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Abstract

We use the Morrey norm estimate for the imaginary power of the Laplacian to prove an interpolation
inequality for the fractional power of the Laplacian on Morrey spaces. We then prove a Hardy-type
inequality and use it together with the interpolation inequality to obtain a Heisenberg-type inequality in
Morrey spaces.
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1. Introduction
Inspired by the work of Ciatti et al. [1], we are interested in obtaining an estimate
for the Morrey norm of the fractional power of the Laplacian, in order to prove
Heisenberg’s uncertainty inequality in Morrey spaces. Let (−∆)z/2 be the complex
power of the Laplacian, given by

[(−∆)z/2 f ]̂ (ξ) := |ξ|z f̂ (ξ), ξ ∈ Rn, (1.1)

for suitable functions f on Rn, where the Fourier transform is defined by

f̂ (ξ) :=
∫
Rn

f (x)e−ix·ξ dx, ξ ∈ Rn.

Our first aim is to show the following Morrey norm estimate for the imaginary power
of the Laplacian:

‖(−∆)iu/2 f ‖Mp
q
. (1 + |u|)n/2‖ f ‖Mp

q
, f ∈ Mp

q (Rn),

for every u ∈ R, provided that 1 < p ≤ q <∞.
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[2] Hardy and Heisenberg inequalities in Morrey spaces 481

For 1 ≤ p ≤ q < ∞, the Morrey space Mp
q (Rn) is the set of all f ∈ Lp

loc(Rn)
for which

‖ f ‖Mp
q

:= sup
a∈Rn,r>0

|B(a, r)|1/q−1/p
(∫

B(a,r)
| f (y)|p dy

)1/p

is finite. We refer the reader to [15] for various function spaces built on Morrey spaces.
Based on [9], let us explain why (−∆)iu/2 should be bounded on Mp

q (Rn), for
1 < p ≤ q < ∞, with bound C(u) . (1 + |u|)n/2. We define M̃p

q (Rn) to be the closure
of C∞c (Rn) in Mp

q (Rn) or, equivalently, M̃p
q (Rn) is the closure of Lq(Rn) in Mp

q (Rn)
(see [16, page 1846]). We know that (−∆)iu/2 maps Lq(Rn) boundedly into Lq(Rn) [2].
We also establish in Lemma 2.1 that ‖(−∆)iu/2 f ‖Mp

q
. C(u)‖ f ‖Mp

q
for f ∈ C∞c (Rn),

keeping in mind that C∞c (Rn) ⊂ Lq(Rn) ⊂Mp
q (Rn) and that (−∆)iu/2 f makes sense for

f ∈ C∞c (Rn) by (1.1). This means that (−∆)iu/2 : M̃p
q (Rn)→ M̃p

q (Rn) is bounded (see
Definition 2.2 and Lemma 2.3). From [11, Theorem 4.3], the spaceH p′

q′ (R
n) is the dual

of M̃p
q (Rn) if 1/p + 1/p′ = 1/q + 1/q′ = 1. Here, H p′

q′ (R
n) is the set of all functions

f ∈ Lq′(Rn) for which

f =

∞∑
j=1

λ jA j, (1.2)

where {λ j}
∞
j=1 ∈ `

1 and {A j}
∞
j=1 is a sequence of functions supported on balls with

‖A j‖Lq′ ≤ 1 for every j ∈ N. The norm of f ∈ H p′

q′ is defined by

‖ f ‖
H

p′

q′
:= inf

{ ∞∑
j=1

|λ j| : {λ j}
∞
j=1 and {A j}

∞
j=1 satisfying the condition for (1.2)

}
.

The dual ofH p′

q′ (R
n) isMp

q (Rn) [17]. In general, the dual mapping of a bounded linear
mapping T from a Banach space X to Y is bounded from Y∗ to X∗. Since (−∆)iu/2

is formally self-adjoint, we see that the boundedness of (−∆)iu/2 : M̃p
q (Rn)→ M̃p

q (Rn)
established above entails that of (−∆)iu/2 :H p′

q′ (R
n)→H p′

q′ (R
n) (see Definition 2.4 and

Lemma 2.5), which in turn entails the boundedness of (−∆)iu/2 :Mp
q (Rn)→Mp

q (Rn)
(see Definition 2.6 and Proposition 2.7).

