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Abstract

Suppose that G is a ;r-separable group. Let N be a normal ^'-subgroup of G and let H be a Hall
n -subgroup of G. In this paper, we prove that there is a canonical basis of the complex space of the
class functions of G which vanish off G-conjugates of HN. This implies the existence of a canonical
basis of the space of class functions of G defined on G-conjugates of HN. When N = 1 and n is the
complement of a prime p, these bases are the projective indecomposable characters and set of irreducible
Brauer characters of G.
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Keywords and phrases: n-partial characters, Brauer characters, projective indecomposable characters,
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1. Introduction

Let G be a finite group, let n be a set of prime numbers, and let N < G be a 7r'-subgroup
of G. We consider the set G° = {x e G\xn- € A'} and the space of complex class
functions cf(G°) of G defined on G°. Also, if x € C^{G) is a class function of G,
then we denote by x° the restriction of x to G°.

THEOREM 1.1. Suppose that G is n -separable. Then there exists a canonical basis
\n(G\N) o/cf(G°) such that if x e Irr(G), then

X =
4>el*(G\N)

for uniquely determined nonnegative integers
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[2] Partial characters for a normal subgroup 105

Let us write vcf X(G\N) = {r € cf(G)|r(x) = 0 whenever x e G - G0}. For
<PelAG\N),lct

xelrr(G)

Also, if 9, <p 6 cf(G) U cf(G°), write

1
[ e > 0 1 = ~\G\

THEOREM 1.2. Suppose that G is n-separable. Then the set {<J>0|0 € lK(G\N)} is
a basis of vcf,,(G\N). In fact, if H is any Hall n-subgroup of G, this is the unique
basis 2 of'vcf'„ (G\N) satisfying the following two conditions.

(I) Ifr)€ 88, then there exists a e lrr(N H) such that

ac -

(D) Ifye \TT(NH), then

for uniquely determined nonnegative integers an.

Furthermore,

[%, Of = S+.e

for<t>,9elAG\N).

When N = 1, Theorems 1.1 and 1.2 are well-known consequences of Isaacs n-
theory, and lx(G\N) = I^(G) is the set of irreducible Isaacs JT-partial characters of
the group G. Of course, when N = I and n = p', then I^(G|A^) = IBr(G) is the
set of irreducible p-Brauer characters of G. In the other extreme case, when G° = G
(that is, when N is a normal 7r-complement of G), then I^(G|A^) = Irr(G). If G is a
7r'-group, then N is any normal subgroup of G and in this case I^(G|A^) is the set of
sums of the orbits of the action of G on lrr(N).

The set ln(G\N) of 'relative n-partial characters with respect to N ' is described
in Section 6 below.
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106 Gabriel Navarro and Lucia Sanus [3]

2. Good bases

We do Sections 2 and 3 of this paper in a general setting for further use.
If G is a finite group, we denote by cf(G) the space of complex class functions

defined on G. Let H be a subgroup of G and write G° = {J eG Hg.
If X c cf(//) is any subset, we write XG to denote {£G|£ € X}. Note that

XG c cf(G) and that if X is a subspace of cf(//), then XG is a subspace of cf(G). In
particular, ci(H)G = {SG\8 e cf(H)} c cf(G). Also, we write

vcf(G|//) = {a ecf(G)|a(jc) = Oforjc e G - G0}.

If G° = Uitejr ^ ' where •% is the set of conjugacy classes K of G such that
AT n H ^ 0, notice that

dim(vcf(G|//)) =

LEMMA 2.1. IfH is a subgroup ofG, then cf(H)G = \ci(G\H).

PROOF. It is clear by the induction formula that cf(//)G C vcf(G|//). Now, let X
be the set of conjugacy classes K of G such that KP\H ^ 0. Hence, G° = UK£JT *̂ -
If XK is the characteristic function of K e Jf, it is easy to check that {x^K^jtr is a
basis of vcf(G|//). Now, let £ € JT and let C be a conjugacy class of H contained
in K n H. If xc is the characteristic function (in H) of C, then (xc)c is a nonzero
multiple of XK . and the proof of the lemma follows. •

Now, let N be a normal subgroup of G contained in H. If 6 € Irr(A0, then we write
Irr(G|0) for the set of irreducible constituents of 0G. Also, cf(G|(9) is the C-span of
the set Irr(G|#). Now, let © be a complete set of representatives of the orbits of the
action of G on \n{N). It is clear, then, that

cf(G) = 0cf(G|0)

because

Irr(G) = |Jlrr(G|0)

is a disjoint union (by Clifford's theorem).
We denote by

vcf(G|H, 6>) = vcf(G|tf) n cf(G|(9).
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[4] Partial characters for a normal subgroup 107

LEMMA 2.2. Let N < G and let N c H c G. Let 9 be a complete set of
representatives of the action of G on lrr(N). Then

vcf(G\H) = ff) vcf(G\H, 8).

