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A series of direct numerical simulations of Rayleigh–Bénard convection, the flow in a
fluid layer heated from below and cooled from above, were conducted to investigate
the effect of mixed insulating and conducting boundary conditions on convective
flows. Rayleigh numbers between Ra= 107 and Ra= 109 were considered, for Prandtl
numbers Pr=1 and Pr=10. The bottom plate was divided into patterns of conducting
and insulating stripes. The size ratio between these stripes was fixed to unity and the
total number of stripes was varied. Global quantities, such as the heat transport and
average bulk temperature, and local quantities, such as the temperature just below
the insulating boundary wall, were investigated. For the case with the top boundary
divided into two halves, one conducting and one insulating, the heat transfer was
found to be approximately two-thirds of that for the fully conducting case. Increasing
the pattern frequency increased the heat transfer, which asymptotically approached
the fully conducting case, even if only half of the surface is conducting. Fourier
analysis of the temperature field revealed that the imprinted pattern of the plates is
diffused in the thermal boundary layers, and cannot be detected in the bulk. With
conducting–insulating patterns on both plates, the trends previously described were
similar; however, the half-and-half division led to a heat transfer of about a half of
that for the fully conducting case instead of two-thirds. The effect of the ratio of
conducting and insulating areas was also analysed, and it was found that, even for
systems with a top plate with only 25 % conducting surface, heat transport of 60 % of
the fully conducting case can be seen. Changing the one-dimensional stripe pattern to
a two-dimensional chequerboard tessellation does not result in a significantly different
response of the system.
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1. Introduction

Natural convection is a common and important phenomenon that is omnipresent in
Nature. It leads to the transfer of internal energy, within an unstably stratified fluid
layer, via a buoyancy-induced flow. Ocean currents, which are driven by gradients
in density and salinity (Marshall & Schott 1999; Wirth & Barnier 2006), and the
mantle convection inside the Earth, which drives the plate tectonics and generates the
geomagnetic field (McKenzie, Roberts & Weiss 1974; Glatzmaier & Roberts 1995),
are two examples of natural convection. Even outside of our planet, at the most distant
stars, convection is of tremendous importance (Spiegel 1971; Cattaneo, Emonet &
Weiss 2003).

An idealized system that is commonly used to study natural convection, as it
is mathematically well defined and can be reproduced in a laboratory experiment,
is Rayleigh–Bénard (RB) convection (Normand, Pomeau & Velarde 1977; Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012). The RB
system consists of a fluid in a container, which is heated from below and cooled
from above. The fluid is subject to an external gravitational field g. Apart from the
geometric ones, this system has two non-dimensional control parameters, namely
the Rayleigh number Ra = βg1H3/νκ , which measures the strength of the thermal
driving, and the Prandtl number Pr= ν/κ , a property of the fluid, where β and κ are
the isobaric thermal expansion and temperature diffusivity coefficients of the fluid, H
is the system height, ∆ is the applied temperature difference between the plates, and
ν is the kinematic viscosity. Depending on the geometry of the system, other control
parameters such as the aspect ratio of the system, Γ = L/H, appear, where L is a
characteristic horizontal length of the system.

Above a certain critical Rayleigh number, RB flow is linearly unstable, and any
perturbation will cause the onset of convection. This critical value is determined by
the properties of the fluid and the boundary conditions (BCs) of the RB system. If the
thermal driving of the system is far above the critical Ra, the flow becomes turbulent.
This dramatically increases the heat transfer with respect to the purely conductive
case. Modelling this heat transfer is essential for understanding what is going on
inside stars, the Earth’s mantle and many other systems. RB experiments (and
simulations) typically consist of a bottom and a top plate, which have homogeneous
BCs, and lateral BCs, which are either periodic (simulations) to mimic laterally
unconfined systems or adiabatic (experiments) to account for a lateral confinement
that minimizes the heat losses.

However, these idealized systems assume that both the top and bottom plates
have perfectly homogeneous conducting surfaces, while for all real physical systems,
there is a certain degree of imperfection. In Nature we see such inhomogeneities;
for example, the fractures in ice floes (Marcq & Weiss 2012) or the much-debated
insulating effects of continents on mantle convection (Lenardic et al. 2005). Other
examples include convection over mixed (agricultural) vegetation and cities (Zhao
et al. 2014). In engineering applications, or in RB experiments, these can be small
defects in or dirt on the conducting plates, which could result in lower-than-optimal
heat transport. The limiting cases of the BCs are constant-heat-flux BCs, constant-
temperature BCs or thermally insulating BCs with no heat flux. The difference in heat
transfer between the first two types of BCs, Dirichlet and von Neumann, was found to
be negligible for direct numerical simulations (DNS) at large Ra (Johnston & Doering
2007, 2009; Stevens, Lohse & Verzicco 2011), but the increase in flow strength under
fixed-temperature BCs cannot be neglected (Huang et al. 2015). Accounting for a
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Mixed boundary conditions in RB convection 493

finite conductivity of the thermal sources can lead to significant reduction in the heat
transport (Verzicco 2004).

Temperature BCs can also be spatially and temporally varying. The study of the
effects of these imperfect BCs goes back to Kelly & Pal (1978) and later Yoo &
Moon (1991), who applied sinusoidal temperature BCs on both plates, which mimic
plates with embedded heaters. These plates are locally hotter, when closer to the
heater elements. Jin & Xia (2008) showed that the Nusselt number is increased when
the energy input into the system from the plates is periodically pulsed instead of
stationary. Recent experiments from Wang, Huang & Xia (2017) using insulating
lids at the top boundary of an RB cell showed that, with increasing insulating
fraction, the same amount of heat goes through a smaller cooling area. Some
simulations of inhomogeneous BCs have also been performed. Cooper, Moresi &
Lenardic (2013) simulated two- (2D) and three-dimensional (3D) RB systems of
mixed adiabatic–conducting BCs at one plate at moderate Rayleigh numbers, with a
geophysical focus, finding that the distribution of the patches caused changes in the
flow configuration, the bulk temperature and the Nusselt number. The simulations by
Ripesi et al. (2014) added non-conducting defects in the form of periodic patches
to the top plate of a 2D numerical RB system, and studied both the transition to
turbulence of RB flow, finding a delay in this transition when defects were present,
and the fully turbulent regime, finding a decrease in Nusselt number when the patch
wavelength was larger than the characteristic thermal boundary layer scale.

