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Spectral Flows of Dilations of Fredholm
Operators

Giuseppe De Nittis andHermann Schulz-Baldes

Abstract. Given an essentially unitary contraction and an arbitrary unitary dilation of it, there is a
naturally associated spectral �ow that is shown to be equal to the index of the operator. _is result is
interpreted in terms of theK-theory of an associatedmapping cone. It is then extended to connect
Z2 indices of odd symmetric Fredholm operators to a Z2-valued spectral �ow.

_e spectral �ow of a one-parameter family of self-adjoint Fredholm operators
was introduced byAtiyah, Patodi, and Singer [APS] andwas under certain conditions
shown to be connected to indices of Fredholm operators. A particularly convenient
technical reformulation was given by Phillips [Phi1] that also extends to unbounded
operators [CP]. As this version of spectral �ow is also used here, it is reviewed in Sec-
tion 1. _e ûrst part of the paper considers an essentially unitary contraction operator
T on aHilbert spaceK and an arbitrary unitary dilationUT associatedwith it, namely
a unitary operator on a larger Hilbert space H so that its compression to K is T . If
P is the projection onto K and one sets F = 2P − 1, then _eorem 2.1 shows that
the spectral �ow of any path s ∈ [0,1] ↦ Fs from F to U∗

TFUT and with compact
Fs − F is equal to the index of T , up to a sign. Two proofs are provided, one by a
homotopy argument and one using indices of pairs of projections [Kat,ASS]. _is re-
sult appears in [Phi2], but for sake of completeness and as preparation for the second
part of the paper, we provide the two proofs. Inspired by [Put, CPR], Section 3 then
provides a K-theoretic interpretation of the theme index = spectral �ow based on a
mapping cone exact sequence and the pairing of its K-groups with adequate Fred-
holm modules. Indeed, the exposition makes explicit the tight connection between
unitary dilations and Fredholm modules [HR].

More novel is an extension of the above result to essentially unitary operators and
dilations having symmetry properties linked to a real or quaternionic structure on the
Hilbert space. Examples are real, quaterionic, symmetric, and anti-symmetric oper-
ators. Anti-symmetric operators are in bijection with so-called odd symmetric oper-
ators, and such Fredholm operators have Z2 indices given by the dimension of their
kernel modulo 2; see Section 4. _is can also be deduced from [AS], and an explicit
proof was recently given in [SB]. In Section 5 a Z2-valued spectral �ow is deûned for
paths with an adequate symmetry property. _e basic idea leading to this deûnition
is already contained in the analysis ofZ2 invariants of edge states in quantum systems
with odd time-reversal symmetry [ASV]. In Section 6 this Z2-valued spectral �ow of
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52 G. De Nittis andH. Schulz-Baldes

an odd symmetric dilation is again shown to be equal to the Z2 index of the dilated
Fredholm operator. Amapping cone interpretation with the �avor of RealK-theory
[Sch] is sketched in Section 7.

Ourmotivation to revisit the problemof spectral �ow and to extend it toZ2 indices
stems from applications to solid state physics. _is is the subject of a companion
paper, [DS].

1 Spectral Flow of a Pair of Unitary Equivalent Operators

In order to ûx notations and terminology, this section reviews some standard facts
from the theory of Fredholm operators on a separable Hilbert spaceH as well as the
notion of spectral �ow. LetB(H),K(H), andF(H) denote the sets of bounded, com-
pact, and Fredholm operators onH, respectively. Recall that F ∈ B(H) is Fredholm
if and only if it has closed range TH and ûnite-dimensional kernel Ker(F ) and cok-
ernel Ker(F ∗). Atkinson’s theorem states that Fredholm operators are the invertibles
modulo compact perturbation, and this provides the characterization

F(H) = {F ∈ B(H) ∣ ∃ S ∈ B(H), K1,K2 ∈ K(H) with SF −K1 = 1 = FS−K2} .
In particular, the property to be Fredholm is invariant under compact perturbations.
Furthermore, F(H) is an open subset of B(H) that is closed under the adjoint in-
volution. _e Noether index of a Fredholm operator F is deûned by Ind(F ) =
dim(Ker(F ))−dim(Ker(F ∗)) ∈ Z. _e index is a homotopy invariant that is stable
under compact perturbations, namely Ind(F ) = Ind(F + K) for all K ∈ K(H).
Moreover, Fn(H) = Ind−1(n) is a path-connected component for any n ∈ Z so
that the index map Ind ∶ F(H) → Z establishes a bijection between Z and the path-
connected components of F(H) = ⋃n∈Z Fn(H). _e set F(H) has a group structure
under themultiplication of operators, and the index map is a group homomorphism
onto the additive group Z.

Let SF(H) = {F ∈ F(H) ∣ F = F ∗} be the subset of self-adjoint Fredholm opera-
tors. Equivalently, SF(H) = {F ∈ B(H) ∣ F = F ∗ and 0 /∈ σess(F )}, where σess(F )
denotes the essential spectrum. Although SF(H) ⊂ F0(H), the space SF(H) has a
non-trivial topology. First of all, it has three disjoint components:

SF±(H) = {F ∈ SF(H) ∣ σess(F ) ⊂ R±} ,
SF∗(H) = {F ∈ SF(H) ∣ σess(F ) ∩R± ≠ ∅} ,

where the notation R± = {x ∈ R ∣ ±x > 0} was used. _e two components SF±(H)
are contractible [AS, _eorem B], but π1(SF∗(H)) ≅ Z via the spectral �ow iso-
morphism. _e spectral �ow was introduced in [APS] using the intuitive notion of
intersection theory of spectral curves. Here we work instead with the versatile, but
equivalent, notion of spectral �ow proposed in [Phi1].

Let s ∈ [0,1] ↦ Fs ∈ SF∗(H) be a continuous path, not necessarily closed. For
a ∈ (−1,0] and b ∈ [0,+1) set Qa,b(s) = χ(a,b](Fs), where χI denotes the charac-
teristic function on I ⊂ R. By compactness (see Figure 1 where σess(F ) = {−1,1} is
assumed), it is possible to choose a ûnite partition 0 = s0 < s1 < ⋅ ⋅ ⋅ < sN−1 < sN = 1
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Figure 1: Schematic representation of the objects used in the deûnition (1.1) of the spectral �ow
aswell as in the secondproofof_eorem 2.1. Far from the crossings it ispossible to seta = b = 0.

of [0,1] and an < 0 < bn, n = 1, . . . ,N , such that s ∈ [sn−1, sn] ↦ Qan,bn(s) is
continuous with constant (necessarily) ûnite rank. _en deûne the spectral �ow by

(1.1) Sf(s ∈ [0,1]↦ Fs) =
N

∑
n=1

TrH(Qan,0(sn−1) −Qan,0(sn)) .

