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Introduction
For each non-empty subset A of the complex plane, let £f(A) be the set of

all those operators (on a fixed Hilbert space H) whose spectrum is included
in A. The problem of spectral approximation is to determine how closely
each operator on H can be approximated (in the norm) by operators in y(A).
The problem appears to be connected with the stability theory of certain
differential equations. (Consider the case in which A is the right half plane.)
In its general form the problem is extraordinarily difficult. Thus, for instance,
even when A is the singleton {0}, so that y(A) is the set of quasinilpotent
operators, the determination of the closure of 6^(A) has been an open problem
for several years (3, Problem 7).

The problem of normal spectral approximation is the one in which Sf(A)
is replaced by the set ^V(A) of all those normal operators whose spectrum is
included in A. This.problem too is important and difficult. Thus, for instance,
even when A is the entire complex plane, for a long time it was not known
whether ^T(A) approximants always exist. In other words: is it true that, for
each operator A, the distance inf {|| A —N \\: Ne^^A)} is always attained?
An example proving that the answer is no was recently found by D. D. Rogers,
but, even with that new information, the visible facts are greatly outnumbered
by the submerged ones.

For some special sets A the theory of J/~(A) approximation is at least partly
known. If, for instance, A is the real line, the problem becomes that of
Hermitian approximation, and, at least as far as the existence of approximants
is concerned, it is solved by the mapping A\-*^(A + A*). If A is the unit circle
(perimeter), the problem is that of unitary approximation; this case has been
studied by Fan and Hoffman (1) and van Riemsdijk (7). If A is the set of
non-negative real numbers, the problem is that of positive approximation,
and it can be regarded as solved (4). There are, however, many quite innocent-
looking sets A for which almost nothing is known about ^V(A) approximation.
An interesting example is the problem of projection approximation, correspond-
ing to the case in which A is the pair {0, 1}.

It may be that the general problem of spectral approximation is, in some
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sense, not the right thing to ask about. A piece of disturbing evidence is that
the set <Ŝ (A) is not in general closed; witness the classical example of a sequence
of quasinilpotent operators whose limit is not quasinilpotent (2, Problem 87).
It is comforting to observe that the problem of normal spectral approximation
rests on a sounder basis: if A is a closed set of complex numbers, then ^T(A)
is a closed set of operators. This comfort is a consequence of the continuity
of the spectrum for normal operators; see Newburgh (6).

The main purpose of this paper is to prove a theorem about normal spectral
approximation to normal operators. A special case of the theorem asserts
that if A is normal, then A has a projection approximant, and, moreover, it
has one that is a function of A (and that belongs, therefore, to the second
commutant of A).

In order to understand the point at issue, it is wise to consider the com-
mutative analogue of the problem. How does one approximate a complex-
valued bounded measurable function <f> (modulo sets of measure zero) by a
characteristic function? A reasonable answer goes as follows. Let F be the
function defined on the complex plane by

fo if Rezgf,
[1 if Re z>\.

(In other words: F(z) = 0 or 1 according as z is nearer to 0 or to 1. In case z
is equidistant from 0 and 1, i.e., in case Rez = -J-, it doesn't much matter
how F decides between 0 and 1; the choice indicated in the formal definition
above is one of the two simplest ones to write down.) The function F° <j> is a
characteristic function (and a function of (j> at that), and it is, clearly, as near
to <j> as any characteristic function can get. (Nearness is measured by the
supremum norm, of course; that is the appropriate commutative version of
the operator norm.)

Every normal operator can be represented as multiplication by a suitable
bounded measurable function </> on a suitable L2 space. (This statement has
to be interpreted with some care for non-separable spaces, but there is no
essential loss of generality in restricting attention to the separable case.) Why
then doesn't the preceding paragraph solve the problem of projection approxi-
mation to normal operators? Given a normal A, use the Fdefined above and
write P = F(A); surely the operator P is a projection that is as near to A as any
projection can get. Or is it?

Since P is a function of A, the functional facts described above imply that
P is as near to A as any projection that is a function of A can get. In non-
commutative approximation theory, however, the competition is keener than
in the commutative case. Nothing in the commutative situation inhibits the
existence of a projection that is not a function of A and that is nearer to A
than P is. The whole point of this paper is to show (not for projection approxi-
mation only, but for normal spectral approximation in general) that the keener
competition does not change winners to losers.
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Two comments are in order.

(1) The enlarged competition may properly enlarge the list of those tied
for first place. Consider, for example, the problem of projection approximation
to the matrix

/0 0 0\
A= 0 t 0 .

\0 0 2/

The functional approximation process described above yields the approximant

/0 0 0\
P= 0 1 0 .

\0 0 1/

There are, however, many other projections that are as near to A as P is; the
only thing that is " wrong " with them is that they are not functions of A.
An example of such a near projection is given by

e = k i o.
\o o i/

Note that Q doesn't even commute with A.