PROOF. It is clear that the sum on the right is direct and contained in vcf (G\H).
Since cf(//)G = vcf (G\H) by Lemma 2.1, it suffices to prove that if a € lrr(H), then
aG € YL$€& vcf(G|//, 8). Now, let \x € Irr(A )̂ be an irreducible constituent of aN.
Hence (ig = 0 for some 8 e 0 and g € G. Now, if, as usual, a8 denotes the character
of //* satisfying a*(h8) =a(h)forh e / / , thenaG = (ag)G e vcf(G|//)ncf(G|6>),
and the proof of the lemma follows. D

DEFINITION 2.3. Suppose that N < G is contained in H c G. Let 0 e IrrCA )̂ and
let T = 1G{9) be the inertia group of 8 in G. We say that 8 is H-good (with respect
to G), if for every g e G, we have that Hs H T is contained in some 7-conjugate of
H n 7. In other words, 0 is //-good if G° D r = 7° where T° = \J,eAH n T)'•

LEMMA 2.4. Suppose that N is a normal subgroup of G contained in H c G, let
8 e lrr(N) be H-good and let T = IG(8). Then induction defines an isomorphism

\cf(T\TnH,6) -» vcf(G|//, 8).

PROOF. By the Clifford correspondence, we know that induction defines a bijection
cf(T\8) - • cf(G|0). So it suffices to show that if f e cf(r|0), then f 6 vcf(T\ T n
//) if and only if fG e vcf (G|//).

If we assume that \jr € vcf (T| T n / / ) , then, by the induction formula, it is clear
thatVG e vcf(G|//).

Now, let f e cf(7|6») and assume that fG e vcf(G|//). We claim that {fG)T €
vcf(T|r n / / ) . Let f € T - r° . Hence, f € T - G° and therefore, fG(t) = 0. Thus
{fG)T e vcf(T|r PI / / ) , as claimed. Now, let A be a complete set of representatives
of the orbits of the action of T on Irr(A^). (Of course, 8 € A because 8 is 7-invariant.)
Hence, by Lemma 2.2, we have that

vcf(T|T n H) = 0 vcf(T|TDH,X).

Write i/r = £reirT(7-|6))[V'. T l r - If T e Irr(r|0), then, by the Clifford correspondence,
we know that
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108 Gabriel Navarro and Lucia Sanus [5]

where 3 r is a character of T none of whose irreducible constituents lie over 9. Thus

reIrT(r|8)

where

r€ltr(r|fl)

does not have any irreducible constituent lying over 9. In other words,

S£ ^ d(T\k).
keA-[6)

Since

by Lemma 2.2 we conclude that necessarily \]s e vcf (T\ T D H, 9), as desired. •

In [6], we defined what it means for a basis of vcf(G|#) to be 'good'.

DEFINITION 2.5. A basis 38 of vcf(G|//) is good if it satisfies the following two
conditions.

(I) If r\ e SB, then there exists a € lrr(H) such that ac = r).
(D) If y e Irr(//), then yG = Xl^e^

air? f°r uniquely determined nonnegative
integers a,.

It is easy to show that good bases are necessarily unique.

THEOREM 2.6. IfSB and <€ are good bases of vcf (G\H), then 38 = c€.

PROOF. See [6, Theorem 2.2]. •

We will denote by P(G\H) the unique good basis (if it exists) of vcf {G\H).
Here, we are interested in good bases 'over' an irreducible character of a suitable

normal subgroup.

DEFINITION 2.7. Let N < G, let 9 e ln(N) and let N c H c G. A basis SB of
vcf (G\H, 9) is good if it satisfies the following conditions.

(I) If T) e t%, then there exists a e lrr(H\9) such that aG = r\.
(D) If y € lrr(H\9), then yG = J2ne&

 an^ f°r uniquely determined integers a,,.
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[6] Partial characters for a normal subgroup 109

The same elementary argument as in the proof of Theorem 2.6 shows that good bases
'over' irreducible characters are necessarily unique. We will denote by P(G\H,9)
the unique good basis (if it exists) of vcf(G|//, 9).

We may form a good basis for vcf(G|//) from good bases over normal irreducible
constituents. To prove this result, we need a key property of //-good characters.

LEMMA 2.8. Suppose that N is a normal subgroup of G contained in H and let
9 e Irr(A0 be H-good. If $ e Irr(// \6g) for some g G G, then 0G = yG for some
character y e ci(H\6).