Note thatQan,0(sn−1) andQan,0(sn) are both ûnite dimensional projections so that
the trace is ûnite. _e basic result about the spectral �ow is that it is well-deûned by
the above procedure and it is homotopy invariant. A detailed proof can be found in
[Phi1].

_eorem 1.1 _e deûnition of Sf(s ∈ [0,1] ↦ Fs) is independent of the choice of
the partition 0 = s0 < s1 < ⋅ ⋅ ⋅ < sN−1 < sN = 1 of [0,1] and values an < 0 < bn
such that s ∈ [sn−1, sn]↦ Qan,bn(s) is continuous. Moreover, let s ∈ [0,1]↦ Fs and
s ∈ [0,1] ↦ Gs be two continuous paths in SF∗(H) such that F0 = G0 and F1 = G1.
_en Sf(s ∈ [0,1] ↦ Fs) = Sf(s ∈ [0,1] ↦ Gs) if and only if there exists a norm
continuous homotopy between the two paths leaving the endpoints ûxed.

Remark Let us brie�y sketch the connection between deûnition (1.1) and the in-
tuitive notion of spectral �ow. By standard perturbation theory arguments [Kat], it
is possible to label the spectral curves λj(s) such that each varies continuously in s.
When s increases, the spectral curves s ↦ λj(s) can cross the segment [0,1] × {0}.
One has a spectral crossing of positive signature if there is a passage from a negative
to a positive eigenvalue or a spectral crossing of negative signature if the passage is
from a positive to a negative eigenvalue. If there is a ûnite number of crossings and
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no crossings at the boundaries s = 0 and s = 1, the sum of these signatures over all
crossings is equal to Sf(s ∈ [0,1] ↦ Fs). _e advantage of deûnition (1.1) is that the
boundaries do not require special treatment and that there may well be an inûnite
number of crossings.

When _eorem 1.1 is applied to closed paths, it shows that Sf ∶ π1(SF∗(H)) → Z
is a well-deûned group homomorphism. To verify that this map is bijective, one can
use the fact that the space

ŜF∗(H) = {F ∈ SF∗(H) ∣ ∥F ∥ = 1 σess(F ) = {−1,1}}

is a deformation retract of SF∗(H) and that themap ϕ ∶ ŜF∗(H) → U∗(H) deûned
by ϕ(F ) = eıπ(F+1) is an homotopy equivalence [AS]. Here, U∗(H) is the subgroup
of those unitary operators U ∈ U(H) for which U − 1 ∈ K(H). _e sequence of iso-
morphismsπ1(SF∗(H)) ≅ π1(ŜF∗(H)) ≅ π1(U∗(H)) combinedwith the standard
isomorphism π1(U∗(H)) → Z given by the winding number concludes the descrip-
tion of the fundamental group of SF∗(H). Just for sake of completeness let us recall
that the winding number of a diòerentiable loop s ∈ [0,1]↦ Us ∈ U∗(H) is given by

Wind(s ∈ [0,1]↦ Us) =
1

2πı
∫

1

0
dsTr((Us)−1∂sUs) ,

whenever ∂sUs is traceclass. For adequate paths, the equality Sf(s ∈ [0,1] ↦ Fs) =
Wind(s ∈ [0,1] ↦ ϕ(Fs)) provides an alternative formula for the computation of
the spectral �ow.
Focus here will be on the spectral �ow of certain special paths in ŜF∗(H). Given

F ∈ ŜF∗(H) and a unitaryU ∈ U(H), letΘ(F,U) denote the set of paths s ∈ [0,1]↦
Fs such that

F0 = F,(i)
Fs − F ∈ K(H) for all s ∈ [0,1],(ii)

F1 = U∗FU.(iii)

Note that σ(F1) = σ(F0). _e spectral �ow Sf(s ∈ [0,1] ↦ Fs) of such a path is
well deûned and equal to the spectral �ow of the path obtained by concatenationwith
the isospectral path r ∈ [0,1]↦ (Ur)∗FUr .

Proposition 1.2 _e spectral �ow Sf ∶ Θ(F,U) → Z is equal to a constant denoted
by Sf(F,U). In particular,
(1.2) Sf(F,U) = Sf(s ∈ [0,1]↦ F + s U∗[F,U]) .

Proof Let s ∈ [0,1] ↦ Fs and s ∈ [0,1] ↦ F ′
s be two paths in Θ(F,U). _en

r ∈ [0,1] ↦ rFs + (1 − r)F ′
s is a homotopy in Θ(F,U) keeping the initial and ûnal

point ûxed, so that _eorem 1.1 implies the ûrst claim. _e second follows because
s ∈ [0,1]↦ F +s U∗[F,U] is indeed a path in Θ(F,U), sinceU∗[F,U] = F1−F0 ∈
K(H).

Let us introduce the set of operator pairs for which a spectral �ow can be deûned:

P(H) = {(F,U) ∈ ŜF∗(H) ×U(H) ∣ [F,U] compact} .
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It carries the subspace topology induced from the norm topology on B(H) × B(H).
Note that indeed each point (F,U) ∈ P(H) deûnes a class of paths Θ(F,U) so that
it is possible to view the spectral �ow as amap Sf ∶ P(H) → Z (strictly speaking this
is Sf ○Θ).

Proposition 1.3 _e spectral �ow Sf ∶ P(H)→ Z is locally constant.

Proof Let (F (0), U(0)) and (F (1), U(1)) be two points connected by a continu-
ous path r ∈ [0,1] ↦ (F (r), U(r)) in P(H). _is means that there is a path α in
ŜF∗(H), given by r ↦ F (r), which connects F (0) with F (1) and a second path
β in ŜF∗(H), given by r ↦ U(r)∗F (r)U(r), which connects U(0)∗F (0)U(0)
with U(1)∗F (1)U(1). Let γr ∈ Θ(F (r), U(r)) be any path connecting F (r) to
U(r)∗F (r)U(r) by compact perturbations. For each r ∈ [0,1] let us denote by αr
the reduced path that connects F (0) with F (r) along the path α. In similar way
let us introduce also the reduced path βr . _e composed paths θr = β−1r ○ γr ○ αr
produce a homotopy between θ0 = γ0 and θ1 within the class of paths having same
extreme points F (0) and U(0)∗F (0)U(0). _eorem 1.1 applies so that Sf(θ1) =
Sf(θ0) = Sf(F (0), U(0)). Now, by applying the composition rule of the spectral
�ow, Sf(θ1) = Sf(α) + Sf(γ1) − Sf(β), and observing that Sf(α) = Sf(β) one gets
Sf(F (0), U(0)) = Sf(γ1) = Sf(F (1), U(1)).