We note that | · |iu f̂ does not make sense for some f ∈ Mp
q (Rn). As indicated above,

the operator (−∆)iu/2 which is initially defined on C∞c (Rn) is then defined onMp
q (Rn)

by the duality relation

〈(−∆)iu/2 f , g〉 = 〈 f , (−∆)−iu/2g〉, g ∈ H p′

q′ (R
n),

because the dual of H p′

q′ (R
n) is Mp

q (Rn) (see [17, Proposition 5] and Definition 2.4).
We claim that this definition of (−∆)iu/2 f coincides with the one given by the Fourier
transform, whenever the Fourier transform of f makes sense. Indeed, we show that

ψ(ξ)F [(−∆)iu/2 f ](ξ) = ψ(ξ)|ξ|iuF f (ξ)
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for every ψ ∈ C∞c (Rn) and 0 < supp ψ, where F denotes the Fourier transform. Observe
that if g ∈ H p′

q′ (R
n), then F −1[ψF g] ∈ H p′

q′ (R
n). In fact,

F −1[ψF g](x) = (2π)nF −1ψ ∗ g(x) = (2π)n
∫
Rn
F −1ψ(y)g(x − y) dy.

As a result,

‖F −1[ψF g]‖
H

p′

q′
≤ (2π)n

∫
Rn
|F −1ψ(y)| ‖g(· − y)‖

H
p′

q′
dy

≤ (2π)n
∫
Rn
|F −1ψ(y)| ‖g‖

H
p′

q′
dy = C‖g‖

H
p′

q′
<∞

and F −1[ψF g] ∈ H p′

q′ (R
n). It follows that

〈(−∆)iu/2 f ,F −1[ψF g]〉 = 〈 f , (−∆)−iu/2F −1[ψF g]〉

or, equivalently,

〈F −1[ψF [(−∆)iu/2 f ]], g〉 = 〈 f , (−∆)−iu/2F −1[ψF g]〉.

Since g ∈ Lq′(Rn),
(−∆)−iu/2F −1[ψF g] = F −1[| · |−iuψF g].

Consequently,

〈 f , (−∆)−iu/2F −1[ψF g]〉 = 〈 f ,F −1[| · |−iuψF g]〉 = 〈F −1[ψ| · |iuF f ], g〉

and therefore
〈F −1[ψF [(−∆)iu/2 f ]], g〉 = 〈F −1[ψ| · |iuF f ], g〉.

Since g is arbitrary, F −1[ψF [(−∆)iu/2 f ]] = F −1[ψ| · |iuF f ], so that we obtain
ψF [(−∆)iu/2 f ] = ψ| · |iuF f , as claimed.

In the following sections, we prove the Morrey norm estimate for the imaginary
power of the Laplacian and its consequence for the fractional power of the Laplacian.
We also prove a Hardy-type inequality and use it together with the estimate for the
fractional power of the Laplacian to obtain Heisenberg’s uncertainty inequality in
Morrey spaces.

2. Morrey norm estimates for the fractional power of the Laplacian

For each u ∈ R \ {0} and on Lp(Rn) for 1 ≤ p ≤ 2, the operator (−∆)iu/2 (defined by
(1.1)) admits an integral kernel Ku given by

Ku(x) :=
π−n/2Γ( n+iu

2 )

2−iuΓ(−iu
2 )
|x|−n−iu = C(u)|x|−n−iu, x ∈ Rn

(see [14, page 51]). Here, K̂u(ξ) = |ξ|iu in the distribution sense. A close inspection of
the above constant shows that

|C(u)| . (1 + |u|)n/2, u ∈ R.
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As shown in [2, 13],

‖(−∆)iu/2 f ‖Lp . (1 + |u|)|n/p−n/2|‖ f ‖Lp . (1 + |u|)n/2‖ f ‖Lp , f ∈ Lp(Rn)

for every u ∈ R, provided that 1 < p ≤ 2. By duality, the same inequality also holds for
2 < p <∞.

Based on the discussion in Section 1, we shall now prove that the inequality above
also holds in Morrey spaces (see [9] for similar results). We need several lemmas and
definitions.

Lemma 2.1. Let u ∈ R and 1 < p ≤ q <∞. Then, for every f ∈ C∞c (Rn),

‖(−∆)iu/2 f ‖
M̃

p
q
. (1 + |u|)n/2‖ f ‖

M̃
p
q
.