(2) The solution of the problem of normal spectral approximation to normal
operators does not necessarily yield a solution of the problem of general
spectral approximation to normal operators. More precisely: it is not always
true that if A is normal, then the distance from A to ^ (A) is the same as the
distance from A to Sf(A); the latter may be strictly smaller. An example

with A = {0} is A = ( ~ . ). The unique JV(A) approximant to A is

the distance || A — 0 [| is 2. From the point of view of general spectral approxi-
mation, however, 0 is not a very good nilpotent approximation to A. The

(non-normal) nilpotent operator Q = I 1 is better; the distance || A — Q \\

is 72.

Retraction
If, as before, A is a non-empty closed subset of the complex plane, a

distance-minimizing retraction for A is a function F mapping the complex plane
into A so that

\z-F(z)\£\z-k\ for all A in A.

The inequality explains the term "distance-minimizing"; the fact that if z
is in A, then | z—F(z)\ ^ 0, so that F(z) = z, explains " retraction " . Since
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the only retractions to be considered in the sequel are distance-minimizing ones,
the modifier can (and will) be omitted with no danger of confusion. The
assumptions (non-empty and closed) imply that for each such A at least one
retraction does exist.

The solution of the problem of projection approximation to normal operators
depends on a retraction for the pair {0, 1}; the general case depends, similarly,
on retractions for general closed sets. If A is convex, then it is easy to verify,
and well known, that there is a unique retraction for A. It is of interest to observe
that the converse is true: if A is a closed subset of the plane such that there is a
unique retraction for A, then A is convex. (This converse is known as
Motzkin's theorem; see (8, p. 94).)

Not much can be said about retractions in general. One easy observation
that is worth recording is that every retraction is bounded on bounded sets.
Proof: if p(z) is the distance from z to A, then

for all z, and the majorant is continuous in z.
Are retractions necessarily continuous, or, failing that, does at least one

continuous retraction exist for each A? The answer is no. Retractions can
refuse to be continuous; if A = {0, 1}, then there is no continuous retraction
for A. It is, however, a part of the standard lore of the subject that if A is
convex, then the unique retraction for A is necessarily continuous. In the
converse direction, Motzkin's theorem says that uniqueness implies convexity;
is there any sense in which continuity also implies convexity? The answer
is yes: if A is such that there exists a continuous retraction Ffor A, then there
can be only one retraction for A and therefore, by Motzkin's theorem, A is
convex. Here is a simple proof (discovered by A. M. Davie). If some z0

has two distinct nearest points in A, say a and /?, then the open disc with centre
z0 and radius | z0 —a |(= | z0— y? |) can contain no point of A. It follows
that each point z of the open segment (z0, a) has a as its unique nearest point
in A (i.e., F(z) = a), and, similarly, each point z of the open segment (z0, /?)
has j8 as its unique nearest point in A (i.e., F(z) = /?). Since this contradicts
the continuity of F at z0, the proof is complete.

Retractions may even fail to be Borel measurable. If, for instance,

A = {0, 1},

then the value of a retraction for A is uniquely determined whenever Re z # £.
If, however, Rez = i, then there is great freedom of choice; assign to each
point on that line either 0 or 1, arbitrarily, and conclude, by a familiar cardinal
number argument, that it is possible to do so in a manner that is not Borel
measurable. In view of this example it is pleasant to learn that, although
pathology can exist, it can always be avoided. This is, in fact, the most useful
single assertion about retractions: they cannot refuse to be Borel measurable.
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Lemma. If A is a non-empty closed subset of the complex plane, then there
exists a Borel measurable retraction for A.

The assertion can be made to follow from the work of Kuratowski and
Ryll-Nardzewski (5); what follows is an easy special proof for the special case
at hand.

For each complex number z, write p(z) for the distance from z to A, and
consider the circle (perimeter) with centre z and radius p(z). (The degenerate
case p(z) = 0, i.e., the case in which z belongs to A, does not require special
treatment.) By definition, p(z) is the smallest radius with the property that
the circle meets A; the intersection of the circle with A is, of course, a closed
set. If A is in that closed set, then X — z = p(z) exp id, with 0 ^ 0 < 2n; let
0(z) be the smallest value of 0 (i.e. the smallest for which A is in A), and write

F(z) = z + p(z)expi0(z).

That is: among the points A in A that are at minimal distance from z, let
F(z) be the one with smallest argument as viewed from z.

It is to be proved that Fis Borel measurable; it will, in fact, be proved that
6 is lower semicontinuous. Since p is continuous, that is indeed more than
enough.

Suppose zn->z0. Write 9n = 9(zn), and consider any convergent sub-
sequence {9nk} with 9nk->90, say. Since

znk + p(znk) exp i9nk-*zo + p(zo) exp i90,

the point z0 + p(z0) exp i90 is in A; since

I zo-(zo + P(zo) exp i0o)| = p{zo),
so that z0 + p(z0) exp i90 is at minimal distance from z0, it follows from the
definition of the function 9 that 0(zo) ^ 90. That is: the limit of every con-
vergent subsequence of (0(zn)} is greater than or equal to 0(zo), which implies
that

liminf0(zn)^0(zo),
n

i.e., that 0 is lower semicontinuous.