2 Dilation of a Fredholm Operator and its Spectral Flow

In this section, the index of an arbitrary Fredholm operator is being calculated as
a spectral �ow, in fact, of a whole family of spectral �ows associated with arbitrary
dilations. Let K be a separable Hilbert space. Let T ∈ B(K) be a contraction,
namely ∥T ∥ ≤ 1. A unitary dilation of T is a unitary operator UT ∈ B(H) on some
Hilbert spaceH inwhichK is isometrically embedded by an injective partial isometry
Π ∶ K ↪H such that

(2.1) T = Π∗UT Π.

To exclude a trivial case, it will always be assumed thatH⊖K is inûnite dimensional.
Recall that an operator T is called essentially unitary if T ∗T − 1 and TT ∗ − 1 are
compact operators. _e set EU(K) of essentially unitary operators is a subset of the
Fredholm operators F(K).

_eorem 2.1 ([Phi2]) Let UT ∈ U(H) be a unitary dilation of an essentially unitary
contraction T ∈ EU(K) and let Π ∶ K ↪H be the associated injective partial isometry.
_en, with F = 2 ΠΠ∗ − 1 ∈ ŜF∗(H),

(2.2) Ind(T ) = −Sf(F,UT ) = −Sf(s ∈ [0,1]↦ F + s U∗
T [F,UT ]) .

Two proofs will be provided, one by constructing a homotopy to a special dilation
for which the identity (2.2) can be checked by direct computation, and one that uses
the index of Fredholm pairs of projections introduced by Kato [Kat] and studied in
detail in [ASS].
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Proof of_eorem 2.1 byHomotopy LetH = K⊕K′ for someHilbert spaceK′. In
this grading,

(2.3) UT = (T B
C D

) , F = (1 0
0 −1) ,

with adequate operators B, C , and D. By unitarity, BB∗ = 1 − TT ∗ and C∗C =
1 − T ∗T . As T is essentially unitary, it follows that BB∗ and C∗C are compact, and
thus B and C are also compact (e.g., by the polar decomposition). _is implies that
[F,UT ] ∈ K(H). Furthermore,F ∈ ŜF∗(H) and thus by Proposition 1.2, the spectral
�ow Sf(F,UT ) is well deûned and the second equality in (2.2) holds. Because it was
assumed that K′ = H ⊖ K is inûnite dimensional, there exists a unitary map from
K to K′ and, as a basis change does not change the spectral �ow, one may suppose
K = K′ fromnow on. Actually, the inûnite dimensionality ofK′ follows if Ind(T ) /= 0.
Indeed, by unitarity of UT ,D∗D − 1 = B∗B andDD∗ − 1 = CC∗ are also compact,
so that D is also an essential unitary operator. Since the index of UT vanishes and
the index is stable under compact perturbations, it follows that 0 = Ind(T ⊕D) =
Ind(T ) + Ind(D). But a non-vanishing index only exists in inûnite dimension.

_e basic idea of the proof is to verify (2.2) for one particular unitary dilation UH
T

and then to show that any other unitary dilation UT is connected with UH
T by a con-

tinuous path r ∈ [0,1] ↦ U(r), which is such that (F,U(r)) ∈ P(H) holds (which
is equivalent to the oò-diagonal entry of U(r) being compact). By Proposition 1.2
one then has that Sf(F,UT ) = Sf(F,UH

T ) and one can conclude that (2.2) holds for
any unitary dilation if only it can be checked for the special dilation UH

T . _e latter is
chosen to be theHalmos dilation [Hal]:

(2.4) UH
T = ( T (1 − TT ∗) 1

2

(1 − T ∗T ) 1
2 −T ∗ ) .

LetT = V ∣T ∣ be the polar decompositionwith partial isometryV such that Ker(V ) =
Ker(T ). Due to the continuous path r ∈ [0,1]↦ V ∣T ∣r and the stability of the index,
one has Ind(T ) = Ind(V ). Let us consider the path r ∈ [0,1]↦ U(r) with

U(r) = ( V ∣T ∣r (1 − V ∣T ∣2rV ∗) 1
2

(1 − ∣T ∣rV ∗V ∣T ∣r) 1
2 −∣T ∣rV ∗

) .

Indeed, (F,U(r)) ∈ P(H) and the path connects U(1) = UH
T to

U(0) = ( V (1 − V V ∗) 1
2

(1 − V ∗V ) 1
2 −V ∗

) .

Now

F + sU(0)∗[F,U(0)] = (1 0
0 −1) + 2s (−(1 − V

∗V ) 0
0 1 − V V ∗) ,

where oneuses that1−V ∗V and1−V V ∗ are the orthogonal projections onKer(V ) =
Ker(T ) and Ker(V ∗) = Ker(T ∗), respectively. _ese relations also imply that the
spectral �ow of s ∈ [0,1]↦ F+sU(0)∗[F,U(0)] is equal to− Ind(T ), and therefore
the identity (2.2) for theHalmos dilation follows.
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It now remains to construct a continuous map from an arbitrary dilation UT to
UH
T such that, when combined with F , one stays in P(H). For that purpose, let us

consider W = (UH
T )∗UT and show that it is homotopic to the identity with a path

having compact oò-diagonal. _e matrix entries of W = ( A B
C D ) satisfy Ind(A) =

Ind(D) = 0 (actually, one also has A = T ∗T , but this is irrelevant in the sequel), and
B and C are compact. Consequently, by standard Fredholm theory there are partial
isometries VA and VD such that A + εVA andD + εVD are invertible for ε > 0. Now
choose ε ∈ (0,1) suõciently small such that the path

r ∈ [0, ε]↦W (r) = (A + r VA B
C D + r VD

)

remains in the invertibles (the spectrum of W (r) does not touch 0 if r < 1). Next
decompose

W (r) = (A + r VA 0
0 D + r VD

) ( 1 (A + r VA)−1B
(D + r VD)−1C 1

) .

_e second factor is a compact perturbation of the identity and can therefore be con-
tinuously deformed within the compact operators to the identity, e.g., using spec-
tral theory for compact operators. _us one obtains a path r ∈ [ε,1] ↦ W (r)
in the invertibles on K ⊕ K with compact oò-diagonal entries connecting W (ε) to
the identity (as the invertibles on K are also path connected by the polar decom-
position). From this path of invertibles one obtains the desired path of unitaries
r ∈ [0,1] ↦ W (r)∣W (r)∣−1. Let us note that the homotopy is not a path of uni-
tary dilations of T , but this is not needed in order to connect the spectral �ows.

