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Abstract

Let { fn}n≥1 be an infinite iterated function system on [0, 1] and let Λ be its attractor. Then, for any x ∈ Λ,
it corresponds to a sequence of integers {an(x)}n≥1, called the digit sequence of x, in the sense that

x = lim
n→∞

fa1(x) ◦ · · · ◦ fan(x)(1).

In this note, we investigate the size of the points whose digit sequences are strictly increasing and of upper
Banach density one, which improves the work of Tong and Wang and Zhang and Cao.
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1. Introduction

We follow the notation used in [6] by Jordan and Rams. Let { fn}n≥1 be a sequence of
C1 functions with fn : [0, 1]→ [0, 1] satisfying the following.

(i) Contraction property: there exists an integer m and a real number ρ ∈ (0, 1) such
that for any (a1, . . . , am) ∈ Nm and x ∈ [0, 1],

0 < |( fa1 ◦ · · · ◦ fam )′(x)| ≤ ρ < 1.

(ii) Separation condition: for any i , j ∈ N, fi((0, 1)) ∩ f j((0, 1)) = ∅.
(iii) Regular property: if there exists a sequence ξ = {ξn}n≥1 such that, for any

ε > 0, there exist c1(ε) and c2(ε) with 0 < c1(ε) ≤ 1 ≤ c2(ε) such that, for any n ∈ N
and x ∈ [0, 1],

c1(ε)
ξ1+ε

n
≤ | f ′n(x)| ≤

c2(ε)
ξ1−ε

n
,
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then we call ([0, 1], { fn}n≥1), or simply { fn}n≥1, an ξ-regular infinite iterated function
system (ξ-regular iIFS). When ξn = nd, the ξ-regular iIFS { fn}n≥1 is referred to as a
d-decaying system, as defined by Jordan and Rams [6]. It is called a Gauss-like system
if the system also fulfils the following.

(iv)
⋃∞

n=1 fn([0, 1]) = [0, 1] and, when i < j, fi(x) > f j(x).
There is a natural projection Π : NN → [0, 1] defined as

Π(a) = lim
n→∞

fa1 ◦ · · · ◦ fan (1)

for any a = {an}n≥1 ∈ N
N. Let Λ be the attractor of the iIFS { fn}n≥1, that is to say,

Λ = Π(NN).

For each x ∈ Λ, it corresponds to a sequence of integers {an}n≥1 in the sense that

x = lim
n→∞

fa1 ◦ · · · ◦ fan (1).

We call {an}n≥1 the digit sequence of x. It should be pointed out that the digit sequence
of one point may not be unique. By ignoring at most a countable number of points,
there is a one-to-one correspondence between a real number in [0, 1] and a sequence of
integers. The study of the question of whether and when a subset of integers contains
arbitrarily long arithmetic progressions is of important theoretical value, because of
its close connections with number theory, dynamical systems and ergodic theory. A
famous result due to Szemerédi [8] states that an integer subset contains arbitrarily
long arithmetic progressions if it is of positive upper Banach density. This is proved
again by Furstenberg [4] using ergodic theory. For recent progress, see the work of
Green and Tao [5] and references therein.

Inspired by Szemerédi’s theorem and the correspondence between a real number
and a sequence of integers, the size of the set

EA = {x ∈ Λ : {an(x)}n≥1 is strictly increasing and
contains arbitrarily long arithmetic progressions}

was studied by Tong and Wang [9] in the case of continued fractions. Here the maps
fn : [0, 1]→ [0, 1] can be defined by fn(x) = 1/(x + n) for each n ∈ N. Its Hausdorff
dimension (denoted by dimH) is 1/2. A similar result was obtained by Zhang and Cao
[10] in the case of Lüroth expansion, where the maps fn : [0, 1]→ [0, 1] are defined
by fn(x) = x/(n(n + 1)) + 1/(n + 1) for each n ∈ N. The continued fraction system and
the Lüroth system are both special 2-decaying Gauss-like systems.