PROOF. We have that there is a G-conjugate K of H with a character r\ G
such that rf - fiG. Now, r\ = fK for some rfr G Irr(7 n K\9) by the Clifford
correspondence. Since 9 is //-good (with respect to G), it follows that T n AT is
contained in some 7-conjugate of H <1 T. So there is a ? € r such that U =
(TDK)' c. m //. Now, f e ln(U\9), and therefore y = (xfr1)" is a character of
// such that all irreducible constituents lie over 9. Since

yG = (f')G = fG = yf = f3G,

the proof of the lemma is complete. •

LEMMA 2.9. Suppose that N <G and let N C. H c. G. Let @ be a complete set of
representatives of the action of G on lrr(N) and assume that each 9 G 0 is H-good
(with respect to G). For each 9 G 0, suppose that P(G\H, 9) is a good basis of
\cf(G\H,9). Then

\JP(G\H,9) = P(G\H).

PROOF. By elementary linear algebra and Lemma 2.2, we have that {Je€& P(G\H, 9)
is a basis of vcf(G|//). To complete the proof of this lemma, we have to prove that
given y G Irr(//), then

E
for some nonnegative integers aSri. Now, there exists g e G and 9 G 0 such that y
lies over 98. By Lemma 2.8, there exists a character /3 of H all of whose irreducible
constituents lie in Irr(//|#) and such that yG = fiG. Since

for some nonnegative integers a$n, the proof of the lemma is complete. •
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110 Gabriel Navarro and Lucia Sanus [7]

There is a 'Clifford correspondence' for good bases over normal irreducible con-
stituents which easily follows from Lemma 2.4.

LEMMA 2.10. Suppose that N < G is contained in H C G. Let 8 e ln(N) be
H-good and let T = Ic(9). If P(T\ T n H, 9) is a good basis o/vcf(T\ TDH, 9),
then P(T\TC\H,8)G isagoodbasisofvcf(G\H,9).

PROOF. It is clear by the definition of good bases, the Clifford correspondence and
Lemma 2.4. •

LEMMA 2.11. Suppose that N is a normal subgroup of G contained in H C G and
let 8 e Irr(A0 be H-good. Then

cf (H\9)c = vcf(G|//,<9).

PROOF. If a e lrr(H\8), then it is clear that aG e vcf(G|//, 6). Hence,

ci(H\6)G c vcf(G|//,0)

and we now prove the reverse inclusion. Let <j> e vcf(G|//, 6) and write (p = rjG

for some t] € cf(//). Decompose rj = t]{ + r)2 where /71 is a linear combination of
irreducible characters of H lying over G-conjugates of 6 and no irreducible constituent
of rj2 lies over a G-conjugate of 8. Then

(^)G = tf> - (>?i)C e cf(G|0).

This easily implies that (r)2)
G = 0 and <f> — (r]i)G.

To complete the proof of the lemma, it suffices to apply Lemma 2.8. D

3. Partial characters

Our next objective is to associate to the basis P{G\H) of vcf(G|//), a natural basis
I(G\H) of cf(G°), where cf(G°) is the set of complex class functions of G defined
onG°.

Note that if G° = U/cejr K, where J(f is the set of conjugacy classes K of G such
that KC\H }£0, then

dim(cf(G0)) = \X\ = dim(vcf(G|#)).

If 4>, 9 6 cf(G°) U cf(G), we write

0 , 0]°= 7^7
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[8] Partial characters for a normal subgroup 111

We may view [•, ]° as a bilinear pairing

[•, -]° : cf(G°) x vcf(G|//) -> C.

We claim that this pairing is non-degenerate. By elementary linear algebra, it suffices
to prove that any r\ € vcf(G\H) is zero if [<j>, r]]° = 0 for every (j> e cf(G°). Now,
if XK e cf(G°) is the characteristic function of K e Jf, where J(f has the same
significance as before, and xK e K, then we have that

0 - [XK, nf = TF;
I Of

This proves the claim.
Given a basis SB = {rju ... , r)k] of vcf(G\H), then it follows that there exists a

unique basis y = [<f>u ... , <pk] of cf(G°) satisfying

If x € cf(G), then x° e cf(G°) denotes the restriction of x to G°.

THEOREM 3.1. Let P{G\H) = fa,, . . . ,t]k] be the good basis of\cf (G\H) and let
I(G\H) = ( 0 i , . . . , <pk] be the unique basis o/cf(G°) satisfying

x°=

If X is a character of G, then

for uniquely determined nonnegative integers dx<f,.

PROOF. This is [6, Theorem 2.4]. •

We may view the basis I(G\H) as the set of 'irreducible Brauer characters' of G
with respect to H. We view the integers dx<p as the 'decomposition numbers' and the
elements in a good basis P(G\H) as the 'projective indecomposable characters.' If
</> € I(G\H), then we denote by 4># the unique element in P{G\H) such that

for IM e I(G\H).