Here, we extend the research of Ripesi et al. (2014) by applying non-conducting
stripe patterns to a 3D RB system. We will focus on the fully turbulent regime instead
of the transition to turbulence, and consider a wider range of patterns at higher Ra,
extending the work by Cooper et al. (2013). We start by applying distributions of
striped insulating patterns to the top boundary only, and study the dependence of both
local and global variables, e.g. effective heat transfer and average bulk temperature, on
the number of stripes. For most of the study, we keep the conducting and insulating
areas equal to each other, but the effect of the ratio of these areas is also studied,
which mimics the degree of imperfection and pollution on the plates. We also study
the effect of applying the same pattern to both plates and the role of the pattern
geometry by applying a 2D chequerboard insulating–conducting pattern on the top
plate. Chequerboards and stripes can be seen as the two limiting cases for the pattern
geometry.

This paper is organized as follows. First, in § 2 we detail the geometry and
numerical method. In the next section, the results for the stripe pattern variations will
be discussed, where both conducting and insulating areas are kept constant. This is
first done on the top plate and later the pattern is applied on both plates. A Fourier
analysis was performed to study the penetration depth of the pattern imprint in the
flow. In § 3.2 a pattern is added to both plates, in § 3.3, we present and discuss
the results for varying the ratio of conducting to insulating surface while keeping
the number of divisions constant, and in § 3.4 we present the results for a plate
with a chequerboard pattern instead of a striped pattern. The paper is concluded by
presenting the conclusions and outlook in § 4.

2. Numerical method

In this numerical study, we solve the incompressible Navier–Stokes equations within
the Boussinesq approximation for RB. In non-dimensional form, these read
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Du
Dt
=−∇P+

(
Pr
Ra

)1/2

∇
2u+ θ ẑ,

Dθ
Dt
=

1
(PrRa)1/2

∇
2θ,

∇ · u= 0,


(2.1)

where u is the non-dimensional velocity, P is the non-dimensional pressure, θ is the
non-dimensional temperature and ẑ is the unit vector pointing in the direction opposite
to gravity g. For non-dimensionalization, the temperature scale is the temperature
difference between the plates ∆, the length scale their distance H and the velocity
scale is the free-fall velocity Uf =

√
gβ1H.

We consider a geometry that is a horizontally doubly periodic cuboid. The domain
has horizontal periodicity lengths of Lx and Ly, and a vertical dimension H. These
variables with a tilde superscript denote their non-dimensional counterparts. The
equations were discretized using an energy-conserving second-order finite-difference
scheme, and a fractional time step for time marching using a third-order low-storage
Runge–Kutta scheme for the nonlinear terms, and a second-order Adams–Bashforth
scheme for all viscous and conducting terms (Verzicco & Orlandi 1996; van der
Poel et al. 2015). The code was heavily parallelized to run on hundreds or even
thousands of cores simultaneously and was validated many times (Stevens, Verzicco
& Lohse 2010; Stevens et al. 2011; van der Poel et al. 2015). Recently, the code
was open-sourced and is available for download at www.AFiD.eu.

The domain was discretized by nx × ny × nz = 360× 360× 288 grid points. In both
horizontal directions, the grid was uniformly divided, and in the vertical direction the
points were clustered near the top and bottom plates. A number of simulations were
conducted to test the aspect ratio dependence and the grid independence. These tests
did not show any significant differences in the range of Rayleigh numbers used in this
study. For RB convection, a series of exact relationships that link the Nusselt number
to the global kinetic energy dissipation (ν∇2u) and the thermal dissipation (κ∇2θ )
exist (Shraiman & Siggia 1990; Ahlers et al. 2009), and they have been further used
to check the spatial accuracy of the simulation as in Stevens et al. (2010). The size of
the time steps was chosen dynamically by imposing that the Courant–Friedrichs–Lewy
(CFL) number in the grid would not exceed 1.2.

The main response of the system is the Nusselt number (Nu), which is the heat
transfer non-dimensionalized using the purely conductive heat transfer:

Nu=
〈uzθ〉A − κ∂z〈θ〉A

κ1Lz
, (2.2)

where 〈·〉A indicates the average over any horizontal plane. The simulations were
run between 50 and 100 large-eddy turnover times based on Uf and H. Statistical
convergence of time averages is assessed by calculating the differences in Nu between
one half of the time signal and the full signal. These are shown as error bars in
the plots.

In the classical RB case, both the top and bottom plates have a homogeneous
boundary condition, i.e. they are perfectly conducting. Here, we use this boundary
condition only for the bottom plate, while the top plate is taken to have periodic
patches of insulating regions that do not contribute to the heat transfer from fluid to
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H
z

x

FIGURE 1. The 2D y-cut of the geometry. The domain has dimensions Lx × Ly×H. The
bottom plate, at ẑ=0, has θ =1. The top plate is divided into stripes of conducting (θ =0)
and insulating (∂zθ = 0) regions.

plate. The definitions of these patches are similar to those in Ripesi et al. (2014):

θ(x̂, ŷ, ẑ= 1)= 0, ∀ x̂, ŷ ∈ [ jLp, Lp1 + jLp], j ∈Z,
∂zθ(x̂, ŷ, ẑ= 1)= 0, ∀ x, y /∈ [ jLp, Lp2 + jLp], j ∈Z,

θ(x̂, ŷ, ẑ= 0)= 1, ∀ x, y.

