DISK-LIKE FUNCTIONS

RICHARD J. LIBERA *

(Received 4 November 1968)

Communicated by E. Strzelecki

1. Introduction

The class \mathcal{S} of functions f(z) which are regular and univalent in the open unit disk $\Delta = \{z : |z| < 1\}$ each normalized by the conditions

$$f(0) = 0$$
 and $f'(0) = 1$ (1.1)

has been studied intensively for over fifty years. A large and very successful portion of this work has dealt with subclasses of $\mathscr S$ characterized by some geometric property of $f[\Delta]$, the image of Δ under f(z), which is expressible in analytic terms. The class of starlike functions in $\mathscr S$ is one of these [3]; f(z) is starlike with respect to the origin if the segment [0, f(z)] is in $f[\Delta]$ for every z in Δ and this condition is equivalent to requiring that

$$zf'(z)/f(z) \tag{1.2}$$

have a positive real part in Δ .

In this note the class of 'disk-like' functions is introduced by placing restrictions on the behavior of the imaginary part of (1.2) and a representation formula for these functions is given in terms of Robertson's functions which are starlike in one direction [4].

2. The class \mathcal{D}

In the definition which follows the notation $g(t) \in \uparrow (a, b)$ means that g(t) is strictly increasing in the interval a < t < b. $g(t) \in \downarrow (a, b)$ has a similar meaning.

DEFINITION 1: f(z) is regular in Δ , satisfies (1.1) and $f(z) \neq 0$ for z in Δ unless z = 0. f(z) is disk like with respect to the origin in Δ , or $f(z) \in \mathcal{D}$, if and only if one of the following conditions is satisfied:

i) There exists a constant $\rho = \rho(f(z)) > 0$ and two functions $\theta_k(r) = \theta_k(r; f(z)), k = 1, 2; 0 < \theta_2(r) - \theta_1(r) < 2\pi$; such that for $\rho < r < 1$

$$|f(re^{i\theta})| \in \downarrow(\theta_1(r), \theta_2(r))$$
 and $|f(re^{i\theta})| \in \uparrow(\theta_2(r), \theta_1(r) + 2\pi).$ (2.1)

* This work was supported by National Science Foundation Grant NSF-GP-7439.

ii) f(z) is regular in $\overline{\Lambda}$, the closure of Δ , and there exist real numbers θ_1 and θ_2 , $0 < \theta_2 - \theta_1 < 2\pi$, such that

$$|f(e^{i\theta})| \in \downarrow(\theta_1, \theta_2)$$
 and $|f(e^{i\theta})| \in \uparrow(\theta_2, \theta_1 + 2\pi)$. (2.2)

Functions in \mathscr{D} are not necessarily univalent; \mathscr{D}' will denote the class of univalent members of \mathscr{D} , i.e., $\mathscr{D}' = \mathscr{D} \cap \mathscr{S}$. $\theta_1(r)$ may be chosen so that $0 \le \theta_1(r) < 2\pi$ and a similar choice can be made for θ_1 in (ii). Hereafter, unless otherwise implied, f(z) in \mathscr{D} will satisfy part (i) of the definition as this is no restriction on the development.

A subclass of \mathcal{D} , the circularly symmetric functions, was introduced earlier by Jenkins [1] and has appeared in the recent investigations of Krzyż and Reade [2]. Tammi [5] has obtained distortion theorems and coefficient bounds for functions defined in terms of restrictions on the quotient (1.2).