LEMMA 3.2. //</> € I(G\H), then
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112 Gabriel Navarro and Lucia Sanus [9]

PROOF. For each /M e I(G\H), let yM e lrr(H) be such that (yM)c = <Iy Now, if
X € Irr(G), then

Since H c G°, we have

H€l(G\H)

Let /i e cf (G) be any extension of fi e cf (G°). Then

Therefore

as required. D

LEMMA 3.3. Suppose that <f> € I(G\H). Then 4>H is an ordinary character of H.

PROOF. Since 4> € cf (G°), we have that <pH e cf (H). Therefore, we may write

xelrr(ff)

Let Y s Irr(//). We prove that [<pH, / ] is a nonnegative integer. By property (D) of
the good bases, we have that

YG= Y, v*v
H€/(G|ff)

for nonnegative integers a^. Let <p e cf(G) be any extension of <p to G. Since yG

vanishes off G°, we have that

[<PH, y] = [0ff, y] = 14>, yG] = 0 , yG]° = [0, yG]'
GiO

T
GM*M = E ^ [ ^ ' ^ ^ = af-

J neI(G\H)

This proves the lemma. •
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Our next objective is to prove a Clifford type theorem for partial characters which
we will need later on.

Suppose that N < G is contained in H and let 9 e Irr(A^). Note that the map
0 : cf(G) —*• cf(G°) given by x •-• X° 1S C-linear and surjective. We denote by

cf(G°|0) = cf(G|0)°.

LEMMA 3.4. Suppose that N is a normal subgroup of G contained in H and let 0
be a complete set of representatives of the orbits of the action of G on lrr(N). Then

cf(G°) = 0cf(G°|0).
flee

PROOF. Since

cf(G) = 0cf(G|0) ,

it follows that

9€&

Suppose that

flee

where fie e cf(G|0) for 9 e 0 . We prove that (fie)° = 0. Since H c G°, we have
that

flee

We claim that (/X#,)H and (/x^)// do not have any 'irreducible constituent' in common
whenever 0[ ^ 02. This is because the character (/xe)w consists of a linear combination
of characters of the form XH for x € Irr(G|0). Hence, if 9\ and 02 are not G-conjugate,
it follows that [XH, r}H] = 0 for x e Irr(G|0i) and rj e Irr(G|02). We conclude that

= 0 for 0 e 0 . However, since fig is a class function of G, we see that
)H = 0 if and only if (fj.e)° — 0, and the proof of the lemma is complete. •

In several parts of this paper, we use the fact that [y, r}]° — 0 for y e cf (G°|0) and
r] e vcf(G|//, fx) whenever 0 and \x are not G-conjugate. This easily follows from
the following argument. If x e cf(G|0) is such that x° = y. then

[y.»?]° = fx, r,] = o
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because x and rj do not have any common 'irreducible constituent' by Clifford's
theorem.

We already know that dim(cf(G0)) = dim(vcf(G|//)). In fact, there is a natural
isomorphism between both complex spaces.

LEMMA 3.5. The map 0 i-> (<PH)G is a natural linear isomorphism cf(G°) -»
vcf(G|//). Infact, ifN is a normal subgroup of G contained in H andO G ln(N), then
the map 0 i-> (<pH)G maps cf(G°|0) isomorphically onto vcf(G|H, 0). Therefore, if
{^i,••• . %} is any basis o/vcf (G| H, 9), then there exists a unique basis [y\,... , yk]
o/cf(G°|0) satisfying

PROOF. It is clear that the map 0 H» (0H)G is a linear map cf(G°) - • \cf (G\H).
Since dim(cf(G0)) = dim(vcf(G|H)), it is enough to show that it is injective to
complete the proof of the first part of the lemma.

Suppose that (aH)G = 0 for some a e cf(G°). Let a € cf(G) be an extension of
a to G. Then

(ccH)G = (aH)G = {aH\H)G = a(\H)G.

We have that

0 = ((<XH)G)H = aH((lH)G)H = aH((lH)G)H.

Since the character ((1 H)G)H is never zero, we deduce that aH = 0. Since a e cf (G°),
we have that a = 0. This proves that the map 0 i-> (0«)G is an isomorphism.