Proof. To prove the inequality, it is sufficient to establish that

|B(a, r)|1/q−1/p
(∫

B(a,r)
|(−∆)iu/2 f (x)|p dx

)1/p
. (1 + |u|)n/2‖ f ‖Mp

q

for all fixed balls B = B(a, r). To do so, we adopt the technique used in [6]. For a fixed
ball B = B(a, r), we decompose f := f1 + f2, where f1 := fχB(a,2r) and f2 := f − f1. By
the boundedness of (−∆)iu/2 on Lp(Rn),

|B(a, r)|1/q−1/p
(∫

B(a,r)
|(−∆)iu/2 f1(x)|p dx

)1/p

≤ |B(a, r)|1/q−1/p
(∫
Rn
|(−∆)iu/2 f1(x)|p dx

)1/p

. (1 + |u|)n/2|B(a, r)|1/q−1/p
(∫
Rn
| f1(x)|p dx

)1/p

∼ (1 + |u|)n/2|B(a, 2r)|1/q−1/p
(∫

B(a,2r)
| f (x)|p dx

)1/p

. (1 + |u|)n/2‖ f ‖Mp
q
.

For each x ∈ B,

|(−∆)iu/2 f2(x)| ≤ |C(u)|
∫
Rn\B(x,r)

| f (y)|
|x − y|n

dy ≤ |C(u)|
∞∑

k=0

∫
B(x,2k+1r)\B(x,2kr)

| f (y)|
|x − y|n

dy

. |C(u)|
∞∑

k=0

1
(2kr)n

∫
B(x,2k+1r)\B(x,2kr)

| f (y)| dy

. |C(u)|
∞∑

k=0

( 1
(2kr)n

∫
B(x,2k+1r)\B(x,2kr)

| f (y)|p dy
)1/p

. |C(u)| ‖ f ‖Mp
q

∞∑
k=0

(2kr)−n/q . r−n/q|C(u)| ‖ f ‖Mp
q
.
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Thus,

|B(a, r)|1/q−1/p
(∫

B(a,r)
|(−∆)iu/2 f2(x)|p dx

)1/p

. |B(a, r)|1/q−1/p
(∫

B(a,r)
(r−n/q|C(u)| ‖ f ‖Mp

q
)p dy

)1/p

= |B(a, r)|1/qr−n/q|C(u)| ‖ f ‖Mp
q

∼ |C(u)| ‖ f ‖Mp
q
. (1 + |u|)n/2‖ f ‖Mp

q
.

Combining the two estimates, we obtain the desired inequality. �

Using Lemma 2.1 and density, we give the following natural definition.

Definition 2.2. Given f ∈ M̃p
q (Rn), we define

(−∆)iu/2 f := lim
j→∞

(−∆)iu/2 f j,

where f j ∈ C∞c (Rn) and f j → f in theMp
q -norm.

The next lemma is a direct consequence of Lemma 2.1 and Definition 2.2.

Lemma 2.3. Let u ∈ R and 1 < p ≤ q <∞. Then, for every f ∈ M̃p
q (Rn),

‖(−∆)iu/2 f ‖
M̃

p
q
. (1 + |u|)n/2‖ f ‖

M̃
p
q
.

Definition 2.4. For every g ∈ H p′

q′ (R
n), we define

〈(−∆)iu/2g, h〉 = 〈g, (−∆)−iu/2h〉 for every h ∈ M̃p
q (Rn).

Lemma 2.5. Let u ∈ R and 1 < p ≤ q <∞. Then, for every g ∈ H p′

q′ (R
n),

‖(−∆)iu/2g‖
H

p′

q′
. (1 + |u|)n/2‖g‖

H
p′

q′
.

Proof. For every h ∈ M̃p
q (Rn),

|〈(−∆)iu/2g, h〉| = |〈g, (−∆)−iu/2h〉| ≤ ‖g‖
H

p′

q′
‖(−∆)−iu/2h‖

M̃
p
q
. (1 + |u|)n/2‖g‖

H
p′

q′
‖h‖
M̃

p
q
.

Since (M̃p
q )
∗

(Rn) ' H p′

q′ (R
n) [17], we get the desired result. �

We use Lemma 2.5 to give the following definition.

Definition 2.6. For every f ∈ Mp
q (Rn), we define

〈(−∆)iu/2 f , g〉 = 〈 f , (−∆)−iu/2g〉 for every g ∈ H p′

q′ (R
n).