Conclusion
Theorem. If F is a Borel measurable retraction for a non-empty closed

subset A of the complex plane, and if A is an arbitrary normal operator, then
spect f(/4)cA; if N is any other normal operator with spect NczA, then

\\A-F(A)\\^\\A-N\\.

Proof. To prove the spectral assertion, use the spectral theorem. Represent
A as a multiplication by, say, <f> on some L2 space. Since ran Fez A, therefore
ran F° 4>czA. Since A is closed, it follows that the essential range of F°<f>
is included in A also, and the essential range of F° <j> is exactly spect F(A).
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(Note that since F is bounded on bounded sets, the functional calculus is
applicable, so that F(A) makes sense.)

The main assertion of the theorem is the inequality. Its proof for convex A
is somewhat easier than for the general case, and deserves at least to be outlined.

Proof for the convex case. If A has an eigenvalue a, with an eigenvector e
of norm 1, so that Ae = ae, then, of course, F(A)e = F(a)e. Since

((A-N)e, e) = a-(JVe, e) = a-A,

where A belongs to the numerical range W(N), and since

W(JV) = conv spect Ncconv A = A,

it follows that

= |(04-JV)e, e)\ ̂  w(A-N) ^ || A-N ||.

(Here w is the numerical radius.) If A happens to be diagonal (i.e., if A has
an orthonormal basis full of eigenvectors), then the preceding conclusion
implies that

\\A-F(A)\\^\\A-N\\.

By the spectral theorem an arbitrary normal operator is the limit (in the norm)
of diagonal ones. Since the continuity of F implies that the mapping Xt-+F(X),
defined for normal operators X, is continuous also, the proof in this case is
complete.

Proof for the general case. Write, as before, p(z) for the distance from z
to A.

(a) If e is a unit vector, then p(a) g |j( a — iV)e || for every complex number
a.

For the proof, represent N as multiplication by <f> on L2(p). Since the
spectrum of N is the essential range of <p, it follows that the essential range of
(j> is included in A, and therefore (2, Problem 97) p(a) ^ | a—<j> \ almost every-
where. Hence

| | (a- iV)e | | 2= | | a - « H 2 | e | 2 r f / i

^ (P(a))2 JIe |2 dfi = (p(a))2.

(b) If a is an eigenvalue of A, then p(oc) g || A — N ||.
Indeed: if e is a unit vector such that Ae = ae, then, by (a),

p(o) ^ ||(a-N)e || = \\(A-N)e \\ g || A-N ||.

https://doi.org/10.1017/S0013091500015364 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500015364


SPECTRAL APPROXIMANTS OF NORMAL OPERATORS 57

(c) If a is in spect A, then there exists a sequence {Ak} of normal operators
such that || Ak—A ||-»0 and a is an eigenvalue of each Ak.

Represent A as multiplication by <f> on L2(n). Since a is in the essential
range of <f>, it follows that if Dk is the open disc with centre a and diameter
l/k, then <j>~i(Dk) has positive measure. Write </>k = a in <j>~1(Dk) and <$>k = <t>
outside (j)~1(Dk), and let Ak be multiplication by (f>k. Clearly Ak is normal
and a is an eigenvalue of Ak for each k. Since | <j>k—<l> \ < l/k in <f>~1(Dk) and
| (j)k—(f> | = 0 outside <l>~1(Dk), it follows that $ t->0 uniformly, and hence that
Ak-*A in the norm.

(d) If a is in spect A, then p(a) g || A-N ||.
By (c), there is a sequence {^t} of normal operators such that Ak-*A and

a is an eigenvalue of each Ak. By (b), p(a) ^ || Ak—N || for each A:. Since
II Ak~N l|-*ll -4 —iV || as A:-*oo, the assertion follows.

(e) The ground is now completely prepared for the final proof.
Represent A as multiplication by (f> o n l 2 ; then A—F(A) is multiplication

by (p — F° (j>. Since almost every value of <f> is in the spectrum of A, and since

| 0 - F o 0 | = po <j>,

it follows from (d) that

almost everywhere. The stated inequality is an immediate consequence.
A special case of the theorem (in fact, a special case of the convex special

case of the theorem) appears in (4); there A is the set of non-negative real
numbers. The proof there is not as simple as the proof of the (more general)
convex case above.

Non-convex special cases of the theorem, appearing outside the context
established above, can be quite puzzling. A case in point is that of projection
approximation (A = {0, 1}). It is tempting in each such special case to look
for a proof appropriate to it, but the search, even if successful, is not likely to
throw much light on the general problem.

The theorem implies that, for each A, each normal oprator has an ^V(A)
approximant. A direct proof of even this mild existential statement does not
seem to be on the surface.

The methods used above make heavy use of the normality of the operator
to be approximated. The general problem of, for instance, projection approxi-
mation to non-normal operators is still open, and not even the existence of
projection approximants is known. Sometimes, however, it happens that the
results for normal operators are more widely applicable than they should be.
Hermitian approximation is an example (it is easy to the point of triviality
for all operators, not only for normal ones), and the problems of unitary
approximation and contraction approximation are also easier than one would
have dared to predict. Why?
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