If 9 6 lrr(N), then we want to show that the map 0 M> ( 0 H ) G carries cf(G°|0)
isomorphically onto vcf(G|//, 0). Let 0 be a complete set of representatives of the
action of G on Irr(iV) with 6 € ®. By Lemma 2.2 and Lemma 3.4, it suffices to
show that if 0 e cf(G°|0), then (0w)G e vcf(G|tf, 9). Since we already know that
(0W)G 6 vcf(G|//), we have to show that (0W)G 6 cf(G|0). Let/i e cf (G|0) be such
that 0 = /z°. Then 0W = ixH and we prove that (IXH)G € cf(G|0). However, this
reduces to proving that whenever x € Irr(G|0),thenO(://)G € cf(G|0). Lett 6 Irr(G)
be an irreducible constituent of (XH)G- Hence, r is an irreducible constituent of some
£G, where £ e ltr(H) is an irreducible constituent of XH- Since x lies over 0, by
Clifford's theorem we have that £ lies over some G-conjugate of 0. Hence, r lies over
0 and the second part of the lemma is complete.

Finally, suppose that [r\\,... , r)k} is any basis of vcf(G|//, 0). We wish to find a
basis {yi,... , Yk) of cf(G°|0) satisfying
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[ 12] Partial characters for a normal subgroup 115

By elementary linear algebra, it suffices to show that the bilinear pairing

[•, -]° : cf(G°|0) x vcf(G|#, 9) -> C

is nondegenerate. If 0 has the same significance as before, this easily follows from
Lemma 2.2, Lemma 3.4, the fact that the 'whole' pairing

[•, -]° : cf(G°) x

is nondegenerate, and the fact that [y, r?]° = 0 for y 6 cf(G°|0i), n e vcf(G|//, 92)
and distinct 9\, 92 e 0 . (See the remark preceding the statement of this lemma.) •

Suppose that N <G and N c H c G. Assume that the good basis P(G\H, 9)
of \cf(G\H, 9) exists. Then we denote by I(G\H, 9) the unique basis of cf(G°|0)
uniquely determined by P(G\H, 9) by Lemma 3.5.

Next we prove the analogue of Lemma 2.9 for partial characters.

LEMMA 3.6. Suppose that N <G and let N c H c G. Let 0 be a complete set of
representatives of the action of G on ln(N) and assume that each 9 6 0 is H-good
(with respect to G). For each 9 e &, suppose that P(G\H,9) is a good basis of
vcf(G|//,6»). Then

(Jl(G\H,9) = I(G\H).

PROOF. By Lemma 2.9, we have that

\JP(G\H,0) =

Clearly, it is enough to show is that [y, r?]° = 0 for y e cf(G°|0) and r] e vcf (G\H, /x)
whenever 9 and /i, are not G-conjugate. We already remarked on this fact before the
statement of Lemma 3.5. •

Next, we define induction of partial characters. Suppose that J is a subgroup of G
such that J° = G° n J, where J° = \JxeJ{J n H)x. Suppose that r) e cf(J°). Then
we define rf 6 cf(G°) in the following way. If x e G°, we set

c _ * V
n0C)=\J\ t f y

It is straightforward to check that this is a well defined class function on G°. Further-
more, if fx G cf(7) is such that /x° = t], then (/xG)° = r)G.
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LEMMA 3.7. Suppose that N < G, where N c H c G. Assume that 6 € Irr(iV) is
H-goodand suppose that P(T\TC\ H, 9) is a good basis o/vcf(T\ THH, 9), where
T = IG(9). Then the map y h+ yG is a bijection I(T\T n H, 9) -> I(G\H,9).

PROOF. By Lemma 2.10, we know that P(T\T n H,9)G is a good basis of
vcf (G\H, 0). Hence, it suffices to show that

[yG, (<t\)c]° = V r

forr, Y e I(T\TnH,9).
If r e I(T\TDH, 9), then we claim that

where A is a character of T such that none of its irreducible constituents lies over
9. By definition of a good basis of T over 9, it is clear that we may write <J>r =

*>r' 1A"]Vf • By the Clifford correspondence, we know that

where A,/, is a character of 7 none of whose irreducible constituents lie over 9. Thus

where

A =

does not have any irreducible constituent lying over 9, as claimed.
Suppose that y e I(T\T n H,9) and let y € cf(T\9) be such that y° = y. Then

yG e cf(G) is such that (yG)° = yG. Now

[yG, (4>t)
c]° = [yG, (4>r)

G] = [y, ((4>t)
G)r] = [y, <l>r + A] =

= [y, <fr] + [9, A] = [y, * r ] = [y, <M° = 5y,r,

as desired. D

4. Reviewing 7r-theory

Suppose that G is a n -separable group, and denote by G" the set of n -elements of
G, so that if H is a Hall ^--subgroup of G, then G" = U g e G # g - A l s o > i f X e cf(G),
then x17 e cf (G7") denotes the restriction of x to G".

Isaacs proved in [ 1 ] the existence of a unique basis 1̂  (G) of cf (G") satisfying the
following two properties.
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(D) If* €lrr(G), then

X" = Y, d^
for uniquely determined nonnegative integers dx<j).