In this note, we consider the above set for a general d-decaying Gauss-like system.
We also discuss what happens for Gauss-like systems that are not d-decaying iIFSs.
Actually, we study the set of points whose digit sequences are strictly increasing and
of upper Banach density one as a subset of integers, namely,

ES := {x ∈ Λ : {an(x)}n≥1 is strictly increasing and {an(x)}n≥1
is of upper Banach density one as a subset of integers},

where the upper Banach density is defined as follows.
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Definition 1.1. Let S be a subset of integers. The upper Banach density of S is defined
as

d̄B(S ) := lim sup
N→∞

1
N

sup
M∈N

#{n ∈ S : M ≤ n < M + N},

where # denotes the cardinality of a finite set.

Our main results are the following.

Theorem 1.2. Suppose { fn}n≥1 is a d-decaying Gauss-like system. Then

dimH ES = dimH EA =
1
d
.

The convergence exponent

s0 = inf
{
s ≥ 0 :

∑
n∈N

1
ξs

n
<∞

}
plays an important role in depicting the Hausdorff dimension. In fact, 1/2 and 1/d are
just the convergence exponents of the continued fraction and the d-decaying systems.

We also mention that the convergence exponent has many applications in the
multifractal analysis of Birkhoff average in iIFSs (see [3, 7]).

For a general Gauss-like iIFS without d-decaying assumption, the above result may
not hold any more. Actually the following theorem applies.

Theorem 1.3. There exists a Gauss-like iIFS with the convergence exponent s0 > 0
such that dimH ES = 0.

Noting that {an}n≥1 is strictly increasing implies that an(x) > ψ(n) for all n ∈ N if
one takes ψ(n) = n/2. Then the above Theorem 1.3 is a direct consequence of a result
of Cao, Wang and Wu, as follows.

TheoremA [1]. For any function ψ : N→ R+ with ψ(n)→∞ as n→∞ and s0 ∈ [0,1],
there exists a Gauss-like system { fn}n≥1 with the convergence exponent s0 such that

dimH{x ∈ Λ : an(x) > ψ(n) for all n ∈ N} = 0.
In fact, from Theorems 1.2 and 1.3, for the lower bound of the dimension of ES ,

there exist two Gauss-like systems that share the same convergence exponent s0, but
the dimension of ES in different systems may have different values (furthermore, one
is zero and the other is s0), and so does EA.

For the upper bound of the dimension of ES and EA, suppose that { fn}n≥1 is a Gauss-
like system and that {ξn}n≥1 is increasing with the convergence exponent s0. Then

dimH ES ≤ dimH EA ≤ s0, (1.1)
which follows from the following Theorem B, since the fact that {an}n≥1 is strictly
increasing implies that an(x)→∞ as n→∞.

Theorem B [1]. Suppose that { fn(x)}n≥1 is an ξ-regular iIFS with the convergence
exponent s0. Define

E = {x ∈ Λ : an(x)→∞ as n→∞}.
Then dimH E = s0.
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However, there do exist cases such that the inequality (1.1) is an equality, for
example continued fractions [9], Lüroth expansions [10] and general d-decaying
Gauss-like systems, by combining Theorem 1.2 above.

For more dimensional results concerning iIFSs, one is referred to [1, 6] and the
references therein.

2. Preliminaries
We begin with some notation. For each a1, . . . , an ∈ N, we define

In(a1, . . . , an) = {x ∈ Λ : ak(x) = ak, 1 ≤ k ≤ n},

that is, the collection of points whose digit sequences begin with a1, . . . , an. We call
In(a1, . . . , an) an nth order basic interval.

Since fk ∈ C1 for each k ≥ 1, it follows that the length of an nth order basic interval
verifies

n∏
k=1

c1(ε)
ξ1+ε

ak

≤ |In(a1, . . . , an)| ≤
n∏

k=1

c2(ε)
ξ1−ε

ak

. (2.1)

Such an estimation is essential to all the arguments below.
For some set of fine structure in fractal geometry, the following lemma is an

important tool to compute the Hausdorff dimension, which will be used to obtain a
lower bound of Hausdorff dimension of the constructed subset.