Proof of_eorem 2.1 using Fredholm Pairs of Projections (_is proof looks shor-
ter than the above, but appeals to several results from [ASS].) Let UT and F be as in
(2.3) and consider any path [0,1] ∈ s → Fs in Θ(F,UT ), namely such that F0 = F ,
F1 = U∗

TFUT and Fs − F ∈ K(H) for all s ∈ [0,1]. Let us start from (1.1). As
Qan,0(sn−1) and Qan,0(sn) are both ûnite dimensional projections, the diòerence
of their races can be expressed in terms of the index of a pair of projections. One of
the equivalent deûnitions in [ASS] is Ind(P,Q) = Ind(QPQ) whenever QPQ is a
Fredholm operator onQH. With this,

Sf(s ∈ [0,1]↦ Fs) =
N

∑
n=1

Ind(Qan,0(sn−1),Qan,0(sn)) .

Let us consider the orthogonal decomposition P (s) = Qa(s) ⊕ Qa,0(s) for a < 0.
_emap [sn−1, sn] ∋ s↦ Qan(s) is continuous, and for any pair sn−1 ⩽ s′1 < s′2 ⩽ sn
an application of the Riesz integral and of the resolvent identity shows that the diòer-
ence Qan(s′1) − Qan(s′2) is compact and ∥Qan(s′1) − Qan(s′2)∥ ⩽ C ∥Fs′1 − Fs′2∥.
It follows from these two facts together that Qan(sn−1) and Qan(sn) are a Fred-
holm pair with Ind(Qan(sn−1),Qan(sn)) = 0 [ASS, Proposition 3.2 and _eorem
3.4(c)]; see also [BCP, Lemma 4.1] where a characterization for being a Fredholm
pair is given. Since the computation of the index is linear with respect to the orthog-
onal sumof projections [ASS, Lemma A.9], one has Ind(Qan,0(sn−1),Qan,0(sn)) =
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Ind(P (sn−1), P (sn)). Observing that the diòerence P (sn−1) − P (sn) is compact,
one uses again [ASS,_eorem 3.4(c)] for the sum of the telescopic series:

Sf(s ∈ [0,1]↦ Fs) = Ind(P (0), P (1)) = Ind(P (0), U∗
TP (0)UT )

= Ind(P (0)UTP (0)) ,

where the last step is provided by [ASS, _eorem 5.2] and P (0)UTP (0) has to be
considered as an operator on P (0)H. Observing that P (0) ⊕ P = 1, with P =
χ[0,+∞)(F ) the spectral projection ofF on the positive spectrum, one concludes that
Ind(P (0)UTP (0)) = − Ind(PUTP ) = − Ind(T ), since PUTP ∣PH = Π∗UTΠ =
T .

3 Mapping Cone of a Fredholm Module

LetA be a C∗-algebra that is realized as a subalgebra of the bounded operators B(H)
on a separable Hilbert spaceH. Associated are theK-groupsK0(A) andK1(A) of
homotopy classes of projections and unitaries in A. Topological content can be ex-
tracted from these groups via pairingwith Fredholm modules. _e ungraded version
of an even bounded Fredholm module (H, F ) for A is a unitary operator F on H
such that for allA ∈ A the commutators [F,A] ∈ K(H). An odd bounded Fredholm
module is an even bounded Fredholm module (H, F ) for which, moreover, F 2 = 1

and σess(F ) = {−1,1}. Equivalently, the unitary F lies in ŜF∗(H). In the literature
([Con]), even Fredholm modules are always graded, so let us brie�y explain the con-
nection as well as the relation between unitary dilations and odd Fredholm modules.

Remark 1 By deûnition [Con], a (graded version of an) even Fredholm module
(Ĥ, F̂ ,Γ) for a C∗-algebra Â is an odd Fredholm module (Ĥ, F̂ ) together with a
(unitary) grading operator Γ satisfying Γ2 = 1, ΓAΓ = A for all A ∈ Â, and ΓF̂Γ =
−F̂ . Given an ungraded version of an even bounded Fredholm module (H, F ) for
A, one obtains a graded version by setting Ĥ =H⊗C2 and Â = A⊗12, furthermore
setting F̂ = Re(F )σ1 + Im(F )σ2 and Γ = σ3, where σ1, σ2, and σ3 are the Pauli
matrices andRe(F ) = 1

2
(F +F ∗) aswell as Im(F ) = 1

2ı
(F −F ∗). Inversely, given a

graded version of an even Fredholm module, the reduction to the spectral subspaces
of Γ allows the extraction of two ungraded versions of an even Fredholm module.

Remark 2 _e operator F of an odd Fredholm module is also called the Dirac
phase because it can o�en be obtained from a so-called unbounded Fredholm mod-
ule (H,D)withDirac operatorD. Here,D is an invertible self-adjoint operatorwith
compact resolvent and a domain D(D) that is le� invariant under A, and such that
the commutators [A,D] are compact operators for allA ∈ A. From this data one con-
structs a bounded Fredholmmodule by settingF =D∣D∣−1; see [Con,CP]. Similarly,
the operator F̂ of a graded version of an even Fredholm module is o�en obtained
from a Dirac operator.

Remark 3 LetT ∈ EU(K) be an essentially unitary Fredholm operator on aHilbert
space K and let UT ∈ U(H) be a unitary dilation on a Hilbert space H in which
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there is an isometric embedding Π ∶ K ↦ H; see (2.1). _en setting A = C∗(UT )
and F = 2 ΠΠ∗ − 1, one has a odd Fredholm module (H, F ) for A. Indeed, F ∈
ŜF∗(H) and the oò-diagonal entries ofUT are compact by the argument of the proof
of_eorem 2.1,which assures the required compactness. Inversely, if (H, F ) is anodd
Fredholm modul for A = C∗(U) for some unitary U ∈ B(H), then U is a unitary
dilation of PUP where P = 1

2
(F + 1).

It is well known [Con, Chapter 4] that odd Fredholm modules pair integrally with
theK-groupK1(A) via

⟨(H, F ), [U]1⟩ 1 = Ind(P UP ), P = 1
2
(F + 1),

where U ∈ A and P UP is understood as an operator on K = PH = Ran(P ), and
a natural generalization holds if U only lies in a matrix algebra over A. _is makes
sense because P UP is indeed a Fredholm operator (with pseudo-inverse P U∗P ).
Similarly, ungraded versions of even Fredholm modules pair integrally withK0(A).
Explicitly, again only for a projection P ∈ A,
(3.1) ⟨(H, F ), [P ]0⟩ 0 = Ind(PFP ),

where PFP is a Fredholm operator again on K = PH = Ran(P ). _e presentation
already makes it clear that the two pairings are quite similar and connected via

⟨(H, F ), [P ]0⟩ 0 = ⟨(H,2P − 1), [F ]1⟩ 1,

where on the right-hand side one has a pairing over the algebra C∗(F ).