 (2.3)

Here Lp is the width of a pair of patches, Lp1 is the width of the conducting
part, Lp2 is the insulating part, and the hat on the spatial coordinates indicates
non-dimensionalizations. For most of this study we keep the insulating and conducting
areas equal, i.e. `C = 1/2. The BC on the top plate depends only on the x-coordinate,
which results in sets of insulating and conducting stripes. The number of stripe pairs
in a horizontal direction L were defined as f = L/Lp, which is a central control
parameter of this study. A 2D schematic is shown in figure 1.

There are limitations on the value of f . As each stripe has to be an integer number
of grid points, only integer multiples of the grid resolution are valid. In addition,
the width of all stripes summed should fit inside the system, e.g. the width in grid
points should exactly be the number of grid points in the x-direction. This results in
a total of 18 different pattern frequencies. For the smallest possible frequency, f = 1,
we have one conducting and one insulating stripe, which both have a width of 180
grid points. The pattern with the largest frequency, f = 90, has 90 stripe pairs, where
each stripe has a width of two grid points. In this paper we will use the wavenumber,
kx = (2πf )/Lx, to describe the stripe distribution.

To give an idea of how the flow in such a system looks, two different instantaneous
snapshots of the RB system with two different stripe frequencies are shown in figure 2.
Both cases have exactly the same conducting and insulating areas, but a different
stripe pattern. In § 3.4, we also vary the BC in the y-direction, while keeping both
the insulating and conducting areas equal, which results in a chequerboard pattern.

3. Results

Data from the numerical simulations carried out in this paper are contained in tables
1–4 in appendix A.
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496 D. Bakhuis and others

(a) (b)

FIGURE 2. (Colour online) Two 3D visualizations of the instantaneous temperature field
with different pattern frequencies applied to the top boundary. For both cases `C = 0.5,
Ra = 108 and Pr = 1. Hot fluid is shown in red while cold fluid has a blue colour.
(a) Visualization with f = 4, showing four insulating stripes and four conducting stripes.
(b) Visualization with f = 20, showing five times as many stripe pairs. Plumes of colder
fluid are ejected primarily from the conducting areas for f = 4 while for f = 20 the plumes
also eject on areas below insulating regions.

107 108 109

Ra
107 108 109

Ra

Nu

FC

0.10

0.13

(a) (b)

16

10

32

64

FIGURE 3. (Colour online) (a) Nusselt number Nu and (b) compensated Nusselt number
NuRa−0.3 against Ra for various f and Pr= 1. The markers show the actual results while
the dotted lines indicate the trend between these simulations. For all simulations `C was
fixed to `C = 0.5.

3.1. The effect of the number of stripes
In this subsection we present results of a series of simulations in which we varied the
number of stripes while keeping `C = 1/2. Four sets of cases were run for Ra= 107,
108 and 109, and Pr= 1 and 10.

First we show in figure 3(a) the curves of Nu(Ra) for the fully conducting case
and three striped cases with f = 1, 10 and 90. The markers show the actual results
from the simulations and the dotted lines indicate the trend between the measurements.
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101 102 103
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FIGURE 4. (Colour online) (a) Nusselt number Nu for various Ra and Pr versus pattern
wavenumber kx. The shaded area shows the data points for which the stripe width is
smaller than the thermal boundary layer. (b) The same data as in panel (a) but normalized
by Nufc. The black points are the same as in the shaded area in panel (a). For both panels,
the error bars shows the statistical convergence error.

From figure 3(a) we see that the scaling does not differ significantly between all cases
and all curves are almost parallel. We do see a strong dependence on the wavenumber
of the pattern. For f =1, we computed that Nu is approximately two-thirds of the fully
conducting case. Increasing f results in a larger Nu and the values almost converge
with the fully conducting case. Both the f = 90 and f = 10 cases are relatively closer
to the fully conducting case at Ra = 107 than at Ra = 3 × 109. Our interpretation is
that, due to the lower Ra, the thermal boundary layer is thicker, which results in larger
horizontal conduction of heat. As all curves have approximately the same scaling, we
have compensated the data using Ra−0.3, which is shown in figure 3(b). Here it is
clearly visible that, for low Ra, the f = 90 case is almost as efficient as the fully
conducting case, but the differences increase with increasing Ra. The two extreme
cases, f = 1 and the fully conducting case, follow a similar trend; however, the f = 1
case is shifted to a lower, less efficient level. Both panels of figure 3 clearly show
that an increase in wavenumber of the pattern results in an increase in Nu.

To make this point even more clear, we plotted Nu(kx) in figure 4(a). All datasets
show a clear kx dependence: Nu increases quite strongly with kx. The grey area
indicates the data points for which the width of the stripes Lp is smaller than the
thermal boundary layer thickness λT , which can be estimated as λT =H/(2Nu). Ripesi
et al. (2014) showed that the heat transfer increases monotonically with increasing
kx until Lp is comparable to λT . A similar trend is visible for Ra = 1 × 107 and
Ra = 1 × 108 even if the Ra = 1 × 107 case shows minor increases in heat transfer
when Lp is further decreased beyond λT . The change in Pr from Pr = 1 to Pr = 10
does not have a significant effect on the heat transfer, at least not for Ra= 108, for
which the two datasets are practically overlapping. This behaviour is similar to the
standard RB case, in which the Pr dependence of Nu is also weak (Ahlers et al.
2009).