A geometric interpretation of the conditions of Definition 1 may be given. Let f(z), ρ , $\theta_1(r)$ and $\theta_2(r)$ satisfy (i), let $|f(re^{i\theta_1(r)})| = R_1(r)$ and $|f(re^{i\theta_2(r)})| =$ $R_2(r)$ and let C_r , the image of |z| = r under f(z), enclose a domain D_r . Then C_r is contained entirely in the annulus $R_2(r) \leq |w| \leq R_1(r)$ and C_r intersects every circle |w| = R, $R_2(r) < R < R_1(r)$, exactly twice (perhaps in the same point) for $\rho < r < 1$. If for $R_2(r) < R < R_1(r)$ we let $\Phi_1(r; R)$ and $\Phi_2(r; R)$ be the arguments, chosen to be unique by continuity, of the intersection of |w| = R with the arcs $\{f(re^{i\theta})|\theta_1(r)<\theta<\theta_2(r)\}\$ and $\{f(re^{i\theta})|\theta_2(r)<\theta<\theta_1(r)+2\pi\}$, respectively, then D_r contains the arc $\operatorname{Re}^{i\Phi}$, $\Phi_2(r;R) < \Phi < \Phi_1(r;R)$. It is clear that f(z) is not univalent in Δ if there exist r and R such that $\Phi_1(r;R) - \Phi_2(r,R) \ge 2\pi$ for all choices of arguments. On the other hand f(z) is univalent in Δ whenever $0 < \Phi_1(r; R) - \Phi_2(r; R) < 2\pi$ for all admissible r and R and appropriate $\Phi_1(r; R)$ and $\Phi_2(r; R)$, and conversely; hence $f(z) \in \mathcal{D}'$, or f(z) = z, if and only if every circle centered at the origin meets $f[\Delta]$ in a single, non-overlapping arc or not at all. This gives rise to the following observation which we will use: f(z) is univalent for $|z| \leq r$ if the plane can be cut from $f(re^{i\theta_2(r)})$ to ∞ by a curve which does not meet C_r in any point other than $f(re^{i\theta_2(r)})$.

Returning now to the definition, we see that for $\rho < r < 1$, (2.1) can be written as

$$\frac{\partial}{\partial \theta} |f(re^{i\theta})| < 0 \qquad \text{for } \theta_1(r) < \theta < \theta_2(r) \\ > 0 \qquad \text{for } \theta_2(r) < \theta < \theta_1(r) + 2\pi,$$
 (2.3)

or as

$$\frac{\partial}{\partial \theta} \log |f(re^{i\theta})| < 0 \qquad \text{for } \theta_1(r) < \theta < \theta_2(r), \\ > 0 \qquad \text{for } \theta_2(r) < \theta < \theta_1(r) + 2\pi.$$
 (2.4)

Because

$$\operatorname{Re}\left\{\frac{\partial}{\partial \theta}\log f(z)\right\} = \operatorname{Re}\left\{\frac{d}{dz}\log f(z) \cdot \frac{dz}{d\theta}\right\} = \operatorname{Re}\left\{i\frac{zf'(z)}{f(z)}\right\} = -\operatorname{Im}\left\{\frac{zf'(z)}{f(z)}\right\}$$

for $z = re^{i\theta}$, (2.2) is equivalent to

$$\operatorname{Im}\left\{\frac{re^{i\theta}f'(re^{i\theta})}{f(re^{i\theta})}\right\} > 0 \quad \text{if } \theta_1(r) < \theta < \theta_2(r), \\ < 0 \quad \text{if } \theta_2(r) < \theta < \theta_1(r) + 2\pi.$$
 (2.5)

The last form upon normalization relates to functions starlike in one direction. Letting

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \ z \in \Delta, \tag{2.6}$$

then

$$\frac{zf'(z)}{f(z)} - 1 = a_2 z - (2a_3 - a_2^2)z^2 + \cdots$$
 (2.7)

Consequently $a_2 \neq 0$, otherwise (2.7) has a multiple zero which is a contradiction of (2.5). It is, therefore, no restriction to assume that a_2 is real and positive. The above discussion yields the following conclusions.

THEOREM 1: f(z) has the form (2.6) and $a_2 > 0$. f(z) is in \mathcal{D} if and only if

$$a_2^{-1}\left\{\frac{zf'(z)}{f(z)}-1\right\}$$

is starlike in the direction of the real axis.

It should be noticed that if $a_2 \neq 0$, then f(z) is not odd; this is consistent with the geometrical interpretation given above. Consequently the identity function f(z) = z is not in \mathcal{D} . A modification of Definition 1 to admit simple monotonic rather than strictly monotonic functions in (2.1) and (2.2) admits the identity function into \mathcal{D} , in which case (2.7) is identically zero.