Remark 4 If one works with the graded version of an even Fredholm module
(Ĥ, F̂ ,Γ) for a C∗-algebra Â, the even pairing takes the familiar form [Con]

⟨(Ĥ, F̂ ,Γ), [P̂ ]0⟩ 0 = Ind(P−FP+), F̂ = (0 F ∗

F 0
) , P̂ = (P+ 0

0 P−
) ,

where F̂ and P̂ are written in the grading of Γ and P−FP+ is understood to be an
operator from Ran(P+) to Ran(P−). If P+ = P−, this reduces to formula (3.1).

It is possible to calculate these two indices from the Chern characters constructed
from the corresponding Fredholm modules [Con], but here the aim will be to link
these indices to adequate spectral �ows. For this purpose, let us deûne the F -twisted
mapping cone associated with (H, F ) by

M = {(As)s∈[0,1] ∈ C([0,1],A +K(H)) ∣ A0 = F ∗A1F ∈ A
andKs = As −A0 ∈ K(H)} .

_is is a C∗-algebra, and the evaluation application ev ∶ M → A deûned by
ev((As)s∈[0,1]) = A0 is an algebra homomorphism. Furthermore, the suspension
SK(H) = C0((0,1),K(H)) is a subalgebra embedded inM so that SK(H) ↪
M → A is exact. Finally, an explicit li� of A ∈ A intoM is given by (1 − s)A +
sF ∗AF = A + sF ∗[A,F ]. An arbitrary li� of A ∈ A is denoted by Lift(A) =
(Lift(A)s)s∈[0,1]. IfA is selfadjoint, one can always assume the li� to be selfajoint as
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well (just work with 1
2
(Lift(A)∗s + Lift(A)s) if necessary). Resuming, one has the

following proposition.

Proposition 3.1 _e sequence

0Ð→ SK(H) ↪Ð→M evÐ→ AÐ→ 0

is exact.

_is sequence is splitting if and only if F commutes with A. _e 6-term exact
sequence ofK-theory associated with the exact sequence is

K0(SK(H)) ı∗ // K0(M)) ev∗ // K0(A)

exp

��
K1(A)

Ind

OO

K1(M)ev∗oo K1(SK(H))ı∗oo

Here, K0(SK(H)) = K1(K(H)) = 0 and K1(SK(H)) = K0(K(H)) = Z. _e
connecting map exp ∶ K0(A) → K1(SK(H)) on the right-hand side is, in terms of
a (self-adjoint) li�, explicitly given by

(3.2) exp([P ]0) = [exp(2πıLift(P )s)] 1 = [exp(2πı(P + sF ∗[P,F ]))]
1
,

where in the second equality an explicit li� was chosen. Furthermore, the indexmap
from K1(A) to K0(SK(H)) = 0 is trivial. _us, the other map of interest to us,
ev∗ ∶ K1(M) → K1(A), is surjective and has an inverse ev∗ ∶ K1(A) → K1(M).
_erefore, every unitary U ∈ A has a unitary li� Lift(U) ∈M. In general, it may be
diõcult to ûnd an explicit formula for such a unitary li�, but if the Fredholm module
is odd, then an explicit choice is given by

ev∗([U]1) = [U exp( ıπ
2
(−1 + (1 − s)F + sU∗FU)) F ]

1

= [U exp( ıπ
2
(F − 1 + sU∗[F,U])) F ]

1
.

A further diòerence between odd and ungraded even Fredholm modules is pointed
out in the following result.

Proposition 3.2 If (H, F ) is odd, then exp = 0; that is, every class of projections in
A is the image of a class of projections inM.

Proof If the Fredholm module is odd, then it is possible to choose a li� given by a
path of projections. By (3.2) this implies the result. LetQ = 1

2
(F + 1) be the positive

spectral projection of F . _en set

Lift(P )s = QPQ + eıπsQP (1 −Q) + e−ıπs(1 −Q)PQ + (1 −Q)P (1 −Q),
which can indeed be checked to be self-adjoint and idempotent.

Resuming, for an odd Fredholm module and a unitary U one has ev∗([U]1) ∈
K1(M),while for an evenFredholmmodule and aprojectionP onehas exp([P ]0) ∈
K1(SK(H)). In both cases, there is an associated spectral �ow. Let us beginwith the
odd case. _e path of unitaries s ∈ [0,1] ↦ Vs = U∗ Lift(U)sF satisûes V0 = F and
V1 = U∗FU . Hence the spectrum of V0 and V1 consists of two inûnitely degenerate
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eigenvalues {−1,1} so that V0, V1 ∈ ŜF∗(H). As Vs is a compact perturbation of
V0, there are a ûnite number of eigenvalues (on the unit circle) moving from −1 to 1
along the path s ∈ [0,1] ↦ Vs, and this allows one to deûne a spectral �ow. In order
to formulate this spectral �ow again in the picture of paths of self-adjoint operators
presented in Section 1, one can considerRe(Vs) = 1

2
(Vs−V ∗

s ) the spectrumofwhich
consists of the spectrum of Vs projected onto the real line (along the imaginary axis).
_us,

Sf(s ∈ [0,1]↦ U∗ Lift(U)sF ) = Sf(s ∈ [0,1]↦Re(Vs)) = Sf(F,U),

where the last equality re�ects Re(V0) = F and Re(V1) = U∗FU . _eorem 2.1
combined with the above discussion then implies the following theorem.

_eorem 3.3 Let U ∈ A and (H, F ) be an odd Fredholm module. _en

⟨(H, F ), [U]1⟩ 1 = Sf(F,U).

Next let us consider the even case. First of all, exp(2πıLift(P )s) − 1 ∈ K(H)
so that the essential spectrum of exp(2πıLift(P )s) is {1} for all s independent of
the choice of the self-adjoint li�, namely exp(2πıLift(P )s) ∈ U∗(H). _erefore, the
path has a winding number

Wind(s ∈ [0,1]↦ exp(2πıLift(P )s)) = Sf(2P − 1, F ).

_eorem 3.4 Let P ∈ A and let (H, F ) be an even Fredholm module forA. _en

⟨(H, F ), [P ]0⟩0 = Sf(2P − 1, F ) .

4 Real and Quaternionic Structures

LetH be a complex separable Hilbert space with complex conjugation C (also called
real structure), namely C is anti-unitary and C2 = 1. _is allows to deûne the complex
conjugate T = CTC ∈ B(H) for any operator T ∈ B(H) as well as its transpose
T t = (T )∗. Let a further structure on H be given unitary operators J, I ∈ B(H)
which are real J = J and I = I , and satisfy J2 = 1 as well as I2 = −1. Note that J = 1
is a possible choice, and that the existence of I forces a ûnite dimensionalH to be of
even dimension. _en JC and IC are called real and quaternionic structures on H,
respectively.

