢, are zero almost everywhere. Thus ¢ is zero
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almost everywhere so that F = F* almost everywhere, and F has the pre-
scribed representation.

For Theorems 2 and 3 let us denote by % (— =, =) the collection of
functions f such that |x|""2/" f(x) € L, (— =, »).

THEOREM 2. A4 mecessary and sufficient condition that a function F €
L, (—®, ®),q > 2, be the Fourier transform of a function in ¥, (— o, @),
q > 2, 1s that there exist a constant M such that

f ) 1¢1°7" . [ F]|%t < M, E>q—2.

Proof of necessity. Suppose F is the Fourier transform of f € % (— o, «).
Then as in the proof of Theorem 1, for £ >0 and 2> ¢ — 2

® 1/q
I [ F]| < {(k/t)"“(k!)'1 . e ‘y”If(y)l"dy}

and consequently if &> ¢ — 2

- k+1 noo @®
fo 1S [F %Gt < %— fo 1 f e YN () |dy

0
kk+l

= 7 J; yklf(y) ]qdy j; e—ku/t ta._k__sdt

=K@ [ 7 o),

where K (k) = k! T'(k — g + 2)/k! Similarly

[ e drifa <x® [ b1 )y,
so that ) )

ST e amia < k@ [ b1t 50 9.
But from Stirling’s formula,

l:rg K(k) =1,
so that K (k) is bounded for £ > ¢ — 2. Hence there is an M such that
7 e e dria < E>q-2.

Proof of sufficiency. Let g, and g_ be defined as in the proof of Theorem 1.
Then as in that proof, for ¢ > 0
Ly, g+] = &x..[F],

and
Lk,z[g—] = %lc.—-t[F]y

and hence
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N A o W RS TR PP
0 0
and
[Ceri e = [Teganla <, k> q-2
0 0

Consider first g,. By (3, chapter 1, Theorem 17a), with a,(f) = ¢1=2/7L;, ,[g+],
there is a function f, with #-2/¢f,(¢) € L, (0, ), and an increasing un-
bounded sequence of integers {%;} such that for any function 8(f) € L, (0, =),

hm 6(t) 7 Ly o[gs )t = fﬂ(t) £ f (Bt

But for each s > 0, (~0-2/0 =3¢ ¢ I, (0, =), and hence choosing this as our
B(t) we have for s > 0

©

lim e_"Lk,-,,[g+]dt=J; e ' fi(t)dt.

130 V 0

However, for x > 0,

S itatea < feal | ot i dga)

< @p -1 M = 0@k) as x— ®,

and as in the proof of Theorem 1, g, (s) — 0 as s — . Hence by (3, chapter
7, Theorem 11b),

©

1‘1_*": ] e " Ly, olgeldt = gi(s), s> 0,
and thus
a6 = [ noa, $>0.
Similarly f_ exists with $=2/¢ f_(¢) € L, (0, =) such that
g_(s) = J;me"‘f_(t)dt, s> 0.
Let
16 = {?Et) 9, by

Then clearly f € %, (— =, =), and hence by (2, Theorem 79) f has a Fourier
transform F* € L, (— o, »). It remains to show F = F* a.e., which now
follows as in Theorem 1.

THEOREM 3. A mnecessary and sufficient condition that a function F €
% (— o, o), 1 < p <2, be the Fourier transform of a function in L, (— o, o)
1s that there exist a constant M such that

fm IS, [ FII"dt < M, k=1,2,.
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Proof of necessity. If F € &4, (— o, ») is the Fourier transform of f € L,
(— o, ®) then by (2, Theorem 74), F € L, (— », =), and hence by Theorem
1, there is a constant M so that

7 e dripa < a1, k=12,

Proof of sufficiency. Let g, (s) and g_(s) be defined as in Theorem 1. Then
as in that theorem,
J“hMmm%<M, k=12 ...

and
J 1t @par < E=1,2....
0

Further g, (s) — 0 as s = . For from Hélder's inequality we have for s > 0
S Y P S I P
lg+(s)| \l N (xz_l_sz)a/zdx 1 B [P F(x) Pdx =00,
Hence by (3, chapter 7, Theorem 15a), there are functions f, and f_ in
L, (0, ) such that

g0 = [ oo, $>0

and
g (s) = f:e‘“ f_(t)at, s> 0.

Let
o Ife @), t>0,
O lft(—t), t<0.

Then clearly f € L, (— o, «) and hence by (2, Theorems 75 and 80) f has
a Fourier transform F* € %, (— o, o). It remains to show that F = F* a.e.,
and this follows as in Theorem 1.

REFERENCES

1. E. J. McShaune, Integration (Princeton, 1944).
2. E. C. Titchmarsh, An introduction to the theory of Fourier integrals (2nd ed.; Oxford, 1948).
3. D. V. Widder, The Laplace transform (Princeton, 1941).

Unaiversity of Toronto

https://doi.org/10.4153/CJM-1959-022-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1959-022-7