Making use of the fact that g(z) regular in Δ and normalized by (1.1) is convex in one direction if and only if zg'(z) is starlike in one direction [4] we can write the last theorem in another form.

COROLLARY: $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, $a_2 > 0$, is in \mathcal{D} if and only if $f(z) = z e^{a_2 g(z)}$ and g(z) is convex in the direction of the imaginary axis.

This can be obtained directly from Theorem 1 or by observing that for $z = re^{i\theta}$, $\rho < r < 1$, (2.4) is equivalent to

$$\operatorname{Re} \frac{\partial}{\partial \theta} \log \left(\frac{f(z)}{z} \right) < 0 \quad \text{for } \theta_1(r) < \theta < \theta_2(r), \\ 0 \quad \text{for } \theta_2(r) < \theta < \theta_1(r) + 2\pi.$$
 (2.8)

Hence,

$$\log\left(\frac{f(z)}{z}\right) = a_2 z + \left(a_3 - \frac{a_2^2}{2}\right) z^2 + \cdots$$

is convex in one direction.

3. A univalent subclass of \mathcal{D}

For a fixed ϕ , $-\pi < \phi \le \pi$, we say that f(z) regular in Δ , or in $\overline{\Delta}$, and normalized by (1.1) is in \mathcal{R}_{ϕ} if and only if f(z) is starlike in the direction with inclination ϕ . That is, the line $w = te^{i\phi}$, t real, intersects C_r , the image of |z| = r under f(z), for r near or equal to 1 exactly twice. Evidently $f(z) \in \mathcal{R}_{\phi}$ whenever $e^{-i\phi} f(ze^{i\phi})$ is starlike in the direction of the real axis, and conversely. Consequently, there exist functions $\tau_1(r; f(z))$ and $\tau_2(r; f(z))$ such that for $\sigma < r < 1$, or for r = 1, and suitable choice of arguments, $\phi < \arg \{f(re^{i\phi})\} < \phi + \pi$ whenever

$$\tau_1(r; f(z)) < \theta < \tau_2(r; f(z))$$

and

$$\phi + \pi < \arg \{f(re^{i\phi})\} < \phi + 2\pi$$

whenever

$$\tau_2(r;f(z))<\theta<\tau_1(r;f(z))+2\pi.$$

Clearly σ depends on f(z), $\sigma = \sigma(f(z))$, and in the case r = 1 it is assumed that f(z) is holomorphic in $\overline{\Delta}$.

Using these ideas we may restate Theorem 1 in the following useful form.

THEOREM 2: f(z) has series representation (2.6) and $a_2 \neq 0$. f(z) is in \mathcal{D} if and only if

$$a_2^{-1}\left\{\frac{zf'(z)}{f(z)}-1\right\}\in\mathscr{R}_{\phi}$$

for $\phi = \text{Arg} \{a_2^{-1}\}.$

Choose $\alpha = \text{Arg } a_2$, where Arg denotes the principal argument, then

$$f_0(z) = e^{i\alpha} f(ze^{-i\alpha}) = z + |a_2|z^2 + \cdots$$

is in \mathcal{D} , since membership in \mathcal{D} is preserved under rotation. Therefore writing

$$|a_2|^{-1}\left\{\frac{zf_0'(z)}{f_0(z)}-1\right\}=g(z),$$

where g(z) is starlike in the direction of the real axis, yields, upon substitution, the relation

$$a_2^{-1}\left\{\frac{zf'(z)}{f(z)}-1\right\}=e^{-i\alpha}g(ze^{i\alpha}).$$

The last function is in $\mathcal{R}_{-\alpha}$ and $-\alpha = \phi$.