Lemma 2.1 [2]. Suppose that the fractal set F ⊂ [0, 1] has the general Cantor set
construction, and that each (k − 1)th level interval contains at least mk ≥ 2 kth level
intervals (k = 1, 2, . . .) that are separated by gaps of at least εk, where 0 < εk+1 < εk
for each k. Then

dimH F ≥ lim inf
k→∞

log(m1m2 · · ·mk−1)
− log(mkεk)

.

To determine the lower bound of dimH ES , we need a proper ‘seed’ set. Based on
this set, we can construct a large enough subset contained in the set ES .

Lemma 2.2. Suppose that { fn}n≥1 is a d-decaying Gauss-like system. For any a > 4,
define

Ẽ = {x ∈ Λ : an < an(x) ≤ 2an for all n ≥ 1}.

Then dimH Ẽ = 1/d.

Proof. Note that an < an(x) ≤ 2an implies that an(x)→∞ as n→∞, dimH Ẽ ≤ 1/d,
which follows from Theorem B.

It is obvious that the set

F = {x ∈ Λ : an < an(x) ≤ 2an and an(x) is even for all n ≥ 1}

is a Cantor subset of Ẽ.
Each (k − 1)th level interval contains ([ak] + 1)/2 kth level intervals when [ak] is

odd and [ak]/2 kth level intervals when [ak] is even, where [x] denotes the largest
integer not greater than x.
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The gap between kth level intervals is not less than min{|Ik(a1, . . . , ak)| : ai < ai ≤

2ai, 1 ≤ i ≤ k}. By the inequality (2.1), for any ε > 0, there exist c1(ε) and c2(ε) with
0 < c1(ε) ≤ 1 ≤ c2(ε) such that, for any (a1, . . . , ak) with ai < ai ≤ 2ai(1 ≤ i ≤ k),

|Ik(a1, . . . , ak)| ≥
(c1(ε))k

(a1 · · · ak)d(1+ε) ≥
(c1(ε))k

2kd(1+ε)ak(k+1)d(1+ε)/2 .

Take

m1 = 2 and mk =
ak

3
for k ≥ 2

and

εk =
(c1(ε))k

2kd(1+ε)ak(k+1)d(1+ε)/2 for k ≥ 1.

Then 0 < εk+1 < εk, k ≥ 1. By Lemma 2.1,

dimH F ≥ lim inf
k→∞

log(m1 · · ·mk−1)
− log(mkεk)

= lim inf
k→∞

log
(
2

a2

3
· · ·

ak−1

3

)
− log

(ak

3
(c1(ε))k

2kd(1+ε)ak(k+1)d(1+ε)/2

) . (2.2)

Since

log
(
2

a2

3
· · ·

ak−1

3

)
=

(k − 2)(k + 1)
2

log a − (k − 2) log 3 + log 2

and the fact that the denominator in (2.2) equals

k(k + 1)d(1 + ε) − 2k
2

log a + kd(1 + ε) log 2 − k log c1(ε) + log 3,

we can obtain dimH F ≥ 1/(d(1 + ε)). Letting ε → 0, we get that dimH F ≥ 1/d. Thus,
dimH Ẽ ≥ dimH F ≥ 1/d. This finishes the proof. �

To end this section, we state an auxiliary lemma for the proof, which establishes
the relationship between the Hausdorff dimension of a set and that of its image under
a Hölder map.

Lemma 2.3 [2]. Let F ⊂ Rn and suppose that f : F → Rm satisfies a Hölder condition

| f (x) − f (y)| ≤ c|x − y|α (x, y ∈ F).

Then dimH f (F) ≤ (1/α) dimH F.