Proposition 2.7. Let u ∈ R and 1 < p ≤ q <∞. Then, for every f ∈ Mp
q (Rn),

‖(−∆)iu/2 f ‖Mp
q
. (1 + |u|)n/2‖ f ‖Mp

q
.
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Proof. For every g ∈ H p′

q′ (R
n),

|〈(−∆)iu/2 f , g〉| = |〈 f , (−∆)−iu/2g〉| ≤ ‖ f ‖Mp
q
‖(−∆)−iu/2g‖

H
p′

q′
. (1 + |u|)n/2‖ f ‖Mp

q
‖g‖
H

p′

q′
.

Since (H p′

q′ )
∗(Rn) 'Mp

q (Rn), we get the desired result. �

As a corollary of Proposition 2.7, we obtain the following result for the fractional
power of the Laplacian, which is analogous to the interpolation inequality in [1]. See
also [4] for further results on interpolation of Morrey spaces.

Theorem 2.8. Let α ≥ 0. Then, for 0 ≤ θ ≤ 1,

‖(−∆)αθ/2 f ‖Mp
q
. ‖ f ‖1−θ

M
p0
q0
‖(−∆)α/2 f ‖θ

M
p1
q1
, f ∈ C∞c (Rn), (2.1)

where
1
p

=
1 − θ

p0
+
θ

p1
,

1
q

=
1 − θ

q0
+
θ

q1

with 1 < p0 ≤ q0 <∞ and 1 < p1 ≤ q1 <∞.

We remark that [12, Theorem 1.1] is a special case of Theorem 2.8. To prove
Theorem 2.8, we use the following observation, which is based on [5].

Lemma 2.9. Let 1 ≤ w ≤ ∞, 0 ≤ v ≤ 1, α ≥ 0 and let B be any ball in Rn. Then, for
every f ∈ C∞c (Rn),

‖(−∆)αv/2 f ‖Lw(B) ≤ C,

where the constant C = C(n, α, B, f ) is independent of w and v.

Proof. Let N := bn + αc + 1. Then, for every x ∈ Rn,

|(−∆)αv/2 f (x)| ≤
∫
{|ξ|<1}

|ξ|αv| f̂ (ξ)| dξ +

∫
{|ξ|≥1}

|ξ|αv| f̂ (ξ)| dξ

≤ ‖ f̂ ‖L∞ |B(0, 1)| + ‖F [(−∆)N f ]‖L∞
∫
{|ξ|≥1}

|ξ|α−2N dξ. (2.2)

Let E := supp( f ). Observe that

‖ f̂ ‖L∞ ≤ ‖ f ‖L1 ≤ ‖ f ‖L∞ |E| (2.3)

and
‖F [(−∆)N f ]‖L∞ ≤ ‖(−∆)N f ‖L1 ≤ ‖(−∆)N f ‖L∞ |E|. (2.4)

Combining (2.2)–(2.4) and
∫
{|ξ|≥1} |ξ|

α−2N dξ = O(1/(2N − α − n)) gives

‖(−∆)αv/2 f ‖L∞(B) ≤ Cn,α, f ,

where
Cn,α, f :=

(
|B(0, 1)|‖ f ‖L∞ +

D
2N − α − n

‖(−∆)N f ‖L∞
)
|E|

with D� 1. Consequently, for 1 ≤ w <∞,

‖(−∆)αv/2 f ‖Lw(B) ≤ Cn,α, f |B|1/w ≤ Cn,α, f max(1, |B|),

as desired. �
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Proof of Theorem 2.8. Let f ∈ C∞c (Rn). We prove (2.1) by showing that(∫
B
|(−∆)αθ/2 f (x)|p dx

)1/p
. |B|1/p−1/q‖ f ‖1−θ

M
p0
q0
‖(−∆)α/2 f ‖θ

M
p1
q1

(2.5)

for every fixed ball B = B(a, r). Let p′0, p′1 and p′ be defined by
1
p′0

:= 1 −
1
p0
,

1
p′1

:= 1 −
1
p1
,

1
p′

:= 1 −
1
p
,

respectively. Define S := {z ∈ C : 0 < Re(z) < 1} and let S be its closure. For every
z ∈ S and x ∈ Rn, we define

G(z, x) :=

0, g(x) = 0,
sgn(g(x))|g(x)|p

′((1−z)/p′0+z/p′1), g(x) , 0,

where g is an arbitrary simple function with ‖g‖Lp′ (B) = 1. We shall apply the three
lines theorem to the function F(z), defined by

F(z) := ez2
∫

B
(−∆)αz/2 f (x)G(z, x) dx.