To perform a better comparison between the different Ra, we normalize the resulting
Nu using Nufc, the Nusselt number of the fully conducting case. The normalized Nu
for different stripe configurations are shown in figure 4(b). We see the same trend

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.737


498 D. Bakhuis and others
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0
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FIGURE 5. (Colour online) (a) Temperature of the bulk fluid θbu for various Ra and Pr
versus pattern wavenumber kx. (b) Temperature below the insulating stripes θin, averaged
over the entire insulating area, for different Ra and Pr against pattern wavenumber kx.

for all Ra and Pr. At the lowest kx, in which we only have a single conducting
and single insulating stripe, the effective Nu is approximately two-thirds of the fully
conducting case. When the number of stripes, i.e. kx, is increased, we see that, for all
tested Ra and Pr, the Nusselt number slowly converges to almost the fully conducting
case. So, remarkably, even if only half of the plate is conducting, it can be almost as
effective as if the plate is fully conducting. In this compensated plot it is also clearly
visible that, for the largest kx of Ra= 1× 107, for which Lp goes below the size of
λT , the heat transfer is still increasing.

The differences between the different Ra are not so clear at the lowest kx; however,
for a slight increase of kx we see that the curves order themselves. The Ra= 109 case
increases slightly slower with ks when compared to the Ra= 108 case. The Ra= 107

case increases slightly faster than the Ra= 108 case and it ends at 99.7 % of the fully
conducting case for the largest number of stripes used. The explanation for this trend
is the difference in boundary layer thickness, which decreases when we increase Ra.
The boundary layer controls the heat transport from the bulk to the conducting region.
Below the insulating region, this heat transport must also go in the horizontal direction.
By increasing Ra and thus decreasing the thickness of the boundary layer, the same
amount of heat needs to be conducted through a smaller ‘channel’. This explains the
decreased effectiveness with increasing Ra.

In these sets of simulations, we also compare Pr = 10 with Pr = 1 for Ra = 108.
The results for both Pr are quite similar. At lower kx, we see that the Pr = 10 case
has only a marginally larger Nu and these differences become smaller with increasing
kx and are within the uncertainty of the simulation.

Figure 5(a) shows the average bulk temperature of the fluid plotted against the
wavenumber. This average was computed over the horizontal plane at mid-height of
the system. The effect is similar to what we see for Nu/Nufc in figure 4(b). At the
lowest kx the average bulk temperature has increased to about 2/3. In that case the
top plate is split in half and only one half is contributing to heat transfer. While
ignoring the adiabatic area, we can divide the conducting areas into three equally
sized parts, with two parts on the bottom plate and one on the top plate. Using the
same reasoning as that used for the symmetric case, we obtain the following equality
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FIGURE 6. (Colour online) (a) Corrected Nusselt number against compensated Rayleigh
number for selected pattern wavelengths. (b) Compensated and corrected Nusselt number
against corrected Rayleigh number. No collapse or natural ordering of the curves can be
seen.

for the average bulk temperature: θbulk = (2/3)θbottom + (1/3)θtop = 2/3. As with
Nu/Nufc, we see that the average bulk temperature approaches the fully conducting
case of θbulk = 1/2 for increasing kx. When comparing the various curves, they
all appear similar, with a maximum difference of about 0.02–0.03 in the average
bulk temperature. Unfortunately, Wang et al. (2017) do not report their average
temperature and a comparison to their calculations with large-wavelength imperfect
BCs is impossible.

In figure 5(b) we show the horizontally and time-averaged temperature below the
insulating area of the top plate as a function of the wavenumber. At the lowest
wavenumber (top plate split into equal conducting and insulating regions), we see
that the averaged temperature is almost equal for all Ra and Pr. When increasing
kx, a dependence on Ra emerges. After just a few additional divisions in stripes, all
curves order themselves according to Ra, with the lower Ra values approaching the
lower bounds faster than the larger ones. At the largest kx, the temperature difference
between Ra = 109 and Ra = 107 is 15 %. As the temperature below the insulating
area is slightly higher than for the area below the conducting area because of lack
of cooling, we can conclude that, for larger Ra, the whole top layer is, on average,
hotter than for the lower Ra.

These results suggest that it could be possible to account for the Nu(kx) relationship
by using corrected non-dimensional variables in the spirit of Verzicco (2004).
However, changing the (effective) thermal conductivity ignores the heterogeneities
of the plate, which is the main source of the observed behaviour. In figure 6, we
show the corrected Nusselt number Nu∗ = Nu/θ∗ against the corrected Rayleigh
number Ra∗ = Raθ∗, where θ∗ is the non-dimensional average temperature difference
given by θ∗=Lp2θin/Lp. No logical ordering can be seen, and, as expected, an attempt
to describe the results with some global effective thermal conductivity fails.
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(a) (b)

(c) (d)

FIGURE 7. (Colour online) Premultiplied 2D Fourier transform of a horizontal slice at
various distances from the top boundary wall, averaged in time. Except for (d), each panel
is compiled using a single dataset. The colours help to identify the different modes that
are present in each single dataset and are identified by the odd or even value. (a) At the
closest grid point (ẑ = 0.998), the two different modes are clearly visible. (b) One grid
point further (ẑ= 0.996), the distinction slowly fades. (c) While still inside the boundary
layer at ẑ= 0.992, both modes are practically overlapping. (d) Just outside the boundary
layer, it is impossible to distinguish two different modes at all. As a reference, we also
show the spectrum at the centre of the system (ẑ= 0.5).

For horizontal slices of the instantaneous temperature field, a discrete 2D Fourier
transform can be applied, which is defined as

θ(γ )=

∣∣∣∣∣∣
〈ny−1∑

y=0

nx−1∑
x=0

exp{−i[(2π/nx)jxx+ (2π/ny)jyy]}θ(x, y, t)

〉
t

∣∣∣∣∣∣
jx=γ ,jy=0

, (3.1)

where 〈·〉t is the time average and the jy mode was set to zero, leaving a single
wavenumber parameter γ ≡ jx. Using the described method on the horizontal slice just
below the top boundary, we can identify the imprint the stripe-structured BCs leaves
on the flow.