(FS) If (/> e M G ) , then there exists x e Irr(G) such that x" = 4>-

Of course, in the 'classical case' where it = p', then I^(G) — IBr(G) by the
Fong-Swan theorem.

As the reader may easily check, any basis of cf(G*) satisfying (D) and (FS) is
necessarily equal to ln(G) = [x"\x £ Irr(G), x" is n o t of the form x" = &* + P*
for characters a and /J of G}. Isaacs calls I^(G) the set of irreducible n-partial
characters of G, while the restrictions x" of the characters x of G are simply called
the n -partial characters of G.

There are two known proofs of the theorem above. The original proof in [1]
constructed a canonical subset Bn G c. Irr(G) such that the map x l~> XR turned
out to be a bijection Bn G -*• ln{G). Another easier proof (which, however, does
not allow development of Clifford theory for 1^-characters, among other things) was
given later in [3].

An important role in n -theory is played by the so called Fong characters. If
4> 6 lyr(G), then an irreducible constituent a € ln(H) of (pH is a Fong character of H
associated with (j>, if a ( l ) = </>(l)^. Fong characters always exist and if a^ e Irr(//)
is a Fong character associated with <f> e I^(G), then

for<£, ix e IT(G) (see [2, Section 2]). If

then it easily follows that any Fong character a associated to <p satisfies aG = <$>$•
In the next result, we use the notation of Sections 2 and 3.

LEMMA 4.1. If H is a Hall n-subgroup of a n-separable group G, then the set
{OJ0 € l*(G)} is the good basis P(G\H) of \cf(G\H). Furthermore I(G\H) =
IAG).

PROOF. The first part is [6, Theorem 3.5]. For each <p e l*(G), let a^ € lrr(H) be
such that (<*0)

G = cj>̂  and let x<t> € Irr(G) be such that (x,/,)0 = <f>. If9,(f>€ l*(G),
then

[0, * , ] ° = [(X9)°, 4>^]0 = [Xe, <t>0] = [(xe)H, « , ] = [0H, «+] = 8e.+ ,

as desired. •
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5. Main results

We say that x G Irr(G) is a 7r-character if x ( l ) and o(x) (the order of the
determinantal character detx in the group of linear characters of G) are n -numbers.
The key result on n-characters is due to Gallagher ([4, Corollary 8.16]). It asserts that
if N < G, 9 € Irr(AO is a G-invariant 7T-character and | G : N\ is a 7r'-number, then 9
has a unique extension x to G such that x is a x -character.

If U is a subgroup of G and a € cf(C/), then we saythatais G-stable ifa(jc) = a()>)
wheneverx,y 6 [/are G-conjugate.

The proof of our main results heavily depends on the following lemma.

LEMMA 5.1. Let N < G and let 9 € lrr(N) be a G-invariant n-character. Suppose
that N c U c G is such that | U : N\ is a n'-number. If a & Irr(t/) is the unique
IT-character of U extending 9, then a is G-stable.

PROOF. Let x, y e U and suppose that x = yg for some g e G. We wish to prove
that a(jt) = a(y). LetK = N(x) <z U and let J = N(y) c [/. Note that 7* = A:.
Also, note that aK is the unique n -character of K extending a and that otj is the unique
;r-character of J extending a. Write fi = ctj and consider the character fig of Js — K
defined by P8(js) = fi(J) forj € J. Since 0 is G-invariant, observe that

Hence, f}g is a character of K extending 9. Also, o(/3*) = o(/3) is a 7r-number. By
the uniqueness of the n -character extension, we deduce that

Now,

a(y) = aj(y) = fi(y) = ps(yg) = aK(yg) = aK(x) = a(x),

as desired. D

LEMMA 5.2. Let N be a normal n-subgroup of a n-separable group G and let
9 e lrr(N) be G-invariant. Let H be a Hall it-complement of G and let 9 e ln(N H)
be the n -character of N H extending 9. Then the character 9n is never zero.

PROOF. Let h € H and write K = N(h). Since (9)K is the unique n-character of
K extending 9, we may assume that K = G. If 6* is the Glauberman correspondent
ofO with respect to (h), it follows by [4, Theorem 13.6] that there is e = ±1 such that

as desired. •
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If H is a n -subgroup of G and N is a normal n '-subgroup of G, note that we
may view the characters of H as characters of HN with N in contained in their
kernel. In fact, given a a character of H there is a unique character a of NH with
N c kera such that 6tH = a. We will use this notation in several parts below.
Furthermore, if as usual we identify the characters of G — G/N with the characters
of G with N contained in their kernel (suppose that x i-> X is the natural bijection
{X e ln(G)\N c ker*} -> Irr(G)), we have that

aG =
xelrr(G)

THEOREM 5.3. Suppose that Gisan -separable group. Let H be a Hall n -subgroup
of G and for each (j> e 1̂  (G), let a^, € Irr(//) be a Fong character associated with <p.
Let N be a normal n'-subgroup of G and suppose that 6 e Irr(7V) is G-invariant. If
9 € ln(N H) is the n -character of H N extending 6, then

P(G\HN,6) = {{da^W e\n{G)}.