Note that F is continuous on S and holomorphic in S . Let z = v + iu, where v ∈ [0, 1]
and u ∈ R. Define w by 1/w := 1 − (1 − v)/p′0 − v/p′1. Then

|F(v + iu)| . e−u2
(1 + α|u|)n/2‖(−∆)αv/2 f ‖Lw(B)‖G(v + iu, ·)‖Lw′ (B). (2.6)

Here, we have used the boundedness of (−∆)iαu/2 on Lw(B) and the fact that
(−∆)αz/2 = (−∆)iαu/2(−∆)αv/2.

Combining (2.6), Lemma 2.9 and

‖G(v + iu, ·)‖Lw′ (B) = ‖|g|p
′((1−v)/p′0+v/p′1)‖Lw′ (B) = ‖g‖p

′/w′

Lp′ (B)
= 1

yields supz∈S |F(z)| <∞, that is, F is bounded on S . Next, we observe that

|F(iu)|. e−u2
‖(−∆)iαu/2 f ‖Mp0

q0
|B|1/p0−1/q0‖G(iu, ·)‖Lp′0 (B)

. e−u2
(1 + α|u|)n/2‖ f ‖Mp0

q0
|B|1/p0−1/q0‖ |g|p

′/p′0‖Lp′0 (B)

. ‖ f ‖Mp0
q0
|B|1/p0−1/q0

and similarly
|F(1 + iu)| . ‖(−∆)α/2 f ‖Mp1

q1
|B|1/p1−1/q1 .

It thus follows from the three lines theorem that

|F(θ)| ≤ sup
u∈R
|F(θ + iu)| ≤

(
sup
u∈R
|F(iu)|

)1−θ
·
(

sup
u∈R
|F(1 + iu)|

)θ
. ‖ f ‖1−θ

M
p0
q0
‖(−∆)α/2 f ‖θ

M
p1
q1
|B|1/p−1/q

for 0 ≤ θ ≤ 1. Accordingly,∣∣∣∣∣∫
B
(−∆)αθ/2 f (x)g(x) dx

∣∣∣∣∣ = e−θ
2
|F(θ)| . ‖ f ‖1−θ

M
p0
q0
‖(−∆)α/2 f ‖θ

M
p1
q1
|B|1/p−1/q.

Since g is any simple function with Lp′(B)-norm 1, we conclude that (2.5) holds. �

https://doi.org/10.1017/S0004972717001216 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717001216


[8] Hardy and Heisenberg inequalities in Morrey spaces 487

3. A Hardy-type inequality and a Heisenberg-type inequality

We shall now prove a Hardy-type inequality and Heisenberg’s uncertainty
inequality in Morrey spaces. According to [10],

‖W · (−∆)−α/2 f ‖Mp
q
. ‖W‖Mu

v ‖ f ‖Mp
q

for f ∈ Mp
q (Rn), (3.1)

where 0 < α < n, 1 < p ≤ q < n/α, u = np/αq and v = n/α. This inequality goes
back to Olsen [8], so we call it Olsen’s inequality. Note that the inequality follows
from Hölder’s inequality and the boundedness of the fractional integral operator Iα :=
(−∆)−α/2 fromMp

q (Rn) toMs
t (R

n) for 0 < α < n, 1 < p ≤ q < n/α, 1/s = 1/p − αq/np
and s/t = p/q (see also [3]). Note that through its Fourier transform, one may
recognise (−∆)−α/2 as the convolution operator whose kernel is a multiple of | · |α−n,
which is initially defined on C∞c (Rn) (see [14]).

The next proposition is a consequence of the inequality (3.1).

Proposition 3.1. Let 1 < p ≤ q <∞ and 0 < α < n/q. Then, for every f ∈ Mp
q (Rn),

‖ | · |−αg‖Mp
q
. ‖(−∆)α/2g‖Mp

q
. (3.2)

Remark 3.2. The inequality (3.2) may be viewed as a Hardy-type inequality in Morrey
spaces.

To prove the proposition, we need some lemmas.

Lemma 3.3. Let 0 < α < n. If g ∈ C∞c (Rn), then

|(−∆)α/2g(x)| . min(1, |x|−α−n).

In particular, f = (−∆)α/2g ∈ L1(Rn) ∩ L∞(Rn).