Using the Fourier transform we can identify the imprint of the BCs just below the
top boundary in the flow itself. Using this distinct signature we can find out how long
this pattern is still present once one moves away from the boundary wall. The distance
from the top boundary wall is indicated using ẑ. In figure 7, we see the compensated
spectra for f = 1 at five different planes for decreasing ẑ. The colours are used to
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FIGURE 8. (Colour online) (a) Comparison of the normalized Nusselt number Nu/Nufc
for the single- and double-sided cases with Ra= 108, Pr= 1 and `C = 0.5. For the lowest
ks we see that the system is about two-thirds and one-half of the fully conducting case for
the single- and double-sided cases, respectively. (b) Average temperature above or below
the insulating stripes for the single- and double-sided cases with Ra = 108, Pr = 1 and
`C = 0.5. The dashed line shows the average bulk temperature, calculated at mid-height
for the double-sided system.

identify the different modes and except for figure 7(d) are compiled using a single
dataset (odd or even value). When moving away from the wall, we see that the two
distinct modes approach each other and just outside the boundary layer, at ẑ= 0.970,
it is hard to distinguish the two different curves at all. Within the boundary layer the
signature of the pattern almost completely fades away and in the bulk flow is not
visible at all. The difference between the Fourier transform just outside the boundary
layer (ẑ= 0.970) and at mid-height of the system (ẑ= 0.5) is marginal. These findings
hold for the complete range of f .

It is quite remarkable that, even for the most extreme case at f = 1, the pattern
is not visible in the bulk region. This means that in the boundary layer, in which
conduction dominates, the temperature differences of the top plate are averaged such
that an effective, slightly higher cold plate is seen by the bulk flow.

3.2. Patterns on both plates
Until now we have only applied the insulating and conducting patches to the top
boundary. This resulted in a normalized heat transfer of approximately two-thirds for
the lowest kx and almost the fully conducting case at the highest kx. Using a simple
argument we could indeed rationalize the value of two-thirds for the normalized heat
transfer for the lowest wavenumber. If we now apply the same pattern also on the
bottom plate, can we still get to the same efficiency as if we had only applied the
pattern to the top boundary wall?

The comparison of the normalized Nusselt number Nu/Nufc between the single-
and double-sided cases is shown in figure 8(a). For the lowest kx we see that the
double-sided case conducts heat at approximately half the rate of the fully conducting
case. This is in line with the expectations, as we only have half the effective area on
both boundary walls. What is also visible is that the curve for the double-sided case
is steeper than the curve of the single-sided case, therefore reducing the difference
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between both cases with increasing kx. For the largest kx the heat transfer of this
system again is almost as efficient as if it were fully conducting. There is only half
of the area available for heat entering the system and only half the area for heat
leaving the system. Still, the same amount of heat transfer as if the system were
fully conducting is achieved. For the single-sided case, as for the double-sided one,
for the lowest kx the efficiency is not exactly 2/3 and 1/2 but slightly above these
values. The geometry of the double-sided case can be decomposed into a regular RB
cell and a neutral domain, both with identical dimensions, positioned next to each
other. The top and bottom boundaries from this neutral domain are both insulating
and heat can only enter and exit from the sides. As we have periodic BCs in the
horizontal direction, both sides of the regular RB area are connected to this neutral
domain, which acts as a buffer for heat. This extra buffer is the only difference and
thus the cause for the small difference.

The average temperatures just below or above the insulating boundaries are shown
against kx in figure 8(b). The difference in temperature below the top insulating
boundary between the single-sided case, shown in green circles, and the double-sided
case, shown in orange squares, is only significant at the lowest kx. Only at the lower kx

is the single-sided system hotter, just below the boundary. At larger kx, the asymmetry
does not make a difference to the temperatures and both temperatures converge to
the conducting plate temperature. In the same plot, we also show the temperature
just above the insulating area of the bottom plate and the bulk temperature. For
the double-sided case, for the lowest kx, the top, bottom and bulk temperatures are
very similar. This indicates that for the lowest kx all the fluid in the neutral domain,
the large area confined by the insulating bottom and top plates, has approximately
the same temperature and hardly contributes to the heat transfer. This fully agrees
with Nu/Nufc ≈ 0.5 seen in figure 8(a). The bulk temperature of the double-sided
case stays approximately 0.5 for the full range of kx, as must hold for a symmetric
system. Temperatures above the bottom boundary and below the top boundary are also
symmetric with respect to the bulk temperature, confirming the statistical convergence
of our calculations. As for the single-sided case, figure 8(b) shows that for the largest
kx the temperatures close to the insulating areas are very close to their conducting
counterparts. The heat conduction in the boundary layer makes the bulk fluid see an
almost perfect heat conductor.

3.3. Variation of the insulating fraction
All the systems that we have discussed until now had a conducting area with size
equal to the insulating area, i.e. `C = 1/2. We can now vary `C and look into its
effect on the heat transfer. In the previous simulations we used kx as the wavenumber
and this sets the number of insulating and conducting stripes in the 2D case. The
width of the system, Lx, was divided into f equal pairs of these stripes. In the previous
subsection, these divisions were of equal areas. Now we will change the ratio of areas
to make the top plate less and less conducting. For these simulations we fixed kx =

9, Ra= 108 and Pr = 1. Then the ratio between the insulating and conducting areas
was varied, namely we simulated `C = 1.0, 0.875, 0.75, 0.625, 0.50 and 0.25, thus
gradually reducing the conducting area of the top plate from fully conducting to 25 %
conducting.

Figure 9 shows the results of the simulations, as well as the data from the
rectangular tank of the experiments in Wang et al. (2017) (extrapolated from their
table 1). In the case where only 12.5 % of the area is insulating, we see that the
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FIGURE 9. (Colour online) (a) Normalized Nusselt number Nu/Nufc for various fractions
`C of the conducting plate, while keeping the pattern frequency f = 9, Ra = 108 and
Pr = 1 (green circles), and the rectangular tank of Wang et al. (2017) (orange squares).
(b) Average temperature just below the insulating area θin and average bulk temperature
θbu, both plotted against `C. Other parameters are the same as for panel (a).

difference with the fully conducting case is almost negligible and within the statistical
error. On increasing the amount of insulating area to 25 %, the heat transfer is still
more than 90 % of the fully conducting case. Even at 50 % conducting region we
still get the effectiveness of 80 %. At the largest ratio of 75 % insulating fraction, we
are still above 60 % of the heat transfer of the fully conducting case. In other words,
the effective area of the top plate is only a quarter of the fully conducting case but
still we get a system that is only 40 % less effective in conducting heat.