Deûnition 4.1 Let the above data and an operator T ∈ B(H) be given.
(i) T is even real (or simply real) if and only if J∗TJ = T .
(ii) T is odd real (or quaternionic) if and only if I∗TI = T .
(iii) T is even symmetric if and only if J∗T tJ = T .
(iv) T is odd symmetric if and only if I∗T tI = T .

_e sets of even and odd real operators are denoted by BR(H, J) and BR(H, I),
and those of even and odd symmetric operators BS(H, J) and BS(H, I). Similarly,
the even and odd real Fredholm operators are FR(H, J) and FR(H, I), and the even
and odd symmetric Fredholm operators are FS(H, J) and FS(H, I).
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Via T ∈ BS(H, I) ↦ IT , the odd symmetric operators are in bijection with the
anti-symmetric operators, and similarly the odd symmetric Fredholm operators are
in bijection with the anti-symmetric Fredholm operators (which are not necessarily
real as in [AS]). _e reason to put forward the odd symmetric operators is that they
have even degeneracies at every level of the Jordan hierarchy [SB], a property that
does not hold for antisymmetric operators. _e following theorem can be deduced
from [AS]. A detailed, purely functional analytic proof is given in [SB].

_eorem 4.2 Let the above data be given.
(i) _e connected components of FR(H, J) are labelled by

T ∈ FR(H, J)↦ Ind(T ) ∈ Z,

which is a homotopy invariant with Ind(T + K) = Ind(T ) for compact K ∈
BR(H, J).

(ii) _e connected components of FR(H, I) are labelled T ∈ FR(H, I) ↦ Ind(T ) ∈
2Z, which is a homotopy invariant with Ind(T + K) = Ind(T ) for compact
K ∈ BR(H, I).

(iii) FS(H, J) has one connected component.
(iv) _e Z2 index T ∈ FS(H, I) ↦ Ind2(T ) = dim(Ker(T )) mod2 ∈ Z2 is a

homotopy invariant that labels the two connected components of FS(H, I) and
satisûes Ind(T +K) = Ind(T ) for compactK ∈ BS(H, I).

Items (i) and (ii) are relatively straightforward,with (ii) following from aKramers’
degeneracy argument. _e proofs of (iii) and (iv) aremore involved, with (iv) pend-
ing on the above-mentioned even spectral degeneracy of odd symmetric matrices.
Furthermore, the following representation theorem for odd symmetric operators of
[SB] (generalizing a result of C. L. Siegel) will be used below. Note that it also im-
plies that the sets of odd symmetric invertibles and odd symmetric unitaries are path
connected.

_eorem 4.3 T ∈ BS(H, I) if and only if there exists A ∈ B(H) with T = I∗AtIA.

Example Let us provide examples of Fredholm operators in the above classes with
non-trivial indices. Let S be the le� shi� on the Hilbert spaceH = `2(N) furnished
with the natural ûberwise complex conjugation C and J = 1. _en Sn ∈ FR(H, J)
and Ind(Sn) = n. Next let us consider H = `2(N) ⊗ C2 with I = ( 0 −1

1 0 ) . _en
T = ( Sn 0

0 Sn ) ∈ FR(H, I) and T ′ = ( S 0
0 S∗

) ∈ FS(H, I) with Ind(T ) = 2n and
Ind2(T ′) = 1.

In view of Section 2, it is now natural to consider dilations of Fredholm operators
in FR(H, J), FR(H, I), FS(H, J), and FS(H, I), which have the same symme-
try properties, and then to study the associated spectral �ow as in _eorem 2.1. For
FR(H, J) and FR(H, I) there is little new to discover, except that the spectral �ows
associated with operators FR(H, I) all have Kramers degeneracy. More interesting
is the case of odd symmetric Fredholm operators for which the concept of Z2-valued
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spectral �ow will be introduced in the next section. _is is then connected to Z2

indices in Section 6.

5 Z2-valued Spectral Flow

_e aim of this section is to introduce the new concept of a Z2-valued spectral �ow
Sf2(F,U) similar to in (1.2), but under the supplementary assumption that F and
U are odd symmetric. Hence, let F ∈ ŜF∗(H, I) = ŜF∗(H) ∩ BS(H, I) and U ∈
US(H, I) = U(H)∩BS(H, I). _en let Θ(F,U, I) be the set of paths in s ∈ [0,1]↦
Fs ∈ ŜF∗(H) such that

F0 = F,(i)
Fs − F ∈ K(H) for all s ∈ [0,1],(ii)

F1−s = (IU)∗(Fs)t(IU).(iii′)

Let us note that conditions (i) and (ii) are the same as in Section 1, but (iii′) is strictly
strongerbecause (iii′) indeed impliesF1 = U∗FU . Furthermore, it impliesσ(F1−s) =
σ(Fs). Hence the spectral curves are already determined by the ûrst half s ∈ [0, 1

2
]↦

Fs of thepath. Aparticularpath realizing (iii′) is given by s ∈ [0,1]↦ F+sU∗[F,U],
and can readily be checked. _e odd symmetry assumptions imply Kramers’ degen-
eracy of Fs for s = 0, 1

2
,1 by the following result.

Lemma 5.1 F0, F 1
2
, and F1 have even degeneracy for every ûnitely degenerate eigen-

value.

Proof _e arguments being similar, let us focus on the case s = 1
2
. One has F 1

2
V =

V F 1
2
, where V = U∗I∗. If F 1

2
ψ = λψ for some ψ ∈H and λ ∈ R, then

F 1
2
(V ψ) = V (F 1

2
ψ) = λ(V ψ).

It remains to show that V ψ and ψ are linearly independent. Suppose that there is
some a ∈ C such that aψ = V ψ. _en ψ = −∣a∣2ψ, which implies a = 0. _is shows
that λ is at least twice degenerate. If the degeneracy is larger, then one chooses an
eigenvector in the orthogonal complement of the span of ψ and V ψ and runs the
argument above. Repeating this procedure proves the lemma.

Proposition 5.2 Let F ∈ ŜF∗(H, I) and U ∈ US(H, I). _en

Sf(s ∈ [0, 1
2
]↦ Fs) mod 2

is independent of the choice of path s ∈ [0,1] ↦ Fs in Θ(F,U, I) and thus deûnes
Sf2(F,U) ∈ Z2, which is called a Z2 spectral �ow. In particular, it can be calculated by
a special path

Sf2(F,U) = Sf(s ∈ [0, 1
2
]↦ F + sU∗[F,U]) mod 2.