Proof. We have already seen that |(−∆)α/2g(x)| . 1 in the proof of Lemma 2.9. Now
let ψ ∈ C∞c (Rn) be such that χB(1) ≤ ψ ≤ χB(2), where B(r) denotes the ball of radius r
centred at the origin. Define ϕ j(ξ) = ψ(2− jξ) − ψ(2− j+1ξ). We decompose

(−∆)α/2g(x) = F −1[| · |α(1 − ψ)F g](x) +

0∑
j=−∞

F −1[| · |αϕ jF g](x).

Since h = F −1[| · |α(1 − ψ)F g] belongs to S(Rn), we only need to handle the second
term. Using a crude estimate, F g ∈ L∞(Rn) and so

|F −1[| · |αϕ jF g](x)| . 2 jα‖ |2− j · |αϕ jF g‖L1 ∼ 2 j(α+n).

Let N ∈ N be sufficiently large. Then, as before,

|x|2N |F −1[| · |αϕ jF g](x)|= |F −1[∆N[| · |αϕ jF g]](x)|

.
∑

β∈(N∪{0})n, |β|=2N

‖∂β[| · |αϕ jF g]‖L1 .
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Here and below let β be such that |β| = 2N. Then

|∂β[|ξ|αϕ j(ξ)F g(ξ)]| .
∑

β1+β2+β3=β

|∂β1 [|ξ|α]| |∂β2ϕ j(ξ)| |∂β3F g(ξ)|.

Since ϕ j(ξ) vanishes outside {2 j−2 ≤ |ξ| ≤ 2 j+2},

∂β1 [|ξ|α] = O(|ξ|α−|β1 |), ∂β2ϕ j(ξ) = O(|ξ|−|β2 |), |∂β3F g(ξ)| . 1 . 2− j|β3 |

as ξ→ 0. Thus,

|∂β[|ξ|αϕ j(ξ)F g(ξ)]| .
∑

β1+β2+β3=β

|ξ|α−|β1 ||ξ|−|β2 |2− j|β3 |χ{2 j−2≤|ξ|≤2 j+2}(ξ)

. 2 j(α−2N)χ{|ξ|≤2 j+2}(ξ)

and hence
‖∂β[| · |αϕ jF g]‖L1 = O(2 j(α+n−2N))

as j→ −∞. As a result,

|(−∆)α/2g(x)|. |x|−α−n +

0∑
j=−∞

min(|x|−2N2 j(α+n−2N), 2 j(α+n))

≤ |x|−α−n + |x|−α−n
∞∑

j=−∞

min(|x|α+n−2N2 j(α+n−2N), |x|α+n2 j(α+n)).

Now
∞∑

j=−∞

min(|x|α+n−2N2 j(α+n−2N), |x|α+n2 j(α+n))

≤

∞∑
j=−∞, 2 j |x|≤1

(2 j|x|)α+n +

∞∑
j=−∞, 2 j |x|>1

(2 j|x|)α+n−N

.
∞∑

j=−∞, 2 j |x|≤1

∫ 2 j+1 |x|

2 j |x|
tα+n−1 dt +

∞∑
j=−∞, 2 j |x|>1

∫ 2 j |x|

2 j−1 |x|
tα+n−N−1 dt

≤

∫ 2

0
tα+n−1 dt +

∫ ∞

1/2
tα+n−N−1 dt . 1

and we conclude that |(−∆)α/2g(x)| . |x|−α−n, as desired. �

Lemma 3.4. Let 1 ≤ p ≤ q <∞ and 0 < α < n. For g ∈ C∞c (Rn), define f := (−∆)α/2g.
Then f ∈ Mp

q (Rn) and (−∆)−α/2 f = g pointwise.

Proof. We have proved that f ∈ L1(Rn) ∩ L∞(Rn). Consequently,

‖ f ‖Mp
q
≤ ‖ f ‖Lq ≤ ‖ f ‖1−1/q

L∞ ‖ f ‖1/qL1 <∞.