The rectangular tank of Wang et al. (2017) has patches with dimensions comparable
to the system size. Two data points for the two different wavelengths are available
for each `C. The data point with a smaller wavelength (‘ACA’ and ‘CAC’ patterns)
corresponds to the higher values of Nu. While the points at `C = 1/3 show a
considerably lower Nu than the DNS with a much smaller wavelength, a relatively
good match between DNS and the experiment for `C = 2/3 provides some indication
that at higher values of `C the saturation wavenumbers, for which Nu ≈ Nufc, are
smaller.

Figure 9(b) shows two different temperatures, namely, the average temperature just
below the insulating region θin and the average bulk temperature θbu measured at
mid-height of the system. For `C = 0.85, θin is very close to zero, i.e. the top wall
temperature. This is consistent with Nu nearly having the value of the conducting
case (figure 9a). Also the bulk temperature is very close to the fully conducting
case θ = 0.5. When `C is decreased, making the top plate less and less conducting,
θin increases gradually, reaching θin = 0.5 when `C = 0.25. This equals the bulk
temperature in a fully conducting system. However, when `C is decreased, also the
bulk temperature gradually increases and nearly reaches 0.6 for `C = 0.25. This rise
in the bulk temperature is much slower than the rise in the temperature above the
insulating area, meaning that the gradient between insulating regions at the plate and
the bulk decreases and thus so does the heat transfer (see figure 9a). Even though
these simulations were conducted using only f = 9, one expects similar trends to apply
for other values of f . From the previous simulations we found that, when increasing
f , Nu/Nufc will rise and θins will decrease. The same response can be achieved by
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FIGURE 10. Top view of the top plate BCs with applied chequerboard pattern ( f = 1).
Here Lpx and Lpy are the horizontal and vertical dimensions of a set of patches. The set
itself is divided into two insulating (white) and two conducting (black) areas, all with
equal dimensions: Lpx1 = Lpy1 = Lpx2 = Lpy2.

increasing `C as we increase the conducting area and approach the case of the fully
conducting system.

3.4. Mixed insulating and conducting patterns in two dimensions
Until now, all the patterns that have been applied to the top and bottom boundary
walls were one-dimensional (1D) stripe-like patterns. We only varied the width of
the patches and the ratio between the insulating and conducting fractions. In this
subsection we add an additional spatial dependence to these patterns to make them
chequerboard-like:

θ(x̂, ŷ, ẑ= 1)= 0, x̂ ∈ [iLpx, Lpx1 + iLpx], ŷ ∈ [ jLpy, Lpy1 + jLpx], i, j ∈Z,
∂zθ(x̂, ŷ, ẑ= 1)= 0, x̂ /∈ [iLpx, Lpx1 + iLpx], ŷ /∈ [ jLpy, Lpy1 + jLpx], i, j ∈Z,

θ(x̂, ŷ, ẑ= 0)= 1, ∀ x̂, ŷ.

 (3.2)

A schematic of a set of four patches, two insulating and two conducting, is shown
in figure 10. The dimensions of both types of patches were kept equal, i.e. Lpx1 =

Lpy1 = Lpx2 = Lpy2, meaning `c = 1/2.
As we took both horizontal dimensions to be equal, we define a single frequency f

in both directions. The plate is divided into f sets of patches, which have dimensions
Lpx = Lpy= Lp. When f = 1 the complete boundary consists of a single set of patches.
By increasing f to 2, the plate will consist of four sets of four patches each. To give
a further impression how the temperature fields resulting from these BCs look, two
visualizations of instantaneous temperature fields for f = 4 and f = 20 are shown in
figure 11. The visualizations show respectively 16 and 400 sets of patches, which each
consist of two insulating and two conducting areas.

Figure 12(a) shows the normalized Nusselt number Nu/Nufc for the 1D (stripe)
and 2D (chequerboard) patterns as a function of kx. For these cases, Ra= 108, Pr= 1
and the error bars indicate the statistical convergence error. At first sight, the heat
transfer is not that different when applying 1D or 2D patterning. At the lowest
division, where we have divided the system into two or four areas for the 1D and
2D case, respectively, the difference is negligible. Also at the highest value of kx, the
difference is inside statistical errors and seems insignificant.
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(a) (b)

FIGURE 11. (Colour online) Two 3D visualizations of the instantaneous temperature field
with different pattern frequencies at the top boundary. Hot fluid is shown in red while the
cool fluid has a blue colour. For both visualizations, Ra=108 and Pr=1. (a) Visualization
with f = 4, which results in 16 sets of patches each containing two insulating patches
and two conducting patches. (b) Visualization with f = 20, which results in 400 sets of
patches. Hot plumes rise from the bottom plate while cold plumes are ejected from the
top boundary.

1D pattern
2D pattern

101 102 103 101 102 103
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FIGURE 12. (Colour online) (a) Normalized Nusselt number Nu/Nufc for 1D and 2D
patterning versus kx for Ra = 108 and Pr = 1. The error bars show the statistical
convergence error. (b) Average temperature θin just below the insulating area and average
bulk temperature θbu, both as a function of kx for the 1D and 2D patternings. The Ra and
Pr values are the same as for panel (a).