3. Proof of the main theorem

In this section, we give the proof of Theorem 1.2. Recall that

ES = {x ∈ Λ : {an(x)}n≥1 is strictly increasing and d̄B({an(x)}n≥1) = 1}
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and
EA = {x ∈ Λ : {an(x)}n≥1 is strictly increasing and

contains arbitrarily long arithmetic progressions}

are the sets in question.
The upper bound is easily available from Theorem B by noting that {an(x)}n≥1 being

strictly increasing implies that an(x)→∞ as n→∞. That is

dimH ES ≤ dimH EA ≤ dimH E =
1
d
.

To determine the lower bound of dimH ES , we construct a subset of the target set ES
by inserting a group of words on N at the appropriate positions in the digit sequences
of the points in Ẽ. By the appropriate choice of these positions, we will find a Hölder
function between this subset and Ẽ.

For any rational number ε ∈ (0,1), fix an integer a > max{4, c2(ε)/c1(ε)}, and choose
a sequence of integers {nk}k≥1 such that, for all k ≥ 1,

n1 ≥
10
ε
, nk+1 ≥

k∑
i=1

ni; ε · nk ∈ N. (3.1)

For any y ∈ Ẽ, we construct a point in ES in the following way. For any k ≥ 1, let
Wk = {2ank + 1, . . . , 2ank + εnk} be the word with length εnk. Suppose that the digit
sequence of y is

a1(y), . . . , an1 (y), an1+1(y), . . . , an2 (y), an2+1(y), . . . .

Then determine a new sequence as

a1(y), . . . , an1 (y),W1, an1+1(y), . . . , an2 (y),W2, an2+1(y), . . . ,

which is obtained by inserting the words {Wk}k≥1 into the digit sequence of y at the
positions {nk}k≥1. Denote the corresponding point in Λ by x = x(y) and denote the
collection of those x by Ẽε , that is,

Ẽε = {x ∈ Λ : x = x(y), y ∈ Ẽ}.

At first, we verify that the point x = x(y) belongs to ES .

Lemma 3.1. For any ε ∈ (0, 1),
Ẽε ⊂ ES .

Proof. Fix ε ∈ (0, 1). Let x ∈ Ẽε and let y ∈ Ẽ be the point corresponding to x.
In order to show the strictly increasing property of {an(x)}n≥1, by the definition of

Ẽ, Ẽε and Wk, we only need to show that, for any k ≥ 1,

ank (y) < 2ank + 1 and 2ank + εnk < ank+1(y).

The first one follows from the fact that ak < ak(y) ≤ 2ak. Note that the conditions of
{nk}k≥1 in (3.1) and a > 4, ε ∈ (0, 1) give 2ank + εnk < 3ank < ank+1 < ank+1(y).
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For any k ≥ 1, take Mk = 2ak + 1. We verify that

#{i ∈ {an(x)}n≥1 : Mk ≤ i < Mk + εnk} = εnk,

by the definition of Wk and the construction of Ẽε . Therefore

1
εnk

sup
M∈N

#{i ∈ {an(x)}n≥1 : M ≤ i < M + εnk} = 1,

which implies that the upper Banach density of the digit sequence {an(x)}n≥1 of x is
one.

So x ∈ ES . �

Now we estimate the Hausdorff dimension of Ẽε , by Lemma 2.3. Clearly, the
correspondence between y ∈ Ẽ and x = x(y) ∈ Ẽε is one-to-one. This enable us to
define an onto map between Ẽ and Ẽε as

f : Ẽε → Ẽ, x = x(y)→ y.

Then we are led to estimate the Hölder exponent of f . Let x1, x2 ∈ Ẽε be close enough
such that

ai(x1) = ai(x2) 1 ≤ i ≤ n1.

Also let y1, y2 be the corresponding points in Ẽ, respectively. Assume that n is the
minimal positive integer such that an+1(y1) , an+1(y2). Without loss of generality, we
can assume that an+1(y1) < an+1(y2) (the other case can be treated similarly). So

ai(y1) = ai(y2) for 1 ≤ i ≤ n and an+1(y1) < an+1(y2).