Proof Note that the deûnition of Sf2(F,U) only invokes half of the spectral curves,
re�ecting that σ(Fs) = σ(F1−s). Let s ∈ [0,1] ↦ Fs and s ∈ [0,1] ↦ F ′

s be two
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paths in Θ(F,U, I). _en r ∈ [0,1] ↦ rFs + (1 − r)F ′
s is a homotopy in Θ(F,U, I)

keeping the initial and ûnal point ûxed. It has to be shown that Sf(s ∈ [0, 1
2
] ↦ Fs)

mod 2 is constant during this homotopy. _e spectral �ow Sf(s ∈ [0, 1
2
] ↦ Fs) is

not necessarily constant because the right end point F 1
2
is not being kept ûxed (even

though the le� end point F0 is ûxed), but it only changes bymultiples of 2 because of
the Kramers’ degeneracy of F 1

2
proved in Lemma 5.1.

Remark If 0 /∈ σ(Fs) for s = 0, 1
2
and the spectral curves of s ∈ [0, 1

2
] ↦ Fs inter-

sect the segment [0,1] × {0} transversally, then Sf2(F,U) can simply be calculated
as the number of intersections with the segment modulo 2. Note that Sf(F,U) = 0.

_e following proposition states a consequence of non-trivial Z2-spectral �ows. It
is readily proved by contraposition.

Proposition 5.3 LetF ∈ ŜF∗(H, I) andU ∈ US(H, I). Suppose that Sf2(F,U) = 1
and let s ∈ [0,1] ↦ Fs be any path satisfying (i)–(iii′). _en there exists at least one
evenly degenerate eigenvalue λ ∈ σ(F 1

2
) ∩ (−1,1).

Let us introduce the set of operator pairs for which a Z2 spectral �ow can be de-
ûned:

P(H, I) = {(F,U) ∈ ŜF∗(H, I) ×U(H, I) ∣ [F,U] compact} .
It carries the subspace topology induced from the norm topology on B(H) × B(H).
As Sf(F,U) = 0 for all (F,U) ∈ P(H, I), one has P(H, I) ⊂ P(H)0. Note that
indeed each point (F,U) ∈ P(H, I) deûnes a class of paths Θ(F,U, I) so that it is
possible to view the Z2 spectral �ow as amap Sf2 ∶ P(H, I)→ Z2.

Proposition 5.4 _e spectral �ow Sf2 ∶ P(H, I)→ Z2 is locally constant.

Proof Let r ∈ [0,1]↦ (F (r), U(r)) ∈ P(H, I) be a homotopic change in P(H, I).
Associated with it are the paths s ∈ [0, 1

2
] ↦ F (r) + sU(r)∗[F (r), U(r)], for each

of which Sf2(F (r), U(r)) is well deûned by Proposition 5.2. Now the homotopic
deformations change the spectrum of F0 = F and F 1

2
, but only bymultiples of 2 each

by Lemma 5.1. _us, Sf2(F (r), U(r)) is constant in r.

6 Odd Symmetric Dilations and their Z2 Spectral Flow

In agreement with the previously introduced notation, let us denote by EUS(H, I)
the subset of odd symmetric essentially unitary Fredholm operators.

_eorem 6.1 Let T ∈ EUS(K, IK) be an odd symmetric essentially unitary operator
on a separableHilbert spaceK furnished with an orthogonal IK satisfying (IK)2 = −1.
Suppose that ∥T ∥ ≤ 1. Let UT ∈ BS(H, IH) be an odd symmetric unitary dilation with
associated injective partial isometry Π ∶ K →H satisfying IK = Π∗IHΠ. Here IH is an
orthogonal onH with (IH)2 = −1. _en, with F = 2 ΠΠ∗ − 1,

(6.1) Ind2(T ) = Sf2(F,UT ) = Sf2(s ∈ [0,1]↦ F + s(UT )∗[F,UT ]) .
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Proof Let H = K ⊕ K′ be furnished with a real unitary IH = IK ⊕ IK′ satisfying
(IH)2 = −1. Both K and K′ are inûnite dimensional (and separable), and therefore
[SB, Proposition 5] implies that there exists an orthogonal (namely a real unitary)
O ∶ K → K′ such that IK′ = OIKOt. Hence, conjugating UT with diag(1,O) leads
to a new odd symmetric dilation still denoted by UT , which now acts onH = K ⊕K
furnished with IH = IK ⊕ IK. From now on the index on I will be suppressed. In the
grading ofH = K ⊕K the dilation must have the form

UT = ( T B
I∗BtI D

) .

_e unitarity of UT is equivalent to the 4 equations

TT ∗+BB∗ = 1K, B∗B+D∗D = 1K, T ∗B+I∗BID = 0, T I∗BI+BD∗ = 0.

_is shows again that B is compact. As Ind2(UT ) = 0, it thus follows by homotopy
that Ind2(D) = Ind2(T ). Let us note that the Halmos dilation UH

T deûned in (2.4)
lies in US(H, I). As a ûrst step, it will be veriûed that (6.1) holds for UH

T . Two cases
are considered separately. First, if Ind2(T ) = 0, then by _eorem 4.2(iv) there exists
a path in FS(K, I) from T to the identity. _is leads to a path of Halmos dilations
(and thus, in particular, in US(H, I)) connecting UH

T to 1. Because the Z2 spectral
�ow is a homotopy invariant, this implies that

Sf2(s ∈ [0,1]↦ F + s (UH
T )∗[F,UH

T ]) = 0 = Ind2(T ).
Second of all, if Ind2(T ) = 1, again by_eorem4.2(iv), there exists a homotopy from
T to

T0 = (S 0
0 S∗

) , I = (0 −1
1 0

) ,

whereS is a unilateral le� shi� onK ofmultiplicity 1 (associatedwith an orthonormal
sequence in K spanning half of K). It satisûes S∗S = 1 − P , SS∗ = 1, and SP = 0,
where P is a one-dimensional orthogonal projection on K. _us there exists a path
of odd symmetric unitary dilations from UH

T to

U0 =
⎛
⎜⎜⎜
⎝

S 0 0 0
0 S∗ 0 P
P 0 −S∗ 0
0 0 0 −S

⎞
⎟⎟⎟
⎠
.

For this dilation, one has

F + s (U0)∗[F,U0] =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
+ 2s

⎛
⎜⎜⎜
⎝

P 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −P

⎞
⎟⎟⎟
⎠
.

Now one can read oò

Sf2(s ∈ [0,1]↦ F + s (U0)∗[F,U0] by 0) = 1 = Ind2(T ).
Invoking again the homotopy invariance of the Z2 spectral �ow and combining with
the case Ind2(T ) = 0, one concludes that (6.1) holds for UH

T .
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As in the ûrst proof of_eorem 2.1, it now remains to construct a homotopy from
(F,UT ) to (F,UH

T ) in P(H, I). Let us begin by factorizing UT . From TT ∗ +BB∗ =
1, it follows that there is a unitary V such that

B∗ = V (1 − TT ∗) 1
2 .