At first glance, the 1D stripe pattern and the 2D chequerboard pattern may seem
idealized representations. However, all other stripe and rectangular chequerboard
patterns fall within these extreme cases, as the stripe pattern has Lpx/Lpy →∞ (or
conversely → 0), while for the chequerboard pattern Lpx/Lpy = 1. Our work shows
that, for the relatively small wavelengths considered here, the shape of these patterns
does not have a significant influence on the flow dynamics. While we do not expect
`C to affect this statement considerably, larger wavelength patterns could show some
dependence on their shape. In the experiments of Wang et al. (2017), the patches
have wavelengths comparable to the system height and their distribution considerably
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affects the flow structure. Here, we consider wavelengths that are much smaller,
affecting the flow only below the thermal boundary layer thickness, and reducing the
Nusselt number. The largest wavelength considered in this work is still smaller than
the smallest wavelength in the rectangular tank of Wang et al. (2017). There appear
to be two clear regimes: the large patch regime, which shows a clear influence on the
flow dynamics and whose effect is likely to be shape-dependent, and the small patch
regime, which only affects the boundary layers and thus the heat transfer. While
there must exist a cross-over regime between the two, it appears to be just outside
the wavelengths we are considering.

When we look at θin, the temperature just below the insulating region in
figure 12(b), we see a similar trend. The temperature below the insulating region
is on average always lower for the 2D pattern. This is even the case for the higher
and lower limits of kx. The heat can escape towards a conducting region in any
direction, while for stripes it can only escape in one direction. Thus, the distance to
a sink is smaller and thus the temperature is smaller. The bulk temperatures for both
the 1D and 2D cases are almost identical, which means that the change in pattern
has no effect on this quantity. From these results we can conclude that the impact
of the two different patterns is very similar, and the quantitative differences between
stripe and chequerboard patterns are at most small.

4. Summary and conclusions

A series of DNS of turbulent RB convection using mixed conducting and insulating
BCs were conducted. First, we applied a stripe-like pattern on the top boundary and
varied the amount of stripes while keeping the conduction–insulation ratio constant
at `C = 1/2. When the top plate is divided in half, Nu has a value of approximately
two-thirds of that for the fully conducting case. By increasing the frequency of
the pattern, Nu also increases, with a maximum value very close to that as if it
were fully conducting. With only half the effective conducting area on the top plate,
when applying a dense pattern, the effect of the insulating patches almost completely
vanishes. An increase in Ra results only in a marginal decrease in Nu/Nufc for the
largest f . This shift towards the fully conducting efficiency as seen with the Nusselt
number when increasing the pattern frequency is also visible in θbulk and θins.

Using a 2D Fourier transform, calculated from a horizontal slice of the instantaneous
temperature, it is possible to identify the imprint of the BCs inside the flow. By
comparing different spectra, each calculated from a horizontal slice slightly further
away from the top boundary wall, the penetration depth of the BCs inside the flow
was investigated. The imprint of the striped pattern slowly fades away when moving
from the top wall towards the border of the thermal boundary layer. Outside of the
thermal boundary layer the imprint has completely vanished, even for the extreme
case f = 1. The thermal boundary layer masks the actual boundary, including all
insulating imperfections, and presents a new effective boundary to the bulk flow.
In the thermal boundary layer, the heat is conducted to the conducting areas. This
transport is more efficient when the pattern frequency is large. A lower Rayleigh
number increases the thickness of the boundary layer and thereby also increases the
effectiveness of the heat transport.

Extending the pattern to both the top and bottom boundary wall resulted in similar
behaviour for the heat transfer and the average temperature below the insulating
area. The primary difference is for the lowest pattern frequency where we practically
have only half an RB cell and we find a Nusselt number with half the value of
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the fully conducting case. Adding an additional dimension to the pattern, creating a
chequerboard-like pattern, also did not change the behaviour significantly.

Our results demonstrate that small and even large imperfections in the temperature
BCs are barely felt in the system dynamics in terms of global heat transfer and local
temperature measurements. Only in extreme cases as a half-and-half conducting and
adiabatic plate was the effect significant. The effect of imperfect temperature BCs
of fully turbulent RB is weaker than the effects of velocity BCs in 2D RB (van
der Poel et al. 2014), or the effect of rough elements near the boundaries (Tisserand
et al. 2011). It is not yet clear if these boundary imperfections lead to significant
changes in the dynamics of the bulk flow and this remains an open question for future
works. Going beyond the scope of the present paper, we mention that the simulations
by Cooper et al. (2013) and the experiments by Wang et al. (2017) show that, with
even larger adiabatic patches, changes in the flow topology can happen due to the
arrangement of patches. The patches can also be varied in time, which is a way to
control the bulk temperature or to fine tune the heat transfer, which is relevant for
many industrial applications. In another work Whitehead & Behn (2015) showed that
the combination of shear and mixed BCs could also play a critical role in the system
dynamics. Understanding the deeper reasons for this behaviour may lead to better
models for natural convection for geophysically and astrophysically relevant flows.
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Appendix A. Numerical details
Data from numerical simulations are contained in tables 1–4.

f Ra Nu f Ra Nu

1 1× 107 11.82 90 1× 109 58.36
1 1× 108 22.08 90 3× 109 81.37
1 3× 108 30.18 180 1× 107 16.95
1 1× 109 43.87 180 1× 108 30.95
1 3× 109 63.26 180 3× 108 42.43

10 1× 107 14.56 180 1× 109 59.42
10 1× 108 26.59 180 3× 109 82.53
10 3× 108 35.58 fc 1× 107 16.99
10 1× 109 50.24 fc 1× 108 32.87
10 3× 109 70.73 fc 3× 108 44.71
90 1× 107 16.58 fc 1× 109 63.95
90 1× 108 30.64 fc 3× 109 92.15
90 3× 108 41.34