PROOF. By Lemma 5.1, we know that 9 is G-stable. Hence, we may find 9 e cf (G)
extending 0.

Let y e lrr(HN\6). By Gallagher [4, Corollary 6.17], we have that y = 9jx for
some/i € Irr(//).

Notice that for 0 6 I^(G), we have that aj, is a Fong character of G/N when
considered as a character of HN/N. By Lemma 4.1 (applied in G/N) and the
comments preceding the statement of this theorem, it is easy to check that

for some nonnegative integers a$. Then

yG = (§ii)G = (9NH(lG) = 9[lG

By Lemma 2.11, we have that the set {(6ce^)G\<f> € I^(G)} spans vcf(G\HN, 6).
To complete the proof of the theorem, it remains to show that the set {(9a^,)G\4> €

is linearly independent. If

0 =
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for some complex numbers b^,, then we have that

Therefore

By Lemma 5.2, we conclude that

In fact, using that the characters (a^,)G have N contained in their kernel, and that they
are induced from characters of HN, this easily implies that

^ bA6u)G = 0.

By Lemma 4.1 (applied in G/N), we conclude that b^ = 0 for all <p, proving the
theorem. •

Now we are ready to prove Theorems 1.1 and 1.2. First, we unify the notation we
used in the introduction and in the previous sections.

Suppose that G is a n -separable group and let A/ be a normal 7r'-subgroup of G.
Let H be a Hall it -subgroup of G and notice that

G° = [x e G\xn, eN} = {J(HN)S.
geG

Also,

vcfn(G\N) = [r ecf(G)|r(x) = Ofor;t e G - G°) = vcf(G\HN).

PROOF OF THEOREMS 1.1 AND 1.2. Let H be a Hall n -subgroup of G. Firstly, we
prove that there exists a good basis for vcf (G\HN).

Given 9 € Irr(A0, we claim that there exists x € G such that 0x is HN-good.
Recall that r} e lrr(N) is HN-good if for every g e G, we have that HgN D T is
contained in some T-conjugate of HN n T, where T = IG(r)). Let P be a Hall n-
subgroup of /G(^)- Hence P c //*"' for some x e G. Thus Px is a Hall 7r-subgroup
of T = 1C(6X) contained in H. Therefore, H H T = Px is a Hall ^--subgroup of T
and thus (H n T)N/N is a Hall 7r-subgroup of r/Af. Write rj = 0X. We prove that ?j
is HN-good. Let g € G. Then (HgN n 7)/A/ = (T n HS)N/N is a jr-subgroup of
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T/N. Hence, there exists t e T such that (#«AmT)/Ar c (HnT)'N/N. Therefore,
H*N DTC(HD T)'N = (HN D T)'. This proves the claim.

By the claim, we may find a complete set © of representatives of the orbits of the
action of G on Irr(AO such that each 9 e 0 is HN-good.

By Lemma 2.9, it suffices to show that there exists a good basis P(G\HN, 9)
of \cf(G\HN, 9) for every 9 e @. (We write ln(G\N, 9) for the unique basis of
cf\G°\9) uniquely determined by P(G\HN, 9) by applying Lemma 3.5.)

We fix 9 e & and, by Lemma 2.10, note that we may assume that 9 is G-invariant.
In this case, there exists a good basis of \cf(G\HN, 9) by Theorem 5.3. This proves
that there exists a good basis P(G\HN) of vcf(G\HN) by Lemma 2.9.

LetL.(G|A0 = I(G\HN) be the unique basis ofcf(G°) determined by P(G\HN)
by using Theorem 3.1. (Note also that ln(G\N) = \Jee@ ln(G\N, 9) by Lemma 3.6.)
Also, again by Theorem 3.1, we know that whenever \ e Irr(G), then

x°=

for uniquely determined integers dxltl. Furthermore, if

then, by Lemma 3.2,

This completes the proof of Theorems 1.1 and 1.2. •

6.