(This justifies the right-hand side of (3.2).)
Next, | · |αĝ ∈ L1(Rn) and f = F −1(| · |αĝ) ∈ L1(Rn). Hence, f̂ = | · |αĝ pointwise and

so | · |−α f̂ = ĝ pointwise. Thus, (−∆)−α/2 f = g pointwise. �

Now we come to the proof of Proposition 3.1.

https://doi.org/10.1017/S0004972717001216 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717001216


[10] Hardy and Heisenberg inequalities in Morrey spaces 489

Proof of Proposition 3.1. Denote u = np/αq and v = n/α. For 1 < p < q < ∞ and
0 < α < n/q, it follows that u < v. By computing its Morrey norm directly, we see
that W(·) := | · |−α ∈ Mu

v(Rn). Hence, for g ∈ C∞c (Rn), we take f := (−∆)α/2g, which
is a function in Mp

q (Rn) by Lemma 3.4. Moreover, g = (−∆)−α/2 f ∈ Ms
t (R

n), where
1/s = 1/p − αq/np and s/t = p/q, so that Olsen’s inequality (3.1) gives

‖ | · |−αg‖Mp
q
. ‖W‖Mu

v ‖(−∆)α/2g‖Mp
q
.

For 1 ≤ p = q < n/α, we use the fact that f ∈ Lq(Rn) and g = (−∆)−α/2 f ∈ wLt(Rn)
for 1/t = 1/q − α/n with ‖(−∆)−α/2 f ‖wLt . ‖ f ‖Lq (where wLt(Rn) denotes the weak
Lebesgue space of exponent t). From [7, Proposition 4.1],

‖ | · |−αg‖wLq = ‖W(−∆)−α/2 f ‖wLq . ‖W‖wLv‖(−∆)−α/2 f ‖wLt . ‖W‖wLv‖ f ‖Lq

(where v = n/α). This inequality holds for every q with 1 ≤ q < n/α. By the
Marcinkiewicz interpolation theorem,

‖ | · |−αg‖Lq . ‖W‖wLv‖ f ‖Lq = ‖W‖wLv‖(−∆)α/2g‖Lq

for 1 < q < n/α. This completes the proof. �

As a corollary of Proposition 3.1, we obtain the following result (which is analogous
to [1, Corollary 5.2]).

Theorem 3.5. Suppose that 1 < p ≤ q < ∞, 1 ≤ p2 ≤ q2 < ∞, β > 0 and 0 < γ < n/q.
If (β + γ)/p0 = β/p + γ/p2 and (β + γ)/q0 = β/q + γ/q2, then

‖g‖Mp0
q0
. ‖ | · |βg‖γ/(β+γ)

M
p2
q2

‖(−∆)γ/2g‖β/(β+γ)
M

p
q

for every g ∈ C∞c (Rn).

Proof. Write g(x) =
[
|x|βg(x)

]γ/(β+γ)[|x|−γg(x)]β/(β+γ). By Hölder’s inequality and
Proposition 3.1,

‖g‖Mp0
q0
≤ ‖ | · |βg‖γ/(β+γ)

M
p2
q2

‖ | · |−γg‖β/(β+γ)
M

p
q
. ‖ | · |βg‖γ/(β+γ)

M
p2
q2

‖(−∆)γ/2g‖β/(β+γ)
M

p
q

,

as desired. �

Finally, we use our estimate for the fractional power of the Laplacian in
Theorem 2.8 to prove the following Heisenberg uncertainty inequality (which is
analogous to [1, Theorem 5.4]).

Theorem 3.6. Suppose that 1 < p1 ≤ q1 < ∞, 1 ≤ p2 ≤ q2 < ∞ and β, δ > 0. If the
conditions (β + δ)/p0 = β/p1 + δ/p2 and (β + δ)/q0 = β/q1 + δ/q2 hold, then

‖g‖Mp0
q0
. ‖ | · |βg‖δ/(β+δ)

M
p2
q2

‖(−∆)δ/2g‖β/(β+δ)
M

p1
q1

for every g ∈ C∞c (Rn).
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Proof. The idea of the proof is the same as in [1]. If δ < n/q1, we do not have to
do anything because the inequality is the same as in Theorem 3.5. Otherwise, we set
γ = δθ and apply the interpolation inequality

‖(−∆)δθ/2g‖Mp
q
. ‖g‖1−θ

M
p0
q0
‖(−∆)δ/2g‖θ

M
p1
q1

for 0 < θ < n/δq1, so that the inequality in Theorem 3.5 becomes

‖g‖Mp0
q0
. ‖ | · |βg‖γ/(β+γ)

M
p2
q2

‖(−∆)δ/2g‖βθ/(β+γ)
M

p1
q1

‖g‖β(1−θ)/(β+γ)
M

p0
q0

.

Rearranging the expression gives the desired inequality. �

Remark 3.7. Note that the value of δ in the above proposition can be as large as
possible. This is the benefit we obtain from the interpolation inequality for the
fractional power of the Laplacian.
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