TABLE 1. Nusselt and Rayleigh numbers for various f and the fully conducting case
( fc), with Pr= 1 and `c = 1/2, used in figure 3(a,b).
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Ra= 107, Pr= 1 and `c = 1/2 Ra= 108, Pr= 1 and `c = 1/2
f Nu θbulk θ

top
ins f Nu θbulk θ

top
ins

1 11.82± 0.18 0.67 0.69 1 22.08± 0.72 0.65 0.66
2 12.44± 0.31 0.62 0.55 2 23.04± 1.09 0.61 0.57
3 12.75± 0.27 0.61 0.48 3 23.14± 0.37 0.60 0.52
4 13.76± 0.01 0.60 0.43 4 24.34± 1.64 0.58 0.49
5 13.86± 0.02 0.59 0.40 5 24.74± 0.98 0.57 0.45

6 24.94± 0.03 0.57 0.42
9 14.77± 0.07 0.57 0.29 9 25.90± 0.10 0.56 0.37

10 14.56± 0.03 0.57 0.28 10 26.59± 1.25 0.56 0.36
12 14.97± 0.15 0.56 0.25 12 26.62± 0.46 0.56 0.34
15 14.81± 0.12 0.55 0.22 15 27.90± 0.41 0.55 0.30
18 15.54± 0.15 0.55 0.19 18 28.11± 1.09 0.54 0.28
20 15.68± 0.07 0.55 0.18 20 28.06± 0.75 0.54 0.26
30 15.98± 0.15 0.53 0.14 30 28.58± 0.24 0.54 0.21
36 16.02± 0.15 0.53 0.12 36 29.39± 0.81 0.53 0.19
45 16.07± 0.14 0.52 0.10 45 29.42± 0.53 0.52 0.16
60 16.60± 0.05 0.52 0.08 60 30.23± 0.20 0.53 0.14
90 16.58± 0.15 0.52 0.06 90 30.64± 0.53 0.51 0.11

180 16.95± 0.18 0.51 0.05 180 30.95± 0.12 0.51 0.09
fc 16.90± 0.07 0.50 — fc 32.87± 0.33 0.50 —

Ra= 108, Pr= 10 and `c = 1/2 Ra= 109, Pr= 1 and `c = 1/2
f Nu θbulk θ

top
ins f Nu θbulk θ

top
ins

1 22.92± 0.18 0.65 0.67 1 43.87± 0.22 0.65 0.65
2 24.04± 0.23 0.62 0.58 2 45.05± 0.27 0.62 0.60
3 23.84± 0.11 0.60 0.53 3 45.94± 0.19 0.61 0.56
4 24.86± 0.03 0.59 0.50 4 47.14± 0.09 0.60 0.53
5 26.55± 0.88 0.58 0.48 5 47.66± 0.28 0.59 0.50
6 25.32± 0.80 0.58 0.46
9 26.94± 0.18 0.57 0.37 9 49.15± 0.28 0.58 0.44

10 26.71± 0.62 0.57 0.37 10 50.24± 1.41 0.58 0.43
12 27.58± 0.40 0.56 0.34 12 51.46± 0.73 0.57 0.41
15 27.79± 0.15 0.55 0.31 15 51.48± 0.05 0.57 0.38
18 27.66± 0.28 0.55 0.28 18 52.87± 0.32 0.56 0.36
20 28.80± 0.19 0.55 0.26 20 53.54± 0.97 0.56 0.35
30 29.06± 0.09 0.54 0.22 30 54.84± 0.37 0.55 0.30
36 28.96± 1.01 0.54 0.2 36 55.7± 0.03 0.55 0.28
45 29.33± 0.17 0.53 0.17 45 55.71± 0.20 0.54 0.26
60 30.27± 0.38 0.53 0.14 60 56.52± 0.92 0.54 0.23
90 29.98± 1.10 0.52 0.11 90 58.36± 0.38 0.53 0.20

180 30.60± 0.54 0.52 0.08 180 59.42± 0.68 0.52 0.16
fc 32.63± 0.13 0.50 — fc 64.66± 0.33 0.50 —

TABLE 2. Data from all numerical simulations for the single-sided mixed BCs and the
fully conducting case, used in figures 4(a), 5(a), 5(b) and 8(b). The fc in the f column
indicates the fully conducting case, e.g. without the striped pattern.
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f Nu θbulk θ
top
ins θ bot

ins

1 16.96± 0.11 0.52 0.55 0.53
2 17.67± 0.03 0.52 0.56 0.49
4 19.10± 0.33 0.55 0.64 0.45

10 21.98± 0.17 0.53 0.71 0.34
15 23.60± 0.39 0.53 0.74 0.28
20 24.77± 0.26 0.52 0.78 0.25
36 26.93± 0.42 0.51 0.83 0.18
60 27.76± 0.98 0.50 0.87 0.14
90 29.03± 0.33 0.50 0.89 0.11

180 30.10± 0.97 0.51 0.92 0.08

TABLE 3. Data from all numerical simulations for the double-sided mixed BCs, with
Ra= 108, Pr= 1 and `c = 1/2, used in figure 8(a,b).

f Nu θbulk θ
top
ins

1 22.35± 0.26 0.64 0.61
2 22.82± 0.21 0.61 0.52
3 24.69± 0.06 0.60 0.46
4 25.64± 0.19 0.59 0.42
5 26.06± 0.20 0.58 0.39
6 27.09± 0.51 0.58 0.37
9 27.51± 0.43 0.56 0.30

10 28.10± 0.02 0.56 0.29
12 28.06± 0.12 0.56 0.26
15 28.02± 0.03 0.55 0.23
18 28.71± 0.02 0.55 0.21
20 28.96± 0.32 0.54 0.20
30 29.81± 0.06 0.53 0.16
36 30.66± 0.01 0.53 0.14
45 30.20± 0.07 0.53 0.12
60 30.86± 0.31 0.52 0.11
90 30.95± 0.04 0.52 0.08

180 31.48± 0.28 0.51 0.06

TABLE 4. Data from all numerical simulations of the chequerboard pattern, with
Ra= 108, Pr= 1 and `c = 1/2, used in figure 12(a,b).
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