_is is not the polar decomposition, in which V would be a partial isometry with
Ker(V ) = Ker(B∗), but rather amodiûcation of it (which is arbitrary). _en

UT = ( T (1 − TT ∗) 1
2V ∗

I∗V I I∗((1 − TT ∗) 1
2 )tI D

)

= I∗ (I
∗ 0
0 I∗V ∗)

t

( T (1 − TT ∗) 1
2

(1 − T ∗T ) 1
2 I∗V tIDV

) I (I
∗ 0
0 I∗V ∗) .

(6.2)

Now recall that if T is odd symmetric, then so is I∗AtTIA for an arbitrary operator
A. _is shows, ûrst of all, that D′ = I∗V tIDV is odd symmetric. As all factors in
(6.2) are unitary, thematrix in themiddle is also an odd symmetric unitary dilation of
T . Second, the factorization (6.2) shows explicitly that UT is odd symmetric (which,
of course,was already known). _is remains true if V in the outer factors of (6.2) (not
in the factor in themiddle) is homotopically deformed to 1. Hence UT is homotopic
to the odd symmetric unitary dilation

U ′
T = ( T (1 − TT ∗) 1

2

(1 − T ∗T ) 1
2 D′

) ,

and,moreover, during the homotopy the oò-diagonal operators remain compact. For
the sake of simplicity, let us setD′ =D. Now the unitarity of U ′

T implies

(6.3) TT ∗ =D∗D, (T ∗ +D)(1 − TT ∗) 1
2 = 0.

Let us introduce the subspace V = Ker(1 − TT ∗) and denote by PV the orthogonal
projection on V . _en I∗(1 − T ∗T )tI = 1 − TT ∗ shows IV = Ker(1 − T ∗T ). Also
note that V = Ker(1 −DD∗) and IV = Ker(1 −DD∗). Furthermore, T ∗ ∶ V ↦ IV
because v = TT ∗v impliesT ∗v = T ∗T (T ∗v). Similarly, T ∶ IV ↦ V ,D ∶ V ↦ IV and
D∗ ∶ IV ↦ V . Moreover, all four maps are isometric and are therefore also unitary.
Finally, T ∗ ∶ V⊥ → (IV)⊥ as one checks by writing out the orthogonality relations.

Using the functional calculus of a unitary operator, let us now deûne unitaries
(T ∗) 1

2 ∶ V → IV and D− 1
2 ∶ IV → V (here the isomorphism IV ≅ V is suppressed

in the notation). _us W ∣V = ıD− 1
2 (T ∗) 1

2 ∣V ∶ V → V is unitary. It is extended to a
unitary on K by setting W = W ∣V + (1 − PV). Let us choose a path r ∈ [0,1] ↦
W (r)∣V of unitaries on V such thatW (0)∣V =W ∣V andW (1)∣V = 1V . SetW (r) =
W (r)∣V + (1 − PV) and D(r) = I∗W (r)tIDW (r). First, one readily checks that
D(r) is odd symmetric for all r. Obviously, D(1) = D. Moreover, with some care
one also checksD(0)∣V = −T ∗∣V by construction. Finally, D(r) leaves V⊥ invariant
and D(r)∣V⊥ = −T ∗∣V⊥ due to the second identity in (6.3). Hence D(0) = −T ∗ so
that U ′

T is homotopic to theHalmos projection inside US(H, I).
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7 The Z2 Mapping Cone of a Fredholm Module

LetA be a C∗-algebra of bounded operators on a complex Hilbert spaceH and sup-
pose that, given an involutive *-antiautomorphism, τ ∶ A → A. _en Aτ = {A ∈ A ∣
τ(A) = A} is a real C∗-algebra that has 8 Real K-groups [Sch]. Here the focus will
be on τ of the form τ(A) = I∗AI with I and complex conjugation as in Section 4,
and the real C∗-algebra will then be denoted byAI . Furthermore, only theK-group
K0(AI) will be considered. It is by deûnition the set of homotopy classes of orthog-
onal projections (or invertible self-adjoints) in matrix algebras over AI , to which I
is extended by I ⊗ 1. Otherwise stated, K0(AI) is the set of homotopy classes of
odd symmetric projections inA. _e reason for picking out this example is that there
may beZ2 invariants contained inK0(AI). It is also possible to study classes of even,
symmetric, invertible self-adjoints (giving classes in K0(AJ) with J2 = 1), or even
and odd symmetric skew-adjoints, and furthermore classes of unitaries (or even in-
vertibles) that are even or odd real or symmetric, but this full-�edged theory requires
various elements of RealK-theory and will not be developed here.

Topological content will be extracted from a class [P ]0 ∈ K0(AI) again by use
of Fredholm modules that have a supplementary symmetry property. An (ungraded
version of an) even Z2-Fredholm module (H, F ) is deûned to be an odd symmetric
unitary operator F = I∗F tI such that [A,F ] ∈ K(H) for all A ∈ AI . A pairing will
be deûned by

⟪(H, F ), [P ]0⟫0 = Ind2(PFP ),
where P ∈ AI , or matrix algebras thereof. Note that indeed PFP is odd symmetric
so that theZ2 index iswell deûned, and due to its homotopy, invariance the pairing is
independent of the choice of representative. As shown in _eorem 6.1, Ind2(PFP )
can be calculated as the Z2-valued spectral �ow of any odd symmetric dilation of
PFP :

⟪(H, F ), [P ]0⟫0 = Sf2(2P − 1, F ).
Let us now sketch a K-theoretic interpretation of this Z2 spectral �ow by using an
adequate Z2-mapping cone. It is deûned by

MI = {(As)s∈[0,1] ∈ C([0,1],A +K(H)) ∣
I∗AsI = F ∗A1−sF,As −A0 ∈ K(H),A0 ∈ AI} .

_is is the ûxed point set inMwith respect to the anti-linear involution (also denoted
by τ )

τ((As)s∈[0,1]) = (I∗F tA1−sFI)s∈[0,1].
HenceMI is indeed a real C∗-algebra. Furthermore, one has an exact sequence of
real C∗-algebras

0Ð→ SIK(H) ↪Ð→MI
evÐ→ AI Ð→ 0,

where

SIK(H) = {(Ks)s∈[0,1] ∈ C0((0,1),K(H)) ∣ I∗KsI = F ∗K1−sF} .
Indeed, for any A ∈ AI a li� intoMI is given as before by Lift(A)s = (1 − s)A +
sF ∗AF , and this li� can again be chosen self-adjoint for self-adjoint A. Based on
this construction, one can now transpose the ideas of Section 3.
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