DEFINITION 2: f(z) and g(z), both in \mathcal{R}_{ϕ} , are similar if and only if

$$\tau_k(r; f(z)) = \tau_k(r; g(z)), k = 1, 2$$

for r = 1 when f(z) and g(z) are regular in $\bar{\Delta}$ and for $\sigma < r < 1$,

$$\sigma = \sigma(f(z); g(z)),$$

otherwise.

Let $\tau_k(r) = \tau_k(r; f(z)) = \tau_k(r; g(z))$, k = 1, 2, then a geometric interpretation of similarity is that for r near or equal to 1, $f(re^{i\tau_1(r)})$ and $g(re^{i\tau_1(r)})$ both lie on one ray of the line $w = te^{i\phi}$, t real, whereas $f(re^{i\tau_2(r)})$ and $g(re^{i\tau_2(r)})$ both lie on the complementary ray. \mathcal{R}_0 is the class of functions starlike in the direction of the real axis and any two typically-real functions, all of which are in \mathcal{R}_0 , are similar.

THEOREM 3: If

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
, $a_2 \neq 0$, and $g(z) = a_2^{-1} \left\{ \frac{zf'(z)}{f(z)} - 1 \right\}$

are similar and in \mathcal{R}_{ϕ} , $\phi = \text{Arg}\{a_2^{-1}\}$, then f(z) is univalent in Δ .

To give a proof let $\tau_k(r)$, k=1,2, and σ be as in Definition 2 and the above paragraph. Suppose furthermore that $f(re^{i\tau_1(r)})$ and $g(re^{i\tau_1(r)})$ fall on the ray $w=te^{i\phi}$, t>0, for $\sigma < r < 1$. Then for $z=re^{i\phi}$, $\sigma < r < 1$ and appropriate choice of arguments

$$\phi < \arg\{g(z)\} < \phi + \pi \text{ for } \tau_1(r) < \theta < \tau_2(r)$$

and

$$\phi + \pi < \arg \{g(z)\} < \phi + 2\pi \text{ for } \tau_2(r) < \theta < \tau_1(r) + 2\pi;$$

or

$$0 < \arg \{e^{-i\phi}g(z)\} < \pi \text{ when } \tau_1(r) < \theta < \tau_2(r)$$

and

$$\pi < \arg \{e^{-i\phi}g(z)\} < 2\pi \text{ when } \tau_2(r) < \theta < \tau_1(r) + 2\pi.$$

This is equivalent to

$$\operatorname{Im}\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \qquad \tau_1(r) < \theta < \tau_2(r) < 0, \qquad \tau_2(r) < \theta < \tau_1(r) + 2\pi.$$

Consequently, $|f(re^{i\phi})|$ is strictly decreasing for $\tau_1(r) < \theta < \tau_2(r)$ and for a fixed r, $\rho < r < 1$, hence $f(re^{i\phi})$ cuts every circle |w| = R, $|f(re^{i\tau_2(r)})| < R < |f(re^{i\tau_1(r)})|$ exactly once at a point $Re^{i\mu}$, $\phi < \mu < \phi + \pi$ because $f(z) \in \mathcal{R}_{\phi}$. We see in the same way that every semicircle $Re^{i\mu}$, $\phi + \pi < \mu < \phi + 2\pi$ is intercepted only once. Therefore f(z) is univalent on |z| = r and is, for that reason [3], univalent for $|z| \le r$. A similar argument covers the remaining cases.

References

^[1] J. A. Jenkins, 'On circularly symmetric functions', Proc. Amer. Math. Soc., 6 (1955), 620-624.

^[2] J. Krzyż and M. O. Reade, 'Koebe domains for certain classes of analytic functions', J. d'Analyse Math., 18 (1967), 185-195.

- [3] Z. Nehari, Conformal Mapping, (McGraw-Hill, New York, 1952).
- [4] M. S. Robertson, 'Analytic functions starlike in one direction', Amer. J. Math., 58 (1936), 465-472.
- [5] O. Tammi, 'On certain combinations of the coefficients of schlicht functions', Ann. Acad. Sci. Fennicae Ser. A. I. Math.-Phys., No. 140, (1952) 13 pp.,

The University of Delaware Newark, Delaware