In this final section, we give a complete description of the set
Suppose that N isa normal 7r'-subgroup of a ^-separable group G. As before, we

let G° = [x e G\xn' € N} and, as in Section 4, write G" for the set of 7r-elements
of G. If 9 e Irr(A0 is G-invariant and 4> € cf(G"), we define a class function
9*4>e cf(G°) as follows. Let H be any Hall n-subgroup of G and let 9 e irr(HN)
be the unique extension of 9 to HN which is a n'-character. By Lemma 5.1, we know
that 9 is G-stable. If * e G°, then x is G-conjugate to some hn for some h € H and
n € N. By elementary group theory, note that h is then determined up to G-conjugacy.
We define

= 9(hn)(p(h).
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Observe that this is a well defined function by Lemma 5.1. Also, note that 9 * </> €
cf(G°) does not depend on H.

If 9 e Irr(AO, recall that cf(G°|0) = {x°lx e cf(G|0)}, where x° denotes the
restriction of x to G°.

LEMMA 6.1. Suppose that N is a normal n' -subgroup of a n -separable group G.

Let6 e Irr(7V) be G-invariant and suppose that <p e cf (C). Then 0 * 0 e cf (G°|0).

PROOF. We know that 0 * 4> e cf(G°). Let A be a complete set of representatives
of the orbits of the action of G on Irr(iV). By Lemma 3.4, we have that

cf(G°) = cf(G°|0)

Hence, we may write 0*<p = x°+ir°, where x e cf(G|0)andVf e
Then

Now, (0 * <p)NH — 9<PH is a character of N H all of whose irreducible constituents lie
over 6. (Recall that <j>H is a character of H and that <pH is the unique extension of <f>H

to NH containing N in its kernel.) Also, XNH only involves irreducible characters of
NH lying over 6. On the other hand, no 'irreducible constituent' of i/NH lies over
0. Therefore, by the linear independence of lrr(NH), we conclude that \jrNH = 0 .
Hence, \fr° = 0 and the proof of the lemma is complete. •

Recall that we are writing I^(G) for the set of the Isaacs irreducible 7r-partial
characters of G.

THEOREM 6.2. Suppose that G is a n-separable group. Let N be a normal n'-
subgroup of G and let 8 € Irr(7V) be G-invariant. Then

Therefore, if x € Irr(G|0), then

X°

for some nonnegative integers
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PROOF. Let H be a Hall n-subgroup of G. By Theorem 5.3 (and Lemma 3.5), it is
enough to show that

for 0, fi e ln(G). Let x e Bw G with x* = 4> and let 0 * 0 be any class function of
G extending the class function 6 * </>. Now

[d * </>, (§^)G]° = [oTj, (9a^)G]° = [0*4,

= [(0 * <t>)NH, Sal]

Now, N is in the kernel of x [ 1. Corollary 5.3] and therefore, all irreducible constituents
of XNH have Af in its kernel. By Gallagher [4, Corollary 6.17], (and using that
N c kerx), we have that

0XNH, OCTH] - [XNH, a*] =

Now,

by [2, Theorem 2.2]. D

Since it is always possible to choose a complete set 0 of representatives of the
action of G on Irr(A0 such that each member 0 e 0 is HN-good (as we already did in
the proof of Theorems 1.1 and 1.2), it follows that Theorem 6.2, together with Lemma
3.6 and Lemma 3.7 completely describes the set In(G\N).

There is a relationship between the sets ln(G) and In(G\N). The general fact is the
next result. If x € cf(G), we are denoting by x* t n e restriction of x to G", the set of
7r-elements of G.

THEOREM 6.3. Suppose that x e Irr(G) is such that x" e ln(G). Then x° e
\n{G\N) for every normal n'-subgroup N of G.

PROOF. By Theorem 1.1, write

x°=

where the dx4> are nonnegative integers. Let H be a Hall 7r-subgroup of G. Then

XH = J2 dx*<t>n

https://doi.org/10.1017/S1446788700036302 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036302


124 Gabriel Navarro and Lucia Sanus [21]

and note that <pH is a G-invariant character of H because <j>HN is a character of HN
by Lemma 3.3. Hence, by [5, Theorem B], there exists a character i/*̂  of G such that

H = 4>H- Now,

XH =

and we deduce that

Since xn £ IJT(G), this implies that there is a unique <j> e ln(G\N) such that dx<t> = 1,
while rfx/1 = 0 for 0 ^ /x e ln(G\N). This proves the theorem. •

We say that x. ty £ Irr(G) are linked if there exists 0 € I^(G|A^) such that
dx<p ^ 0 ^ ^ 0 . Of course, the connected components in Irr(G) of the graph defined
by linking partitions Irr(G) into 'blocks' associated with the normal n '-subgroup N.
These blocks, the associated Cartan matrices and some other relevant features are
studied in [7].

A natural question when dealing with canonical bases of certain normal subsets of
a finite group, is whether or not there is a 'Fong-Swan theorem' for them; that is, if the
elements of the canonical basis can be extended to characters of the group. Contrary
to the case where N — 1, this is not true here.
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