Let k ≥ 1 be the integer such that nk ≤ n < nk+1. Then, by the definition of the map f ,
it follows that

ai(x1) = ai(x2) 1 ≤ i ≤ n + εn1 + · · · + εnk

and
an+εn1+···+εnk+1(x1) = an+1(y1) < an+1(y2) = an+εn1+···+εnk+1(x2).

Moreover, it should be noticed that if n < nk+1 − 1, then

an+εn1+···+εnk+2(xi) = an+2(yi) < 2an+2 i = 1, 2.

If n = nk+1 − 1, then

an+εn1+···+εnk+2(xi) = 2ank+1 + 1 < 2ank+1+1 = 2an+2 i = 1, 2.

In other words, we always have that

an+εn1+···+εnk+1(xi) ≤ an+εn1+···+εnk+2(xi) < 2an+2 i = 1, 2. (3.2)

Since x1, x2 ∈ I(a1(x1), . . . , an+εn1+···+εnk (x1)) and an+εn1+···+εnk+1(x1) < an+εn1+···+εnk+1
(x2), which implies that x1 is on the right side of x2 and that x1, x2 are separated by the
interval

I(a1(x1), . . . , an+εn1+···+εnk (x1), an+εn1+···+εnk+1(x1), an+εn1+···+εnk+2(x1) + 1),
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(2.1) and (3.2) give

|x1 − x2| ≥
(c1(ε))n+εn1+···+εnk+2

(a1(x1) · · · an+εn1+···+εnk (x1) · 2an+2 · 2an+2)d(1+ε) .

Since

a1(x1) · · · an+εn1+···+εnk (x1) =

n∏
i=1

ai(y) ·
εn1∏
i=1

(2an1 + i) · · ·
εnk∏
i=1

(2ank + i)

and
n∏

i=1

ai(y) ·
εn1∏
i=1

(2an1 + i) · · ·
εnk∏
i=1

(2ank + i) ≤
n∏

i=1

(2ai) · (2an1 + εn1)εn1 · · · (2ank + εnk)εnk ,

it follows that

|x1 − x2| ≥
(c1(ε))n+εn1+···+εnk+2

(a2 · · · an+1 · aεn1(n1+1) · · · aεnk(nk+1) · a2n+5)d(1+ε) ,

by noting that a > 4 and ε ∈ (0, 1). So

|x1 − x2| ≥
(c1(ε))n+εn1+···+εnk+2

a( n2
2 + 7n

2 +ε(n2
1+···+n2

k )+ε(n1+···+nk)+5)d(1+ε)
.

By the choice of nk, that is, the formula (3.1),

|x1 − x2| ≥
(c1(ε))n+εn1+···+εnk+2

a(( 1
2 +4ε)n2+( 7

2 +2ε)n+5)d(1+ε)
≥

(c1(ε))4n

a( 1
2 +5ε)n2d(1+ε)

.

Note that y1, y2 ∈ I(a1(y1), . . . , an(y1)). By (2.1) and a > max{4, c2(ε)/c1(ε)},

|y1 − y2| ≤
(c2(ε))n

(a1(y1) · · · an(y1))d(1−ε) ≤
(c2(ε))4n

a
n(n+1)

2 d(1−ε)
≤

(c1(ε))4n

a
n2
2 d(1−2ε)

.

It can be verified that
|y1 − y2| < |x1 − x2|

1−2ε
1+21ε .

Therefore, by Lemma 2.3, we arrive at

dimH ES ≥ dimH Ẽε ≥
1 − 2ε
1 + 21ε

dimH Ẽ =
1 − 2ε

d(1 + 21ε)
.

Letting ε → 0, we finally get that

dimH ES ≥
1
d
.

This completes the proof of Theorem 1.2.
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